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ABSTRACT 

We prove the existence and nonexistence of elliptic curves having good reduction everywhere over certain real quad-

ratic fields  m   for . These results of computations give best-possible data including structures of Mor-

dell-Weil groups over some real quadratic fields via two-descent. We also prove similar results for the case of certain 
cubic fields. Especially, we give the first example of elliptic curve having everywhere good reduction over a pure cubic 
field using our method. 

200m 
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1. Introduction 

Tables of elliptic curves over   have been of great 
value in mathematical research. In particular, some 
databases are very famous and useful in number theory, 
and Cremona’s index (classification of elliptic curves 
over ) becomes popular. Nowadays, modularity 
theorem that explains correspondence between elliptic 
curves and modular forms becomes one of the most im- 
portant facts in number theory and arithmetic geometry. 



Meanwhile, computing elliptic curves (rank of curves, 
Mordell-Weil groups etc.) over general number fields is 
still hard. There are only a few databases of such curves 
and these databases use Cremona-Lingham’s general 
algorithm over number fields. It seems ideal from the 
viewpoint of computational approach, and we can also 
observe the case of elliptic curves over cubic fields that 
are not totally real. However, updating of this algorithm 
with supplementary tables had been stopped since 
September 2005. In addition, though we apply this gene- 
ral algorithm, we have to determine many Mordell-Weil 
groups (=sets of rational points) and this task is the most 
difficult in creating databases. 

Therefore, we have to find a more efficient way (re- 
ducing the number of Mordell-Weil groups that we have 
to determine) to achieve this project and also easy-to- 
read sorted tables of such curves, including information 
(with references) which case is already known and which 
case is still open. 

Let mK  be the real quadratic field  m  where m  

is a square-free positive integer with  and 

m

200m 

KO  the ring of integers of mK . We already know the 
following results concerning elliptic curves with every- 
where good reduction over certain real quadratic fields 
[1-16]: 

Theorem 1.1. 
1). There are no elliptic curves with everywhere good 

reduction over mK  if 

2,3,5,10,11,13,15,17 1,23,30,31,34,35,

39, 42,47,53,55,57, ,66,69,70,73,

74,78,82,83,85,89, ,95 and 97.

,19,2

58,61

93,94

m 
 

2). The elliptic curves with everywhere good reduction 
over mK  are determined completely for 

6,7,14,22, 29,33, , 41,65 and 77.m 37,38  

3). There are elliptic curves with everywhere good re- 
duction over mK  if 26 nd 86.m ,79 a  

We can also consider the pure cubic field case. Let  

mL  be the pure cubic field  3 m

20m 

 where m  is cube- 

free, positive integer with  and 0
mLO  the ring 

of integers of . The first known result is given by 

Bertolini-Canuto [17]: 
mL

Theorem 1.2. Let  be the field L    where   
is the real cube root of 2 (i.e. 2 ). Then there are no 
elliptic curves over  with good reduction everywhere. 

L  L
L

Recently, N. Takeshi applied Bertolini-Canuto’s me- 
thod and showed the following criterion in her master’s 
thesis. 

Theorem 1.3. ([18]) Let L be the cubic field (not only 
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pure cubic) satisfying the following conditions: 
a) 2 does not split on L  , 
b) The narrow class number of  is coprime to 6. L
Then there are no admissible curves over L (= elliptic 

curves with everywhere good reduction over L which 
have L-rational point of order 2). 

In this paper, we extend Theorem 1.1 and apply our 
method to determine the existence and nonexistence of 
elliptic curves having good reduction everywhere over 
certain pure cubic fields. The following two theorems are 
our main result: 

Theorem 1.4. 
1). There are no elliptic curves with everywhere good 

reduction over mK  if m = 43, 46, 59, 62, 67, 71, 103, 
107, 127, 137, 139, 151 and 163. 

2). The elliptic curves with everywhere good reduction 
over mK  are determined completely for . 109m 

3). There are admissible curves over mK  if m = 118, 
134, 161 and 166.  

4). There are no admissible curves over mK  if m = 
131, 179 and 199.  

