

Application for Superconvergence of Finite Element Approximations for the Elliptic Problem by Global and Local L^2 -Projection Methods

Rabeea H. Jari, Lin Mu

Department of Applied Science, UALR, Little Rock, USA Email: rhjari@ualr.edu, lxmu@ualr.edu

Received February 12, 2012; revised May 21, 2012; accepted July 12, 2012

ABSTRACT

Numerical experiments are given to verify the theoretical results for superconvergence of the elliptic problem by global and local L^2 -Projection methods.

Keywords: Finite Element Methods; Superconvergence; L^2 -Projection; Elliptic Problem

1. Introduction

The elliptic problem seeks u in a certain functional space such that

$$-\Delta u = f \text{ in } \Omega \tag{1}$$

$$u = g \text{ in } \partial\Omega$$
 (2)

where Δ denote the Laplacian operator.

Let T_h be a finite element partition of the domain Ω with characteristic mesh size h. Let $V_h \subset H^1_g(\Omega)$ be any finite element space for u associated with the partition T_h .

The L^2 -Projection technique was introduced by Wang [1-3]. It projects the approximate solution to another finite element dimensional space associated with a coarse mesh.

Now, we start with defining a coarse mesh T_{τ} where $\tau \gg h$ satisfying:

$$\tau = h^{\alpha} \tag{3}$$

with $\alpha \in (0,1)$. Define finite element space $V_{\tau} \subset H^{s-2}(\Omega)$. Let Q_{τ} to be the L^2 -Projector onto the finite element space V_{τ} [1,4,5]. The Projector Q_{τ} can be considered as a linear operator (projection) from $L^2(\Omega)$ onto the finite element space V_{τ} [6,7].

2. Superconvergence by Global L^2 -Projection

The following theorems can be found in [1].

Theorem 2.1: Assume that $1 \le s \le k+1$ and the finite element space $V_r \subset H^{s-2}(\Omega)$. If the exact solution $u \in H^{k+1}(\Omega) \cap H^{r+1}(\Omega) \cap H_g^1(\Omega)$, then there exists a

constant C such that

$$\|u - Q_{\tau}u_h\| + h^{\alpha} \|\nabla_{\tau} (u - Q_{\tau}u_h)\|$$

$$\leq Ch^{\alpha(r+1)} \|u\| + Ch^{\sigma} \|\nabla (u - u_h)\|,$$

where $\sigma = s - 1 + \alpha \min(0, 2 - s)$ and u_h is the finite element approximation of (1)-(2).

Theorem 2.2: Suppose that $1 \le s \le k+1$. Let the surface fitting spaces $V_r \subset H^{s-2}(\Omega)$ and u_h be the finite element approximation of (1)-(2). Then, the post-processing of u_h is estimated by

$$\alpha = \frac{k+s-1}{r+1-\min(0,2-s)}.$$

3. Numerical Experiments for Global L^2 -Projection

In this section, we present several numerical experiments to verify the theoretical analysis in [1]. The triangulation T_h is constructed by: 1) dividing the domain into an $n^3 \times n^3$ rectangular mesh; 2) connecting the diagonal line with the positive slope. Denote $h = \frac{1}{n^3}$ as the mesh size.

The finite element space is defined by

$$V_h = \left\{ v \in H_g^1(\Omega); v \middle|_K \in P_1(K); \forall K \in T_h, v = g \text{ on } \partial \Omega \right\}.$$

We define V_z as follows:

$$V_{\tau} = \left\{ v \in L^{2}\left(\Omega\right) \colon v \big|_{K} \in P_{2}\left(K\right); \forall \ K \in T_{\tau} \right\}.$$

Example 3.1: Let the domain $\Omega = [0,1] \times [0,1]$ and the exact solution is assumed as

$$u = x(1-x)y(1-y)$$

Table 1 shows that after the post-processing method, all the errors are reduced. The exact solution in L^2 -norm of $\|u - Q_r u_h\|$ has the similar convergence rate as $\|u - u_h\|$. There is no improvement for the u in L^2 -norm. However, the error in H^1 -norm have higher convergence rate, which is shown as $O(h^{1.3})$ for $\|\nabla_r (u - Q_r u_h)\|$.

The order of convergence rate is $O(h^{0.3})$ better than $\|\nabla(u-u_h)\|$, see **Figures 1(a)** and **(b)**.

Figures 2(a) and **(b)** give results for the finite element approximation of (1)-(2) before and after post-processing.

