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ABSTRACT 

We introduce a new approach to image super-resolution. The idea is to use a simple wavelet-based linear interpolation 
scheme as our initial estimate of high-resolution image; and to intensify geometric structure in initial estimation with an 
iterative projection process based on hard-thresholding scheme in a new angular multiselectivity domain. This new do-
main is defined by combining of laplacian pyramid and angular multiselectivity decomposition, the result is multiselec-
tive contourlets which can capture and restore adaptively and slightly better geometric structure of image. The experi-
mental results demonstrate the effectiveness of the proposed approach. 
 
Keywords: Super-Resolution; Laplacian Pyramid; Angular Multiselectivity; Multiselective Contourlets; Anti-Aliasing 

Filer; Sparsity Constraint; Iterative Projection 

1. Introduction 

In most digital imaging applications, high-resolution im- 
ages or videos are usually desired for later image proc- 
essing and analysis. The desire for high resolution stems 
from two principal application areas: improvement of 
pictorial information for human interpretation; and help- 
ing representation for automatic machine perception [1,2]. 
Image resolution describes the details contained in an 
image, the higher the resolution, the more image details 
[1,3]. Super-resolution is techniques that construct high- 
resolution images from several observed low-resolution 
images, thereby increasing the high-frequency compo- 
nents and removing the degradations caused by the im- 
aging process of the low-resolution camera. The basic 
idea behind super-resolution is to combine the non-re- 
dundant information contained in multiple low-resolution 
frames to generate a high-resolution image. The super- 
resolution (SR) reconstruction of a digital image can be 
classified in many different ways: SR in spatial domain 
[4,5], SR in the Frequency Domain [6,7], Statistical Ap- 
proaches [8,9], and Interpolation-Restoration [1,10]. In 
this last context, can be distinguished two categories, 
linear and nonlinear interpolation methods. 

Linear interpolation methods, such as bilinear, bicubic 
and cubic spline [11,12], edge-sensitive filter [13], blur- 
ring and ringing effects because they do not utilize any 
information relevant to geometric structure of image 
[14,15]. Nonlinear interpolation methods incorporate 
more adaptive image models and priori knowledge which  

often improve linear interpolators. Many approaches 
have been designed for addressing this task in recent 
years. We may cite for instance, Soft-decision Adaptive 
Interpolation (SAI) [16], Sparse Mixing Estimators 
(SME) [17], Iterative Projection [18], ··· 

The SAI approach has been improved by Zhang and 
Wu, by using an interpolator adapted to local covariance 
image based on autoregressive image models optimized 
over image blocks. This approach can be more accurate, 
it is much more demanding in computation and memory 
resources. The SME approach proposed by Mallat and 
Yu, computes a high-resolution estimator by mixing 
adaptively a family of linear estimators corresponding to 
different priors. Sparse mixing weights are calculated 
over blocks of coefficients in a frame providing a sparse 
signal representation. Mueller and Lu have proposed an 
iterative interpolation method based on the wavelet and 
contourlet transforms [19,20]. In this approach, the con- 
tourlet transform improves the visual quality of resulting 
images, by intensification of the geometric structure on 
the wavelet linear interpolation. This geometric structure 
is well represented by contourlets with variable angular 
selectivity [21]. However, the contoulets represent the 
image geometry with the same angular selectivity [19,20]. 
In order to overcome this limitation of representation of 
geometric structure in this iterative approach, we have 
increased the sensitivity of angular selectivity of con- 
tourlets. Our idea is based on a simple wavelet-based 
linear interpolation scheme as our initial estimate; and an 
iterative projection process based on hard-thresholding  
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scheme in a new angular multiselectivity domain. This 
new domain is defined by combining of laplacian pyra- 
mid and an angular multiselectivity decomposition. The 
result is new multiselective contourlets, which can rep- 
resent the different structures of the image geometry. 