5). There is an elliptic curve  with everywhere 
good reduction and not having 

E

mK -rational point of 
order 2 if m = 158 and 161. 

Theorem 1.5. 
1). There are no elliptic curves with everywhere good 

reduction over  if  mL

3,5,6,10,12,17,18, 29,116,137,173 and 197.m   

2). If , there are no ad- 
missible curves and elliptic curves with everywhere good 
reduction over  which have cubic discriminant. 

23,44, 45,75 and 87m 

L
E

m

3. There is an elliptic curve  with everywhere good 
reduction and not having -rational point of order 2 
over  if . 

mL

m

We would like to remark that this result is an exten- 
sion of the author’s previous result [19]. 

L 46m 

2. Strategy 

In this section, we introduce the strategy to prove our 
results. Our strategy for the proof is close to that of T. 
Kagawa [7]. However, we use different kinds of com- 
puter softwares and computational techniques. 

Important processes of our result are the following: At 
first, we divide all elliptic curves having everywhere 
good reduction into two types. One is “admissible case”, 
and the other is “nonadmissible case”. Next we consider 
some criteria of S. Comalada to determine whether ad- 
missible curves exist or not (Section 2.1). After that, we 
observe (non)existence of all nonadmissible curves using 
some criteria from algebraic number theory (Section 2.2). 
Using this method, we can get the list of important in- 
variants having constraint condition, and this condition 
can be expressed using certain elliptic curves over mK  

or m . Finally, we directly compute Mordell-Weil 
groups of specific elliptic curves (Section 2.3). Explicit 
data are given from Section 2.4 to 2.6. We note that 
easy-to-read sorted tables will be given in Chapter 3. 

L

2.1. For the Case of Admissible Curves 

First of all, S. Comalada [20] determines all admissible 
curves defined over mK  with . Comalada also 
gives some criteria to find admissible curves over 

100m 
mK  

for an arbitrary . m
Definition 2.1. An elliptic curve defined over mK  is 

called g-admissible if it is admissible and has a global 
minimal model. 

Proposition 2.2. The following two conditions are 
equivalent: 

1) There exists a g-admissible elliptic curve over mK . 
2) 1023m   or either of these sets of diophantine 

equations has a solution: 

a) 2 24 7x my   , , 7 | m

b) 2 24 6x my 5  , , 65 | m

c) 2 2 2x my   , ,  2 mod 8m  

d) 2 2 8x my    and ,  is odd, 2 2 256r ms   r

 od 81 mm . 

e)  and ,  2 2 16384r ms   2 2 8t mw r 
 od 4r  3 m ,  , 1t r  , ,   128 modw st r

 1 m od 8m . 

Thus we can find some admissible curves appearing 
Theorem 1.4 using Comalada’s method. 

2.2. For the Case of Nonadmissible Curves 

Next we assume that a number field K is mK  or m . 
We also assume that the class number of K is 1 and every 
elliptic curve E with everywhere good reduction over K 
has no K-rational point of order 2. For our convenience, 
we say “nonadmissible” if E has everywhere good re- 
duction over K with no K-rational point of order 2. First 
we use the following result: 

L

Proposition 2.3. ([21]) Let E be an elliptic curve over a 
number field K. If the class number of K is prime to 6 
then E has a global minimal model. 

Let E be an elliptic curve with everywhere good re- 
duction over a number field K. By Proposition 2.3, E has 
a global minimal model 

2 3 2
1 3 2 4:E y a xy a y x a x a x a6       

with coefficients  1,2,3, 4,6i Ka O i 
E

. 
The discriminant of  (denoted by  E ) is 

 
3 2
4 6

1728

c c
E
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where 4 6, Kc c O  are, as in [22] (Chapter III, p. 42), 
written as polynomials in the i ’s with integer coeffi- 
cients. Moreover, the following conditions are equivalent 
(cf. [22], Chapter VII, Prop. 5.1): 

a

1)  has everywhere good reduction over , E K
2)   KE O  . 
In our case, all elements of KO  are written in the 

form 



n  where   is a fundamental unit of K (let us 
fix   for each m). Thus to determine the elliptic curves 
with everywhere good reduction over K, we shall com- 
pute the sets 