Example 3.2: Let the domain $\Omega = [0,1] \times [0,1]$ and the exact solution is assumed as

$$u = \sin(\pi x)\cos(\pi y)$$

Table 1. Errors on uniform triangular meshes T_h and T_τ .

h	$ u-u_{\scriptscriptstyle h} _{\scriptscriptstyle 1}$	$ u-u_{h} $	$ u-Qu_{\scriptscriptstyle h} _{\scriptscriptstyle 1}$	$ u-Qu_{h} $
2^{-3}	0.6632e-2	0.1287e-3	0.1427e-2	0.1227e-3
3^{-3}	0.2799e-2	0.2295e-4	0.4332e-3	0.2185e-4
4^{-3}	0.1433e-2	0.6017e-5	0.1763e-3	0.5730e-5
5^{-3}	0.8294e-3	0.2015e-5	0.8504e-4	0.1919e-5
6^{-3}	0.5223e-3	0.7992e-6	0.4596e-4	0.7610e-6
O(h)	0.9998	1.9993	1.3504	1.9996

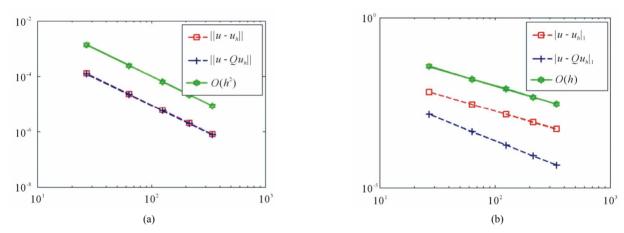


Figure 1. (a) Convergence rate of L^2 -norm error; (b) Convergence rate of H^1 -norm error.

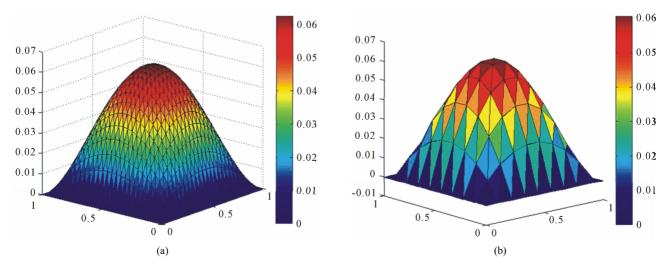


Figure 2. (a) Surface plot of approximation solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

From the results shown in **Table 2**, it is clear that the exact solution u in H^1 -norm has the superconvergence, but there is no improvement in the L^2 -norm, see **Figures 3(a)** and **(b)**. The finite element solution given in **Figures 4(a)** and **(b)**. This agrees well with the theory.

Example 3.3: Let the domain $\Omega = [0,1] \times [0,1]$ and the exact solution is assumed as

$$u = \frac{\cos\left(\pi(x+y)\right)}{2}$$

Table 3 gives the errors profile for Example 3. Notice that, the gradient estimate is of order $O(h^{1.3})$, that is much better than the optimal order O(h). Although, there is no improvement in the L^2 -norm, see **Figure 5**.

Figure 6 shows that the approximation solutions u_h and $Q_t u_h$.

Also, our numerical results and theoretical conclusions in Theorems (2.1)-(2.2) show highly consistent.

Table 2. Errors on uniform triangular meshes T_h and T_{τ} .

h	$ u-u_h _1$	$ u-u_{h} $	$ u-Qu_{h} _{1}$	$ u-Qu_{h} $
2^{-3}	0.9629e-1	0.1598e-2	0.2242e-1	0.1498e-2
3^{-3}	0.4063e-1	0.2850e-3	0.6872e-2	0.2669e-3
4^{-3}	0.2080e-1	0.7475e-4	0.2810e-2	0.6998e-4
5^{-3}	0.1204e-1	0.2503e-4	0.1359e-2	0.2343e-4
6^{-3}	0.7582e-2	0.9929e-5	0.7363e-3	0.9294e-5
O(h)	0.9998	1.9991	1.3427	1.9995

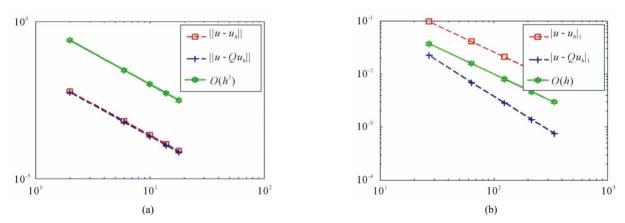


Figure 3. (a) Convergence rate of error L^2 -norm error; (b) Convergence rate of H^1 -norm error.

