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ABSTRACT 

In this work, we consider a homotopic principle for solving large-scale and dense  underdetermined problems and 

its applications in image processing and classification. We solve the face recognition problem where the input image 
contains corrupted and/or lost pixels. The approach involves two steps: first, the incomplete or corrupted image is sub-
ject to an inpainting process, and secondly, the restored image is used to carry out the classification or recognition task. 
Addressing these two steps involves solving large scale  minimization problems. To that end, we propose to solve a 

sequence of linear equality constrained multiquadric problems that depends on a regularization parameter that con-
verges to zero. The procedure generates a central path that converges to a point on the solution set of the  underde-

termined problem. In order to solve each subproblem, a conjugate gradient algorithm is formulated. When noise is pre-
sent in the model, inexact directions are taken so that an approximate solution is computed faster. This prevents the ill 
conditioning produced when the conjugate gradient is required to iterate until a zero residual is attained. 
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1. Introduction 

Over the last years, new developments in the area of 
computational harmonic analysis have shown that a wide 
class of signals can be well represented by linear combi- 
nations of only few elements of an appropriate basis. The 
benefits and applications of this new advance abound and 
are of extensive research in the present. 

The new sampling theory of compressed sensing has 
unified several insights about wavelets and sparse repre- 
sentation, benefiting several disciplines in sciences in- 
cluding image processing. Practical compressed sensing 
problems involve solving an optimization problem of the 
form 

0
min  subject to ,

x
x Ax b        (1) 

for decoding a sparse signal  that has been sig-
nificantly sub-sampled by a sampling matrix 

nx 
m nA   

with  Here .m n
0

x  counts the number of non-zero 
entries of the vector .x  

Solving (1) is equivalent to finding the sparsest vector 
x such that .Ax b  Nevertheless, finding such a vec- 
tor x is by nature a combinatorial and generally NP-hard 

problem [1]. Efficient numerical algorithms to recover 
signals under this framework have been developed [2-4], 
and extensions of this theory have been explored for 
solving general problems in different areas including 
statistics, signal processing, geophysics, and others. Sig- 
nificant progress toward understanding this problem has 
been made in recent years [5-7], and its study has be- 
come state-of-the-art interdisciplinary research. 

One of the most important characteristics of problem 
(1) is that under some mild conditions, the input vector 
x  can be recovered by solving an -norm underde- 
termined problem 

1

1
min  subject to .

x
x Ax b        (2) 

This decoding model in compressed sensing is known 
as the basis-pursuit problem, first investigated by Chen, 
Donoho and Saunders [8] and theoretically studied by 
Donoho and Huo [9]. Candès and Tao [5] proved for- 
mally this equivalence provided that x  is sufficiently 
sparse, and that A possesses certain properties. 

The compressed sensing theory is extended to solve a 
more general problem that considers noise on the meas-
urements, and almost sparsity for the input vector to be 
recovered. That is, *Corresponding author. 
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1
min  subject to ,

x
x Ax b         (3) 

where the energy of the noise vector is upper bounded by 
.  
Problem (3) can also be reformulated as an uncon- 

strained regularized linear least-squares problem. One 
strategy consists of replacing the Tikhonov regularization 
with one that uses the 1 -norm [2,4]. Another equiva- 
lent formulation is aimed at minimizing the 1 -norm 
function regularized by a linear leasts-quares problem [3], 
known as unconstrained basis pursuit denoising. All 
these approaches have proved to be successful for solv- 
ing compressed sensing problems. 




We reformulate problem (3) by 

1
min  subject to ,

x
x Ax b       (4) 

where  is bounded by m  .  
In this work we propose a new strategy to obtain an 

optimal solution to problem (4), and present an applica- 
tion in robust face recognition to demonstrate the effect- 
tiveness of our algorithm. The idea consists of relaxing 
the nondifferentiable objective function by a sequence of 
multiquadric, continuously differentiable, strictly convex 
functions that depend on a positive regularization pa- 
rameter .  More precisely, we solve 

2

1

min  subject to .
n

x i

x Ax b 


       (5) 

The main accomplishment of this idea is that it leads 
to the generation of a path that converges to an optimal 
solution of problem (4). This leads us to a path-following 
algorithm similar to the ones used in primal-dual inte- 
rior-point methods. The path-following strategy that we 
are proposing uses inexact fixed-point directions to ob- 
tain approximate solutions to problems of the form (5). 
Such inexact directions are computed via a conjugate 
gradient algorithm. In order to prevent the procedure 
from becoming costly, a proximity measure to the central 
path is introduced for each regularization parameter. The 
regularization parameter is defined in a dynamic manner 
that converges to zero as in interior-point methods. 