 
   2 3, 1728  0

n K

n
K K

E O

x y O O y x n



      12
 

However, the set of coefficients 

  5
1 2 3 4 6, , , , Ka a a a a O , which gives rise to  

  2
4 6, Kc c O , does not necessarily exist. Therefore, we  

check whether the curve 
2 3

4 6: 27CE y x c x c   54 , 

which is isomorphic to E over K, has trivial conductor for 
each .    4 6, n Kc c E O

Actually, it is very hard to compute all  n KE O  
because of the limitation of efficiency of equipments. To 
reduce the amount of computation, we show that some 
values of  are irrelevant by using Kagawa’s results. 
Before that, we can easily reduce for the cases of 

 because the map 

n

126 n 

       2 3
6 , , ,n K n KE O E O x y x y  

   

is a bijection. Hence, we observe  only for 
. 

n KE O 
0 6n 

In [7], Kagawa shows a criterion whether the dis- 
criminant of an elliptic curve with everywhere good re- 
duction over mK  is a cube in mK : 

Lemma 2.4. If the following five conditions hold, then 
the discriminant of every elliptic curve with everywhere 
good reduction over mK  is a cube in mK : 

1) The class number of mK  is prime to 6; 
2) mK   is unramified at 3; 

3) The class number of  3mK   is prime to 3; 

4) The class number of  3
mK   is odd; 

5) For some prime ideal P of mK  dividing 3, the con-  

gruence 3 mod 2X P  does not have a solution in  

mKO . 
Using the criterion, Kagawa shows the following: 
Lemma 2.5. ([23]) If 107, 127, 161, 166 or 193m  , 

every elliptic curve with everywhere good reduction over 

mK  has a global minimal model whose discriminant is a 
cube in mK . 

Therefore, we have   3nE     for some n . 
By applying the next lemma, we can further discard 

some cases: 
Lemma 2.6. ([7]) Let K be a number field and E an 

elliptic curve defined over K. If E has good reduction 
outside 2 and has no K-rational point of order 2, then  

     2K E K E  is a cyclic cubic extension un-  

ramified outside 2. In particular, the ray class number of  

  K E  modulo 
2P
PM  is a multiple of 3. 

Note that     nK E K     is either K, 

 1K   or  K  . Thus we compute the ray class 

number of   K E  modulo . The following M

computations in Tables 1 and 2 are carried out by using 
Pari/GP [24] (Same type results were obtained in [25] by 
using KASH [26]). The bold-faced numbers in this table 
are the ones divisible by 3. 

Remark 2.7. Using Lemma 2.6 with some arguments, 
we conclude that if the class number of  is 2 and the  K

ray class numbers of K,  1K    and  K   are 

 

Table 1. Ray class number of  K E   modulo M . 

Ray class number 
m  

 1mK    mK    mK   

43 3 10 1 

46 4 1 3 

59 9 6 1 

62 8 3 1 

67 3 14 1 

71 7 3 4 

103 5 1 20 

107 9 1 6 

109 3 1 1 

127 5 3 16 

131 15 6 1 

137 4 1 1 

139 9 14 1 

151 7 12 1 

161 8 3 1 

163 3 22 3 

179 15 1 6 

193 2 1 1 

199 9 20 1 
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Table 2. Ray class number of  mL E   modulo . M

Ray class number 
m  

 1mL    mL    mL   

M1 1 1 1 

M2 3 1 1 

M3 1 3 1 

M4 1 1 3 

M5 3 3 1 

M6 3 1 3 

M7 6 1 1 

M8 21 1 1 

kM ’s  appearing in the above are as follows: 1 8k  
 1 2,3,5,6,10,12,17,18, 29,116,137,173,197 ,M   

 2 23,33, 44, 46,53, 71,82,99,145,167,179 ,M   

 3 45,87 ,M    4 75 ,M    5 41,55 ,M    6 59,69,188 ,M    

 7 107 ,M    8 177 .M   

 
all prime to 3 then each elliptic curve with everywhere 
good reduction over K is admissible (See [25], Cor. 2.3). 
In this way, we compute them for mK  with m = 118, 
134, 158, 166 and we conclude that the it cannot be de- 
termined for these 4 cases whether there is an elliptic 
curve with everywhere good reduction over mK  which 
have no mK -rational point of order 2. Meanwhile, we 
can show the (non)existence of an admissible curve (see 
the next section). 