The paper is organized as follows. In Sections 2 and 3, 
we discuss the new multiselective contourlets, and we 
will show how these multiselective contourlets can pro- 
vide a new degree of freedom to describe adaptively the 
different structures of the image geometry. Our multise- 
lective contourlets algorithm for image super-resolution 
is described in the Section 4. We report the results of our 
experiments in Section 5 and conclude the paper in Sec- 
tion 6. 

2. Laplacian Pyramid 

The Laplacian Pyramid  was first proposed in [22] 
as a new technique for compression image. To achieve 
high compression, it removes image correlation by com- 
bining predictive and transform coding techniques. 

 LP

In the Laplacian Pyramid decomposition at each level 
the original image happens in a high-pass and a low-pass 
filters, the resulting is a downsampled low-pass version 
of the original image, and of difference between the 
original image and the prediction. 

Under certain regularity conditions, the low-pass filter 
g  in the iterated  uniquely defines a unique scaling  LP

function  that satisfies the following two-     2 2t L  
scale equation [23,24] 

    2 2 2
n

t g t 


 


.n          (1) 

Let 

  2
,

2
2 , ,

2

j
j

j n j

t n
t j   
  

 
  .n        (2) 

Then the family    is an orthonormal basis  2,j n n




for an approximation subspace jV  at the scale 2 j .  

Furthermore,  j j
V


 provides a sequence of multire-  

solution nested subspaces 2 1 0 1 2 , 
where 

V V V V V     
jV

2
 is associated with a uniform grid of intervals 

2 j j
2

 that characterizes image approximation at scale 
j . The difference images in the  contain the details 

necessary to increase the resolution between two conse- 
cutive approximation subspaces. Therefore, the diffe- 
rence images live in a subspace 

LP

jW  that is the 
orthogonal complement of jV 1 in jV  , or  

1 .j jV V W   j               (3) 

The  can be considered as an oversampled filter 

bank where each polyphase component of the difference 
signal comes from a separate filter bank channel like the 
coarse signal [25]. Let 

LP

  ,0 3iF z i   be the synthesis 
filters for these polyphase components. Note that these 
synthesis filters are high-pass filters. As for wavelets, we 
associate with each of these filters a continuous function 

 i t  where  

 
2

2 2i
n

t f


i t n . 


         (4) 

Proposition 2.1 ([25]): let 

  2
,

2
2 , ,

2

j
i j i
j n j

t n
t j   
  

 
  .n    (5) 

Then, for scale 2 j ,   2, 0 3,

i
j n i n


  

 is a tight frame 

for jW .  

Since jW  is generated by four kernel functions 
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3. Multiselective Contourlets 

In this section we propose the multiselective contourlets 
defined by combining of laplacian pyramid and an angu- 
lar multiselectivity decomposition, and we will show 
how these new contourlets can provide a new degree of 
freedom to describe adaptively the different structures of 
the image geometry. 

We consider -periodic function 2π   defined by  
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where  0,π   and the function   is defined in  
 1,1  and satisfies the following property: 

   2 2 1.t t           (10) 
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By the laplacian pyramidc wavelets ,j n  defined in 
the previous section and for each subspace jW , we 
construct a new contourlets whose Fourier transforms 
are: 
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Let’s prove this by induction: Since  
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expressed as (19). Now assume that for a fixed , the 
function ,0l

l
  expressed as (19). The inclusion of this 

induction hypothesis and Equation (18) in the ex- 
pression (12) gives:  
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The multiselective decomposition of  2 2f L   is 
defined as the set of the coefficients , , ,j n l m  up to a 
scale J  and a selectivity level  plus the remaining 
low-frequency information 

L
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The reconstruction carried out in this proposition pro- 
vides a new degree of freedom to describe images 
adaptively. Indeed, at each point  and each scale 

, we may search the adaptive selectivity reconstruction, 
that is, the selectivity level  that improves the 
detection of the content of 
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4. Image Super-Resolution via Multiselective 
Contourlets 

The main idea is similar to the technique of interpolation 
proposed in [18]. Our algorithm of image super-resolu- 
tion is to alternately enforce two constraints.  