2. Problem Formulation 

We study the  underdetermined problem (4), where  1
m,nx   ,b

11
,

n

ii
x x


   and A  is a full-rank  

matrix with  The Lagrangian function associated 
with problem (4) is 

.m n

   T

1
, ,l x y x Ax b y     

where  is the Lagrange multiplier for the equal-
ity constraint. The optimality conditions for (4) are given 
by 

my

 

   

   

   

T

T

*

T

1   if 0,

1      if 0,
, :

and 

1,1  if 0,

ii

in m i

ii

A y x

A y x
X x y

Ax b

A y x



 

 
  



 

.

    
 
        

   
  

     

  

Notice that the main role in the characterization of the 
optimal conditions for problem (4) is not played by the 
Lagrange multiplier ,y  but by .TA y  Using this fact, 
the complementarity conditions associated with the pri-
mal variables ix  are determined by 

 
 

T

T

0 with 1  if 0

0 with 1  i

.

f 0.

i i i ii

i i i ii

x z z A y x

x z z A y x

    

    

    


   

 

Therefore a necessary condition for a feasible point 
 , n mx y     to be an optimal solution of (4) is 

T

1

0, 0 and  0.
n

i i
i

x z x x z A y 



           

3. A Regularization Path 

The nondifferentiability of (4) is overcome by regulariz-
ing the 1 -norm with a sum of continuously differenti-
able functions in the following way: for 


0   suffi- 

ciently small,  11

n

ii
x g x


   where g  is the scalar  

function defined by 

  2 , .i i ig x x x    

3.1. Optimality Conditions 

We propose to obtain an optimal solution to problem (4) 
by solving a sequence of subproblems of the form (5) as 

0.   
Since each subproblem (5) is strictly convex, then the 

optimal solution is obtained by solving the associated 
KKT conditions. The Lagrangian function associated 
with (5) is  

   T2

1

, ,
n

i
i

l x y x Ax b y 


         (6) 

where  is the Lagrange multiplier for the equal-
ity constraint. Therefore, the KKT conditions are given 
by the following square system of nonlinear equations: 

my

    1 2 T 0
, ,

0
D x x A y

F x y
Ax b






       
     

    (7) 

where    2diag  for 1,2, ,  and 0.iD x x i n         

3.2. A Fixed Point Problem for the KKT 
Conditions 

We propose to solve (7) using a fixed-point method. To 
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that effect, we rewrite these nonlinear equations as the 
augmented system  

  1 2 T 0
,

0

xD x A
y bA





     
           

    (8) 

where   ,nx ,my    2diag ,iD x x     

1,2, , ,i n   and 0.   
The matrix associated with (8) is nonsingular since A  

has full rank and  1 2D x
  is positive definite. In this 

manner, the nonlinear Equation (7) is posed as a fixed- 
point problem. In order to solve (8) for a fixed 0,   
we proceed by taking an initial point 0x  and iteratively 
compute  ,k k k x y   for  until two con- 
secutive iterations are less than some stopping criteria. 

0,1,k  

3.3. Inexact Directions for the Augmented 
System 

For a current point _,x  the following system 

  1 2 T 0_
,

0

xD x A
y bA





     
           

   (9) 

is reduced to a weighted normal equation. The first block  

of equations gives  1 2 T_ 0,x D x A y   and since  

,Ax b   we obtain the weighted normal equation 

 1 2 T_ .AD x A y b             (10) 

With this reduction, we move from an indefinite sys- 
tem of order  to a positive definite system of or- 
der  Moreover, the conjugate gradient algorithm ap- 
plied to (10) converges in at most  iterations in exact 
arithmetic. The solution 

n m
.m

m
x  of (9) is computed directly  

by  1 2 T_ x D x A y   once  is obtained. y

Taking into account that the values of TA y  charac- 
terize the optimality set * ,X  we formulate a conjugate 
gradient algorithm that finds an approximation of TA y  
rather than y, see Figure 1. 