For example, the case of , we can conclude  46m 

that    m mK E K     thus the discriminant 

has the form . Hence we should 

determine three sets of integral points ,  

  2 1
0

kE k 
    





 1 mKE O

3 mKE O  and .  5 mKE O

2.3. Computing Mordell-Weil Basis and Integral 
Points 

To compute , we first compute the Mordell- 
Weil group 

n KE O

 
   2 3, 1728

n

n

E K

x y K K y x n



       0 6



. 

It is decomposed into a direct-sum of 
tors

 (tor- 
sion part) and 

free
 (free part, which is not 

canonical, with ). The torsion part can be deter- 
mined by observing reduction at good primes and de- 

composition of division polynomials. On the other hand, 
the free part can be computed by applying two-descent 
and infinite descent (the process of decompression from 

 nE K

  r
nE K  

0r 

   2n nE K E K   to  nE K ). We used Denis Simon’s 
two-descent program (cf. [27]) on Pari-GP [24]. To com- 
pute some related data efficiently, we executed the Pari- 
GP program on Sage [28] as a built-in software. We also 
use Magma [29] for verification. 

The procedure of explicit computation of  E K  is 
the following: 

(1) Determine  whose images in  1p , , rp
   tors

E K E K  generate a subgroup of finite index of 

   tors
E K E K . Usually, these are obtained by per-  

forming an -descent for some , especially we 
often choose 

m
m

2m 
2 .  

(2) Compute an upper bound on the index: 

    1tors
E K E K p: , , rp  .  
(3) A sieving procedure (See [30], Section 4) is then 

used to deduce a Mordell-Weil basis for .  E K
We certainly wish to have an upper bound for  

    1: , , rtors
E K E K p p    as small as possible. In  

particular,  will certainly be a Mordell-Weil 
basis of 

1, , rp p
 E K  if the value is equal to 1. 

To compute the subset  of integral points in n KE O 
 nE K , we use the method of elliptic logarithm to 

compute the linear form: 

   11
, , ,

r

i i n K ri
L m p nT E O m m n


      

where i ’s and  are generators of the free part and 
the torsion part. Moreover, the maximum of the absolute 
values of the coefficients of the linear form 

p T

 1max , , ,rM m m n   

can be bounded using the LLL-algorithm (by Lenstra- 
Lenstra-Lovasz, cf. [31]). 

Finally, we compute that the elliptic curve 
2 3

4 6: 27CE y x c x c  54  

has trivial conductor. 

2.4. Computation I: Admissible Curves for Real 
Quadratic Case 

First we prove the (non)existence of g-admissible curves: 
Proposition 2.8. 
1). There are no g-admissible curves over mK  if m = 

103, 107, 109, 127, 131, 137, 139, 151, 158, 163, 179, 
and 199. 

2). There are g-admissible curves over mK  if m = 
118, 134, 161 and 166.. 

Proof. For all m’s appearing in 1., the third equivalent 
condition a)-e) of Proposition 2.2 does not be satisfied. 
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For , we can find a solution of 
2)-c) of Prop. 2.2. The equation has the form 

118, 134 and 166m 

2 2 2x my    
and we can get the following solutions: 

(Case ) 118m  2 2554 118 51 2    , 

(Case ) 134m  2 2382 134 33 2    , 

(Case ) . 166m  2 241242 166 3201 2   

For , we can find a solution of 2)-a) of Prop. 
2.2. The equation has the form 

161m 

2 24 7x my    

and we can get the following solution 
2 2203 4 161 8 7     . 