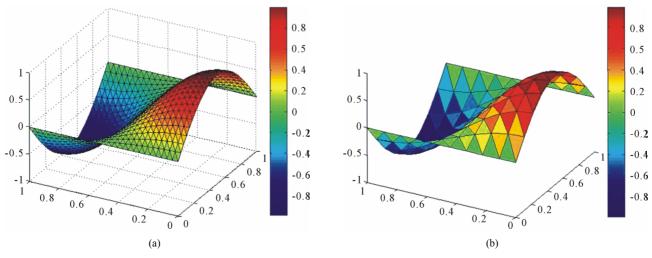
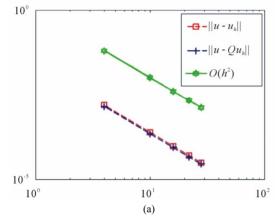


Figure 4. (a) Surface plot of solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

h	$ u-u_{_h} _{_1}$	$\ u-u_{h}\ $	$ u-Qu_{h} _{1}$	$ u-Qu_{_h} $
2 ⁻³	0.9135e-1	0.1770e-2	0.2150e-1	0.1689e-2
3 ⁻³	0.3855e-1	0.3157e-3	0.6579e-2	0.3010e-3
4^{-3}	0.1973e-1	0.8278e-4	0.2692e-2	0.7893e-4
5 ⁻³	0.1142e-1	0.2772e-4	0.1303e-2	0.2643e-4
6^{-3}	0.7193e-2	0.1099e-4	0.7062e-3	0.1048e-4
O(h)	0.9999	1.9993	1.3424	1.9994

Table 3. Errors on uniform triangular meshes T_h and T_{τ} .



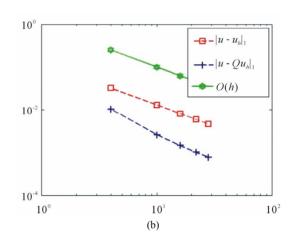


Figure 5. (a) Convergence rate of L^2 -norm error; (b) Convergence rate of H^1 -norm error.

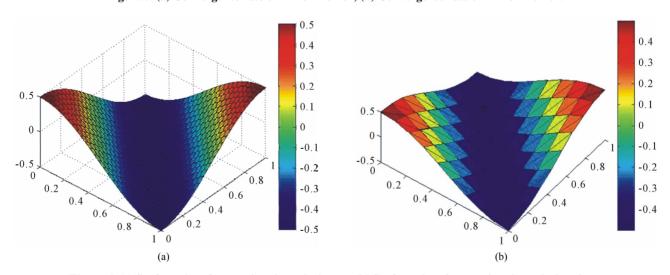


Figure 6. (a) Surface plot of approximation solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

4. Superconvergence by Local L^2 -Projection

Notice that, the exact solution u may be not smooth globally on Ω in practical computation, although the solution might be smooth enough locally for a good super convergence.

To this end, let Ω_0 be a subdomain of Ω where the exact solution u is sufficiently smooth. Let Ω_1 be an-

other subdomain of Ω such that $\Omega_0 \subset \Omega_1$. Define finite element space $V_r \subset H^{s-2}\left(\Omega_1\right)$ The L^2 -projection Q_r from $L^2\left(\Omega\right)$ onto the finite element space V_r is said to be local L^2 -projection.

The following theorem can be found in [1].

Theorem 4.1: Assume that $1 \le s \le k+1$ and the finite element space $V_{\tau} \subset H^{s-2}\left(\Omega_{0}\right)$. If the exact solution $u \in H^{k+1}\left(\Omega\right) \cap H^{r+1}\left(\Omega_{0}\right) \cap H_{g}^{1}\left(\Omega\right)$, then there exists a

constant C such that

$$\begin{aligned} & \left\| u - Q_{\tau} u_h \right\|_{\Omega_0} + h^{\alpha} \left\| \nabla_{\tau} \left(u - Q_{\tau} u_h \right) \right\|_{\Omega_0} \\ & \leq C h^{\alpha(r+1)} \left\| u \right\|_{\Omega_0} + C h^{\alpha} \left\| \nabla \left(u - u_h \right) \right\|_{\Omega_0} \end{aligned}$$

where u_h is the finite element approximation of (1)-(2).

Theorem 4.2: Suppose that $1 \le s \le k+1$. Let the surface fitting spaces $V_{\tau} \subset H^{s-2}(\Omega_0)$ and u_h be the finite element approximation of (1)-(2). Then, the post-processing of u_h is estimated by

$$\alpha = \frac{k+s-1}{r+1-\min(0,2-s)}$$

5. Numerical Experiments for Local L^2 -Projection

In this section, we present several numerical experiments to verify the theoretical analysis in [1]. The triangulation T_h is constructed by: 1) dividing the domain into an $n^3 \times n^3$ rectangular mesh; 2) connecting the diagonal line with the positive slope. Denote $h = \frac{1}{n^3}$ as the mesh size.