At each iteration, the CG algorithm satisfies the first  

block of equations  1 2 T_ 0,D x x A y    therefore  

controlling the stopping criteria for solving the aug-
mented system (9) is equivalent to controlling the stop-
ping criteria for solving the linear system 0.Ax b   

  n m
 

Based on this, we define the vector 0, r   as the 
residual vector for the augmented system, where  

.r Ax b     Note that 0r   implies 

.Ax b    Now, since   is bounded by ,  then  

the conjugate gradient algorithm stops when  
.Ax b    This implies the stopping criterion does not 

need to be zero, overcoming the ill-conditioning of the 

 

Figure 1. Conjugate gradient algorithm. 

4. Path Following Method 

l path associated with problem (4) 

4.1. Central Path 

We define the centra
by  

   1 2 T 0
, :

0
n m

D x x A y
C x y

Ax b

   
 

 


 .

        
     

  (11) 

The set consists of all the points that are solutions 
of

C  
pro the sub blems (5) for 0.   This set defines a 

smooth curve called the centra  that converges to an 
optimal solution of Problem (4) as the regularization pa- 
rameter 

l path

  tends to zero [10]. 

4.2. Proximity Measures 

ollows in the direction Our path-following method f C  
 generated by a decreasing sequence of regularization 

parameters   Since moving on C  to obtain an opti-
mal solution or (4) could be computationally expensive, 
we restrict the iterates to some neighborhoods of the cen-
tral path given by 

 f

1
: .

1k

j jn m
j k

j



 
 




     
  

    (12) 

4.3. Updating the Perturbation Parameter 

Since T 0x z    is a necessary condition for obtaining an 
optimal solution of problem (4), then following the same 
idea of primal-dual methods we define the regularization 
parameter by 

T

,
x z

n
 

 
                (13) 

where T, ,x x z A y    1    is the centering pa- weighted normal equation close to the solution. 
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 in  0,1 ,rameter  and is the  n  size of the primal vari- 
able .x  To  decrease of the parameter , guarantee the   
we up ate it by  d prevmin ,    where  ,10   
and prev  denotes t for the re  
tion parameter. 

Now, we pres

he vious value 

t a globalization al

pre gular

 for solvi

ize-

ng 

m

en gorithm
the convex and nondifferentiable problem (4). The 
methodology consists in following the central path C  
to obtain an optimal solution. To prevent the algorith  
from becoming computationally expensive a series of 
neighborhoods, ,

k
  around the central path are de-

fined to be used as ity measures of the path for a 
decreasing regularization parameters .

 proxim
  To obtain an 

approximate solution on the path for a ven 0,gi    an 
inexact fixed-point procedure is applied to ( il a 
point  , .x y

8) unt

  If an optimal solution to (4) is not 
found, se , we decrea   specify a new neighborhood 

  and repeat the f d-point procedure. An optimal 
tion for (4) is found as ,

ixe
solu   approaches to zero. For 
the primal variables x  we define their corresponding 
complementarity variables z  such that 0i ix z    and 

0iz   for 1, ,i n   at the mal solut rob- 
). This us to define the regularization pa- 

rameter 

 opti
ws 

ion of P
lem (4 allo

  in the same manner as in interior-point 
methods. 

4.4. P

Following

sequen
at

ath Following Algorithm 

th-In this section we present our “Pa  Sign

ces 

al 

of iter- 

Recovery” (PFSR) algorithm. The pseudo-code form of 
the algorithm is presented in Figure 2. 

The PFSR algorithm generates two 
es. The first sequence (inner loop) generates a series of 

iterates for obtaining an approximate solution of Sub- 
problem (5) for a fixed regularization parameter 0.   
The second sequence (outer loop) generates a se  
approximate solutions for the subproblems (5) that con- 
verges to an optimal solution of problem (4) for a se- 
quence of decreasing regularization parameters 0.

ries of

   

5. Sparse Signal Recovery 

In this section, we present a set of experime

an

ntal results

 initial points

 

 

that illustrate the performance of the MATLAB imple-
mentation for the proposed algorithm. 

In the implementation of Algorithm 1 the
d the parameters are chosen as follows. In Step 1a, the 

initial points for TA y  and x  are the n-dimensional 
zero vector. In Step we fix the maximum number of 
CG iterations by cg_maxiter = 10. 