4.1. Anti-Aliasing Filer Constraint 

In wavelet-space extrapolation, the objective is to obtain  
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an estimation 0x̂  of high-resolution image x from low- 
resolution image Lx  (refer to Figure 1). In this case we 
impose anti-aliasing filer constraint, that is the given 
low-resolution image is the downsampled output of the 
low-pass anti-aliasing filter in a wavelet transform. As a 
simple way to get an estimate 0x̂  of the high resolution 
image, we can take the inverse wavelet transform by 
keeping Lx  as the low-pass band and zeropadding all 
high-pass subbands. Consequently, for any given image y, 
we can calculate the best approximation (in  norm) to 
y, subject to anti-aliasing filer constraint, through 
orthogonal projection. Let 

2L

F  and 1F   represent the 
forward and inverse wavelet transforms, respectively; 
denote  as the diagonal projection matrix of 1s and 0s 
that keeps the low-pass wavelet coefficients and zeros 
out the high frequency subband coefficients, and let 

. If we use orthonormal wavelet transforms, 
then the projection of any image y can be calculated by  

P

PP I  

1
0ˆ ,y F P Fy PFx   ˆ          (47) 

where 0  is the estimation of the high-resolution image 
obtained as in Figure 1. 

x̂

4.2. Sparsity Constraint 

The second constraint is based on a model for natural 
images. Since the multiselective contourlets described in 
Section 3, generate a multiselective geometric represen- 
tation well-suited to preserve contours and edges and 
geometric structure of image, we assume that the un- 
known high-resolution image should be sparse in the 
multiselective contourlets domain. For the sake of sim- 
plicity, we choose to use a direct hard-thresholding 
scheme in our proposed algorithm. Intuitively, we view 
our estimate to the high-resolution image as a noisy ver- 
sion of the true image. Enforcing our sparsity constraint 
works to denoise the estimation of the interpolated signal 
while retaining the important coefficients near edges. we 
enforce this constraint through a hard-thresholding of the 
multiselective contourlet coefficients. 

We suppose that the estimation x̂  of the high- 
resolution is a multiresolution approximation of the real 
image f at the resolution . Hence 02 0x̂ V , and the 
multiselective contourlets decomposition   of x̂  is 
defined as the set of the coefficients 

, , , , , , ˆj n l m j n l m x   up to a scale  and a sele- 0J 

 

 

Figure 1. The anti-aliasing filer constraint. 

ctivity level , plus the remaining low-frequency 
information 

0L 
, , ˆJ n xJ n  : 

    22, , , ,0 , ,0 2 ,0
ˆ , .lj n l m J n nj J n m l L
x  

      
    

   (48) 

Denote T  as the diagonal matrix that, given some 
threshold value , zeros out insignificant coefficients in 
the coefficient vector whose absolute values are smaller 
than T; and  as the adaptive selectivity reconstruction 
given by proposition (3.2),  
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t
    (49) 

we choice the adaptive selectivity level  by mini- 
mizing the distortion introduced by thresholding in fixed 
selectivity procedure:  

 ,j t 

 
 

   
2 2

, ,0,0 , , ,0
0,

, arg min j n j n l
l L

n n

j  


 

  
 

 t t ,t  (50) 

with 

     
2 1

, , ,0 , , , , , ,
0

.
l

j n l T j n l m j n l m
m

  




  t t   (51) 

Denote x  the denoised high-resolution image. The 
sparseness constraint by hard-thresholding can be written 
as 

ˆ.Tx x              (52) 

4.3. Multiselective Contourlets Algorithm for 
Image Super-Resolution 

We show in Figure 2 the block diagram of the proposed 
multiselective contourlets algorithm for high-resolution 
image reconstruction, which can be summarized as 
follows: 

1). We start our algorithm by taking 0x̂ , obtained by 
the simple wavelet interpolation shown in Figure 1, as 
the initial estimate of the high-resolution image.  