Remark 2.9. In fact, [20] proved that the number of 
g-admissible elliptic curves over mK  (up to isomor- 
phism) for  is 2 if 118,134,166m 

2 2 2x my    

is solvable and . Thus we conclude that the num- 
ber of admissible elliptic curves over m

6m 
K  for m = 118, 

134, 166 is greater than or equal to 2. Note that it is not 
true in general that all admissible curves defined over 

mK  are g-admissible. However, assume the class num- 
ber of mK  is odd, it is true except some cases. 

2.5. Computation II: Nonadmissible Curves for 
Real Quadratic Case 

Proposition 2.10. If m = 43, 46, 59, 62, 67, 71, 107, 127, 
139, 151 and 163, there are no elliptic curves with every- 
where good reduction over mK . 

Proof. We compute Mordell-Weil bases and the sets of 
integral points for each of the 11 cases using method 
appearing in Section 2.3. In this paper, we omit data of 
bases of  and the sets of integral points to 
avoid being intricate. A complete data are available from 
the author’s website: 

 n mE K

http://www2.math.kyushu-u.ac.jp/~s-yokoyama/ECtable.
html (*). 

As a result, there are no pairs 
mn K  for 

which the elliptic curve  has trivial conductor. 
  4 6,c c E O

 ,c c


C

For the case m = 109, we can find 4 6  (that gives 
the elliptic curve with everywhere good reduction appear-  

E

ing in Theorem 1.4) from  1094 KE O . 

Proposition 2.11. The elliptic curves with everywhere 
good reduction over mK  are determined completely for 

. 109m 
Proof. First, we compute Mordell-Weil bases: 

1)  0 109 2E K   ; basis is     109 109 12,0T T   . 

2) ; basis is  where   2
2 109E K  

 
  

109 5688 25 544 25 109,

307444 125 29452 125 109

Ap   

 
, 

 
  

109 3026 9 290 9 109,

277340 27 26564 27 109

Bp  

 
. 

3)   2
4 109E K   ; basis is  where  109 109,C Dp p

 109 5596 536 109, 1286204 123196 109Cp      , 

 
  

109 916346 81 87770 81 109,

1613792380 729 154573276 729 109

Dp  


. 

The sets of integral points are 

1)    
1090 109,KE O O T  , 

2) 

 
 

1092

109 109 109 109 109 109, , 2 , 2 2

K

A B A B A B

E O

O p p p p p p



     
, 

c)    
1094 109 109 109 109, , 2 , 3K C C CE O O p p p p      D . 

From  in 1092 Cp  1094 KE O , we can construct the elli-  

ptic curve having everywhere good reduction over 109K  
as follows: 

   

2 31 109 3 109

2 2

274 29 109 3259 315 109 .

y xy x x

x

 
  

   

2

 

According to [16], there are no elliptic curves having 
good reduction everywhere and no 109K -rational point 
of order 2 (= non-admissible) except the above up to 
isogenies. 

For the case 158m  , the class number of mK  is 2 
so our strategy cannot apply. However, we can find one 
elliptic curve with everywhere good reduction over mK   

with computing  1583 KE O . 

Proposition 2.12. There is an elliptic curve  having 
everywhere good reduction over 

E

158K .  is given by E

   
2

3 2

158

158 158

y xy y

x x A B x C D

 

     
 

where 
361817559192191668851A   , 
28784659475803145415B   , 

3691288333191863812738417681108C  , 
293663132146367649175848062813D  . 

For the case 161m  , we can find 4 6  (that 
gives the elliptic curve with everywhere good reduction  

 ,c c 
  109 109,A Bp p
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appearing in Theorem 1.4) from .  1613 KE O

Proposition 2.13. There is an elliptic curve  having 
everywhere good reduction over 

E

161K .  is given by E

 
 

2 3 2 3680 290 161

148482 11702 161 .

y xy y x x x      

  
 

2.6. Computation III: Nonadmissible Curves for 
Pure Cubic Case 

Proposition 2.14. If , there are no 
elliptic curves with everywhere good reduction over m  
which have no m -rational point of order 2 (not ad- 
missible) and cubic discriminant. 