In the implementation of Algori

 2,

thm

 

 2 the 
ar

parameters 
e chosen as follows. The initial regularization parame-

ter   is given by 

 T

1

1 ,
n

i i
i

x A b 


   

 

Figure 2. PFSR algorithm. 
 
where x  

erical ex
is the uction. Our 

um p
 minimum energy reconstr

erimentation suggests n 0.008   as a 
good choice. In Step 3, we set maxiter = 10 as the maxi-
mum number of subproblems of the form (5) to solve. 
The new regularization parameter   is updated in Step 
10 by  min ,gap    with 0.9.   

5.1. Sparse Signal Recovery Example 

This experimentation has the objective of investigating 
y our PFSR the capability of recovering sparse signals b

algorithm. The goal in this test is to reconstruct a 
length-n sparse signal from m observations, where m < n. 
We start with a classical example also considered in 
[2,4,11]. The problem consists of recovering a signal 

4096x  with 160 spikes with amplitude ±1, from m = 
1024 noisy measurements. We use a partial DCT matrix 
A m rows are chosen randomly from the n n whose   
discrete cosine transform, without having access to it in 
explicit form, but using A as a linear operator on n  
The same for the matrix T.

.
A  Partial DCT matrices are 

fast transforms for which matrix-vector multiplications 
cost just  logO n n  flops d storage is not required. 
This case is common for compressed sensing [3,4]. In 
this probl ave ,mb Ax     where the 
noise vector 

, an

em, we h
  is set according to a Gaussian distribu- 

tion with mean 0 and standa . The origin- 
nal and reconstructed signal are shown in Figure 3. 
Moreover, the algorithm was successfully run one hun-
dred times with an average CPU time of 0.2895 seconds, 
and 0.0491 average relative 2-norm error defined by 

rd deviation 0.01

22-norm error ,
x x

x






  

2

being x  
the PFSR algorith

the true solution and x the solution reached by 
m. 
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 Original signal x0 
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Figure 3. Signal reconstruction. 

5.2. The Ef

described above, we run the 
iseless case, and zero mean 

n 
and Image Processing 

tatio . In classification pro- 

fect of Noise 

For the same test problem 
algorithm considering the no
Gaussian noise with standard deviations varying from 
0.01 to 0.04. The stopping criterion for the conjugate 
gradient residual is determined by the noise level as ex- 
plained in Section 3.3. In all cases we successfully re- 
cover the original signal after a process of thresholding. 
Table 1 reports the results for this experimentation 
showing that the algorithm is also effective for solving 
noiseless sparse recovery problems. Moreover, success- 
ful recovery was obtained with noise level up to 0.04. 

6. Sparse Representation in Classificatio

There exist a number of areas where the sparse represent- 
n model (4) emerges naturally

blems for instance, an input sample can usually be ex- 
plained from few other previously trained samples. That 
is, an incoming sample b can be expressed as a linear 
combination of only few columns  , 1, , ,iA i n    
where the matrix ,m nA   ,m n  is a matrix whose 
columns are previously trained samples. 

On the other ha s can be efficiently 
encoded in an appropriate basis that ex

nd, natural image
ploits the hight 

co

In pattern recognition and machine learning, a classifica-  

onsidering different setups for noise. 

rrelation present between pixels. Among many emerg-
ing class of transformations, the Discrete Cosine Trans-
form (DCT) and Discrete Wavelet Transform (DWT) are 
a standard basis where natural images can be sparsely 
represented. This property has been extensively studied 
in recent years, leading to a construction of new models 
for images where the sparsity is incorporated in the 
model as a regularizer. 

6.1. Classification 

Table 1. Performance c

Noise 0.00 0.01 0.02 0.03 0.04 

2-norm error 0.016 0.063 0.121 0.208 0.294 

R  ecovery %100  %100  %100  %100  %100  

Time [s] 0.4056 0.3432 0.3744 0.4056 0.4836

 
tion  consists o or or -

g put f ries. F r-
 

 problem
a given in

f finding
o one o

 an alg
 several ca

ithm f
tego

 assign
oin data t

mally, given an input dataset,  1, , ,nW w w   a set of 
labels/classes  1, , ,nT t t   and a training dataset  

  , : 1,i iD u t i n    such bel/class that  is the la

a classifier 
assigning the c ct la a

i

of the sample u is a mapping f from W to T, 

t

,i  
orre bel t T  to  given input w, that 

is,  , .f D w t  
Consider a training data set   , : 1, , ,i iu t i n    

 , 1, 2, , ,d
iu t N   w n being the number of 

sa
i 

iu   represents the 

it
or 

 

ve

h 
 of classes. The vmples and N the number ect

,d ith sample, and it  is the corre-
sponding label. 