The finite element space is defined by

$$V_h = \left\{ v \in H_g^1(\Omega); v \big|_K \in P_1(K); \forall K \in T_h, v = g \text{ on } \partial \Omega \right\}.$$

We define V_{τ} as follows:

$$V_{\tau} = \left\{ v \in L^{2}(\Omega) : v \big|_{K} \in P_{2}(K); \forall K \in T_{\tau} \right\}.$$

Example 5.1: Let the domain $\Omega = [0,1] \times [0,1]$ and $\Omega_0 = [0,0.5] \times [0,0.5]$. The exact solution is assumed as

$$u = \frac{1}{2 - x - y}$$

It is clear that the exact solution u is singular and f blows down at the boundary of $\Omega = [0,1] \times [0,1]$, see

Figure 7, however, u_h and $Q_r u_h$ are sufficiently smooth on $\Omega = [0,1] \times [0,1]$, see **Figure 8**.

Table 4 shows that after the post-processing method, all the errors are reduced. The exact solution in L^2 -norm of $\|u-Q_\tau u_h\|$ has the similar convergence rate as $\|u-u_h\|$ which is shown as $O(h^2)$. There is no improvement for the u in L^2 -norm. However, the error in H^1 -norm have higher convergence rate, which is shown as $O(h^{1.3})$ for $\|\nabla_\tau (u-Q_\tau u_h)\|$. The order of convergence rate is $O(h^{0.3})$ better than $\|\nabla_h (u-u_h)\|$, see **Figure 9.**

Example 5.2: Let the domain $\Omega = [0,1] \times [0,1]$ and $\Omega_0 = [0.5,1] \times [0.5,1]$. The exact solution is assumed as

$$u = \sqrt{x^2 + y^2}$$

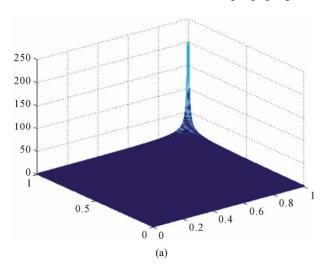
Obviously, the exact solution has singularity on the origin at the domain $\Omega = [0,1] \times [0,1]$, see **Figure 10(a)**. On the same domain the function f blows down at the boundary, see **Figure 10(b)**. The approximation solutions u and $Q_{\tau}u_h$ have been plot in the proper subdomain $\Omega_0 = [0.5,1] \times [0.5,1]$, see **Figure 11**.

From the results shown in **Table 5**, it is clear that the exact u in H^1 -norm has the superconvergence, but there is no improvement in the L^2 -norm, see **Figure 12**. This agrees well with the theory.

Example 6: Let the domain $\Omega = [0,1] \times [0,1]$ and $\Omega_0 = [0.5,1] \times [0.5,1]$. The exact solution is assumed as

$$u = \frac{y}{\sqrt{x^2 + y^2}}$$

From **Figures 13(a)** and **(b)**, respectively observe that the exact solution has strongly singularity on the origin of the domain $\Omega = [0,1] \times [0,1]$ and the function f blows up at the boundary, **Figure 14** show how the approximation solution u_h and $Q_\tau u_h$ look like at the proper subdomain $\Omega_0 = [0.5,1] \times [0.5,1]$.



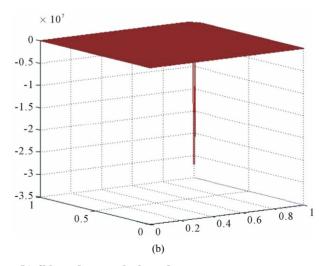


Figure 7. (a) The exact solution u blows up; (b) f blows down at the boundary.

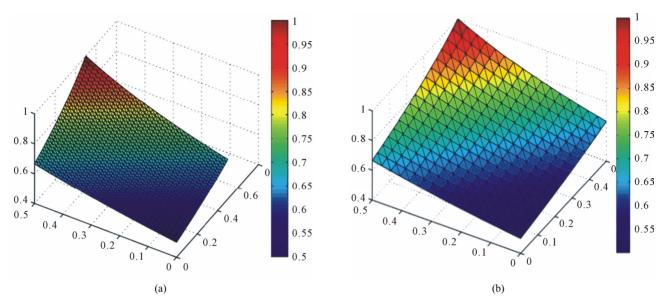


Figure 8. (a) Surface plot of approximation solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