2). We then attempt to improve the quality of inter- 
polation, particularly in regions containing edges and 
contours, by iteratively enforcing the observation con- 
straint as well as the sparseness constraint. Let ˆkx  re- 
present the estimate at the kth step. By combining (47) 
and (52), the new estimate 1ˆkx   can then be obtained by  

 1
1 0ˆ ˆ ˆ .

kk T kx F P F x PFx 
      (53) 

3). Following the same principle of the sparseness- 
based image recovery algorithm proposed in [28], we 
gradually decrease the threshold value  by a small 
amount 

kT
  in each iteration, i.e., 1k kT T   . This has 

been shown to be effective in circumventing the non-  
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Figure 2. The block diagram of the proposed algorithm for 
image super-resolution. 
 
convexity of the sparseness constraint. 

4). Return to step 2 and keep iterating, until the gene- 
rated images converge or a predetermined maximum 
iteration number has been reached. 

5. Numerical Experiments 

We compare the high-resolution images obtained by the 
proposed method with those obtained by wavelet linear 
[28], interpolation bicubic [29], contourlet transform [18], 
soft-decision adaptive interpolation (SAI) [16], and 
sparse mixing estimators (SME) [17]. In the experiments, 
we use five scales J = 5, and five selectivity level 5L   
for multiselective contourlets decomposition, and we 
choose 0  and is decreased by 10T  0.2 

51

 in each 
iteration, with a maximum of 10 iterations. We use 
several standard test images of size 512 , in- 
cluding Lenna, Boat, Gauss disc, Peppers, Straws, and 
Mandril (Figure 3). Gauss disc image includes regular 
regions, Lenna and Boat include both fine details and 
regular regions. Peppers is mainly composed of regular 
regions separated from sharp contours. Mandril is rich in 
fine details. Straws image contains directional patterns 
that are superposed in various directions. To show the 
true power of the interpolation algorithms, we first down- 
sampled each image by a factor of 2 and then inter- 
polated the result back to its original size. 

2

The performance measure used was the Peak Signal to 
Noise Ratio (PSNR), A good high-resolution method 
must maximize the PSNR. Table 1 gives the PSNRs 
generated by all methods for the images in Figure 3. 
Figures 4 and 5 compare the high-resolution image 
obtained by different methods. Bicubic interpolations 
produce some blur and jaggy artifacts in the zoomed 
images, but the image quality is lower than with SME 
and SAI methods, as shown by the PSNRs. The Con- 
tourlet method yields almost the same PSNR as a bicubic 
interpolation but often provides better image quality. It is 
able to restore the geometrical structures (see Lenna’s hat 
and gauss disc zoom) when the underlying contourlet  

 

Figure 3. Images used in the numerical experiments. 
 

 

Figure 4. The zoom-in comparison of the Lenna and Gauss 
disc images. From left to right: high-resolution image, low- 
resolution image (shown at the same scale by enlarging the 
pixel size), Wavelet linear, Bicubic interpolation, Contourlet, 
SME, SAI, and Proposed method. 
 
vectors are accurately estimated. However, when the 
approximating contourlet vectors are not estimated 
correctly, it produces directional artifact patterns, be- 
cause the contoulets represent the image geometry with 
the same angular selectivity. Contrariwise in our pro- 
posed method, the angular selectivity can be adapted 
locally to the content of the image, which improves its 
gain in PSNR and its regularity of object boundaries of 
geometrical structures in the generated images, as shown 
in Boat and Peppers zooms. 
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Table 1. The performance of the proposed method relative to other methods. PSNRS (in decibels) are computed over images 
of Figure 3. From left to right: wavelet linear [28], interpolation bicubic [29], contourlet transform [18], sparse mixing 
estimators (SME) [17], and soft-decision adaptive interpolation (SAI) [16]. 

Image Wavelet lin Bicubic Contourlet SME SAI Proposed 

Lenna 31.59 34.03 34.17 34.61 34.74 35.10 

Boat 28.60 29.09 29.15 29.72 29.61 30.14 

Gaussdisc 42.86 46.88 48.45 50.61 50.46 50.89 

Peppers 30.85 32.32 31.96 33.05 33.14 33.52 

Straws 19.15 20.53 20.54 21.55 21.42 21.56 

Mandril 22.55 22.15 22.60 23.10 23.15 23.53 
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