The sparse representation problem is formulated as 
follows: For a testing sample ,db  find the sparsest  

ctor 
T

1 2,, , nx x x x     such that 

.1 1 n nb x u x u x u2 2         (14)   

We s test samhow that indeed a valid ple can be repre- 
sented using only the training samples fro
cl

 

 a matrix 

m its same 
ass, therefore inducing a natural sparse representation. 

Let us rearrange the given in  training samples from the 
same i-th class as the columns of a submatrix  

,1 ,2 ,, , , .
i

d n
i i i i nA u u u       In other words, we group 

all of those samples with the same label into

i

Any test sample b from t.iA  he same class will be rep-
resented as a linear combination of the training samples 
associated with class i:  

,1 ,1 ,2 ,2 , , ,
i ii i i i i n i nb x u x u x u          (15) 

for some values of , , 1, ,i j ix .j n  
training dataset, we d

 Now, making 
use of the whole efine a d n  
matrix A by concatena ning samples of 
the different N classes, that is 

ting all of the n trai
1 2, , , .NA A A A   Then, 

the linear representation of the test sample b that belongs 
to class i is written by: 

,b Ax                  (16) 

where 0, ,0, ,x x
T

,1 ,2 , , ,0, ,0 .n
i ix x     , ii n    Thus, 

the test sample b is expressed by a sparse linear combi- 
of the training samples, more specificallnation y, as a 

linear combination of only those training samples be- 
longing to the same class. This motivates us to formulate 
the following problem: 
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1
min subject to ,x Ax b      (17) 

which follows the same structure as (2). 
One of the advantages of this formulation is that the

lack of robustness with respect to outliers ca
 care for model 

e testing sample b belongs. 
ro entries 

 
n be over- 

come. Furthermore, we do not need to
selection as in support vector machine approaches for 
classification problems [13]. 

6.1.1. Discriminant Functions and Classifier 
Once the sparse representation vector x is computed, we 
identify the class to which th
The approach consists in associating the nonze
of x with the columns of A corresponding to those train- 
ing samples having the same class of the testing sample b. 
The solution vector x is decomposed as the sum of 
d-dimensional vectors ˆ ,kx  where ˆkx  is obtained by 
keeping only those entries in x associated with class k 
and assigning zeros to all the other entries. Then, we de- 
fine the N discriminant functions 

  2
ˆ , 1, , .k kg b b Ax k N       (18) 

Thus, kg  represents the approximation error when b 
is assigned to category k. Finally, we assign b to the class 
with the smallest approximation error. That is, 

  ˆ arg min , 1, , .kt g b k N      (19) 

In this manner, we identify the class of the test sample 
b based on how effectively the coefficients associated 
with the training samples of each class recreate b

on is a 
aluating performance in which 

bject to a degradation processes m

. 

6.1.2. Cross Validation 
A classifier performance is commonly measured by its 
error rate on the entire population. Cross Validati
statistical method for ev
the data is divided in two sets: one used for the training 
stage, and the second one used for testing (validation). 
Both training and testing sets should cross-over in con- 
secutive rounds in such a way that each sample in the 
data set has a chance of being validated. 

In the case of K-fold cross validation, a K-fold parti- 
tion of the dataset is created by splitting the data into K 
equally (nearly equal) sized subsets (folds), and then for 
each of the K experiments, K − 1 folds are used for 
training and the remaining one for testing. A common 
choice for K-Fold cross validation is K = 10. The work in 
[12], compares several approaches for estimating accu- 
racy, and recommends stratified 10-fold cross-validation 
as the best model selection method because it provides 
less biased estimation of the actual accuracy. In our nu- 
merical experimentation we follow this validation ap- 
proach to test the performance of the classification algo- 
rithm. 