23, 44,75 and 87m 
L

L

Proof. In this case, it is enough to determine 

         23 44 45 75 870 0 3 3 3, , , ,L L L L LE O E O E O E O E O     .  

The result of computing Mordell-Weil bases and the 
sets of integral points is available from the online data  

(*). As a result, there are no pairs    4 6,
mn Lc c E O   

for which the elliptic curve  has trivial conductor. C

Finally, to complete the proof of Theorem 1.5, we 
show the existence of an elliptic curve having every- 
where good reduction over . We can find 

E

46L  4 6,c c   

from .  460 LE O

Proposition 2.15. The elliptic curve E as follows is 
having everywhere good reduction and not admissible 
over : 46L

 

3 2 3
2 3

3 2 3
3 23 1 2

3 2 3
4 5 6

46 46 1
46

3

46 46
46 1

3

46 46

3

y xy y

C C C3x x x

C C C

 
 

 
   

 


 

where ’s  are as follows: kC
219

1 k 
593757433390

6

1 94 681493864706,C   

2 1081334709186632184731947617604,C   

3 5084087035543830437128808550119,C   

C4 = 23258423334479295709473275474986025640457 
867 
C5 = 827892116462926667504946133778759990377913 
857 
C6 = 326497412111533344905526205920140161442668 
6175 

Proof. We can easily compute the discriminant of the 
curve and the result is 

  24E     

where 3 2 3309 46 48 46 4139     is a fundamental 
unit of . 46L

3. Tables 

We give Tables 3 and 4 showing the existence or 
nonexistence of elliptic curves with everywhere good re- 
duction defined over certain number fields. We note that 

DET = Determined, 
NEX = Nonexistence, 
PEX = Partly existence, 
PNEX = Partly nonexistence, 
UNDET = Undetermined 

and a is a generator of each base field, given by 
Magma’s setup “K<a>:=NumberField(f);” where f is 
defining polynomial of K. 

We remark that precise version of the following tables 
are available from the author’s website (*). These contain 
data of fundamental units and references. 

4. Conclusion 

In this paper we proved the (non)existence of elliptic 
curves having everywhere good reduction over certain 
real quadratic fields for 14 cases and partly determined 
the (non)existence for 9 cases. We also proved such re- 
sults over certain pure cubic fields for 12 cases and par- 
tially proved for 6 cases. 
 

Table 3. The case of real quadratic fields . mK

Existence result 
m  

Admissible Non admissible Progress 

1 1m S  No No NEX 

2 2m S  Yes Yes DET 

3 3m S  Yes No DET 

4 4m S  No Yes DET 

5 5m S  Yes No PEX/UNDET 

6 6m S  No Yes PEX/UNDET 

7 7m S  Yes Yes PEX/UNDET 

8 8m S  Yes - PEX/UNDET 

9 9m S  No - PNEX/UNDET 

10 10m S  - No PNEX/UNDET 

where 

1 2,3,5,10,11,13,15,17,19, 21, 23,30,31,34,35,37,

39, 42, 43, 46, 47,53,55,57,58,59, 61, 62,66,67,

69, 70,71,73, 74, 78,82,83,85,89,93,94,95,97,

101,103,107,113,127,129,137,139,141,149,151,

163,167,173,177,181,191,

S 

197 ,

, 

 2 38,77S  ,  3 6,7,14, 22, 41,65S  , 

 4 29,33,109,133,157S  ,  5 118S  , 

 6 26,79,158S  ,  7 86,161S  ,  8 134,166S  , 

 9 51,87,91,131,179,199S  ,  10 193S  . 
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Table 4. The c e of pure bic fields as  cu mL . 

Existence result 
m 

Admissible N Progress on admissible 

1 1m T   No No NEX 

2 2m T  No - PNE ET

46 No Y  

X/UND

es PEX/UNDET 

107 - - UNDET 

where 

 1 2,T  3,5,6,10,12,17,18, 29,116,137,173,197 , 

 2 23,33, 41, 44, 45,53,55,59,69,71,75,82,87 ,145,167,177,179,188T  . ,99

 
It seems extremely difficult to extend these results 

n

gratitude to Takaaki 
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