6.2. Image Processing 

In many practical image processing applications, we are 
interested in recover a target image ,nu  that has 
been su odeled as 

,Hub                 (20) 

where mb  is the degraded image,   is additive 
noise of certain distribution, and H is a linear operator 
that acts on the target image u. For instance, H can be a 
convolution operator that models atmospheric turbulence, 

s due to movement. or defects on the acquisition proces
 a point t

-
qu

From  of view of parameter estima ion, problem 
(20) corresponds to an inverse problem which is very 
difficult to solve due to the ill-conditioning nature of H 
and the large number of degrees of freedom present in 
the image. Consequently, additional information is re

ired in order to obtain a meaningful solution to (20). 
This is accomplished with the 1  norm regularization, 
and our problem becomes 

1
min subject to  ,

x
x H x b      (21) 

where   is an sparsifying matrix for u, and x is a 
sparse vector of coefficients. That is, .u x   

When H models a process of missing information, it 
receives the name of mask, and is constructed by
ing from the 

 remov- 
n n  identity matrix, the n − m rows asso- 

it
g to an complete 

im

ce reco he challenge consists in auto- 
ace image within an 

iduals [14]. Further-

s, the images were taken at different 
tim

ciated w h the missing data. In this setting, we consider 
that n − m pixels has been lost, leadin  in

age .mb  

7. Robust Face Recognition 

In this section, we demonstrate the effectiveness of the 
proposed algorithm by showing a real application in ro- 
bust fa gnition. T
matically identify an input human f
existing database of several indiv
more, we assume that the input image has been subject to 
a data loss process, or that several of its pixels has been 
severely corrupted. 

We consider the database of human faces from the 
AT&T laboratories in Cambridge (Cambridge University 
Computer Laboratory)1 which consists of 400 images of 
40 individuals each of which with ten different images. 
For some individual

es, lighting and facial expression. The size of each 
image is 112 92  pixels with 256 gray levels in a pgm 
format. 

The proposed approach involves two steps. First, the 
test image containing several corrupted or lost pixels is 
reconstructed via inpainting. To that end, we solve prob- 
lem (21) w  is the corrupted test image, here b   is the 
wavelet Daubechies level 7 matrix, and H is the matrix 
1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 
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(m

ese

to ation runs, each of which 
so

nsider 
th

individual b in the training dataset. 

- 
conjugate gradient algo- 
rization parameter is im- 

 

ering large signals with noisy data. The sparse represent- 
tation approach is applied to a face recognition problem 
where the data is incomplete and/or corrupted. An in- 
painting procedure is carried out for reconstructing the 
input image, and then a classification process is per- 
formed in order to identify the correct individual. Both 
processes are accomplished with the proposed algorithm 
for 1  minimization problems, achieving a high recog- 
nition rate. 



ask) associated with the missing pixels. 
Secondly, we exhibit the reconstructed test image to a 

training dataset in order to find the sparsest linear com-
bination of the training samples that better repr nts the 
test image. Both processes are carried out by solving an 

1  minimization problem. 
Figure 4 depicts the recognition process where the test 

image is corrupted by two different kind of masks. 
In our numerical experiments, we perform a cross vali- 

dation scheme in order to assess a recognition rate for a 
tal of 10-fold cross valid 9. Acknowledgements 
lves 40 test problems. None of these experiments in- 

cluded the test image in the training dataset. We co
The authors want to thank the financial support provided 
by the US Army Research Laboratory, through the  

ree different types of corruptive masks: 1) Random 
missing pixels uniformly distributed over the test image, 
2) Corruptive horizontal lines and 3) Corruptive vertical 
lines. Despite Figure 4 shows two corrupt test images 
with a total of 34.12% (top) and 15.18% (bottom) re- 
spectively, in our numerical experiments we consider a 
percentage of lost data ranging from 5 to 40%. The av- 
erage recognition rate obtained after the cross validation 
experiments was 97.25%, and Table 2 reports each of 
these rates per fold. 

In Figure 5 one can notice that the solution vector x 
for problem (17) is sparse, and its nonzero components 
mark those training samples iu  in the dictionary A that 
are from the same class of the test sample b, that is, those 
other pictures of the 
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8. Concluding Remarks 

In this work we present a novel methodology for solving 
large-scale and dense 1  underdetermined problems. 
For solving the large-scale and dense linear systems as

Figure 4. Classification scheme. 
 

Table 2. Recognition rate per fold. sociated with the problem, a 
rithm is formulated. The regula  Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Recognition rate 100% 97.5% 95% 97.5% 95% 

 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Recognition rate

plemented in the same fashion as in interior-point meth- 
ods by characterizing the complementarity variables as- 
sociated with the primal variables of the problem. We 
present a numerical experimentation that shows that our 
algorithm is capable to perform efficiently when recov- 

%95  %100  %95  %100 %97.5
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Figure 5. Sparse linear combination. 
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