Table 4. Errors on uniform triangular meshes T_h and T_{τ} .

h	$ u-u_{h} _{1}$	$\ u-u_{h}\ $	$ u-Qu_{h} _{1}$	$ u-Qu_{h} $
2^{-3}	0.3221e-1	0.1497e-2	0.1026e-1	0.1363e-2
3^{-3}	0.1291e-1	0.2384e-3	0.2566e-2	0.2169e-3
4^{-3}	0.8072e-2	0.9306e-4	0.1429e-2	0.8466e-4
5^{-3}	0.5871e-2	0.4921e-4	0.9977e-3	0.4476e-4
6^{-3}	0.4613e-2	0.3037e-4	0.7691e-3	0.2763e-4
O(h)	0.9998	2.0030	1.3360	2.0035

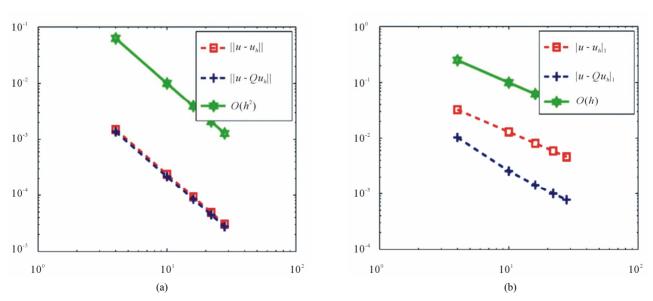


Figure 9. (a) Convergence rate of L^2 -norm error; (b) Convergence rate of H^1 -norm error.

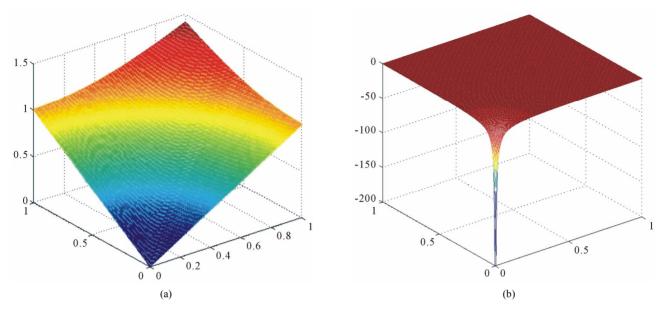


Figure 10. (a) Surface plot of exact solution u; (b) f blows down at the boundary.

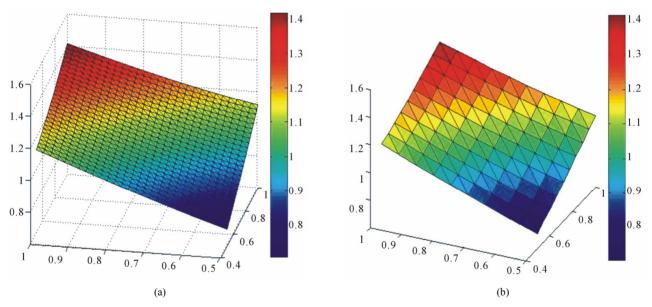


Figure 11. (a) Surface plot of approximation solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

Table 5. Errors on uniform triangular meshes T_h and T_{τ} .

h	$ u-u_h _1$	$\ u-u_{_h}\ $	$ u-Qu_{h} _{1}$	$ u-Qu_{_h} $
2^{-3}	0.1352e-1	0.1400e-2	0.6141e-2	0.1287e-2
3^{-3}	0.6835e-2	0.3596e-3	0.2110e-2	0.3314e-3
4^{-3}	0.4566e-2	0.1607e-3	0.1215e-2	0.1481e-3
5^{-3}	0.3427e-2	0.9058e-4	0.8529e-3	0.8352e-4
6^{-3}	0.2743e-2	0.5802e-4	0.6590e-3	0.5350e-4
O(h)	0.9923	1.9806	1.3581	1.9792

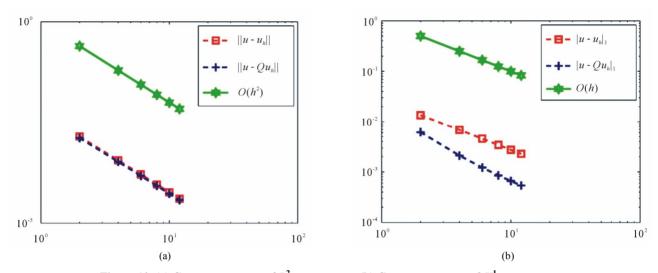


Figure 12. (a) Convergence rate of L^2 -norm error; (b) Convergence rate of H^1 -norm error.

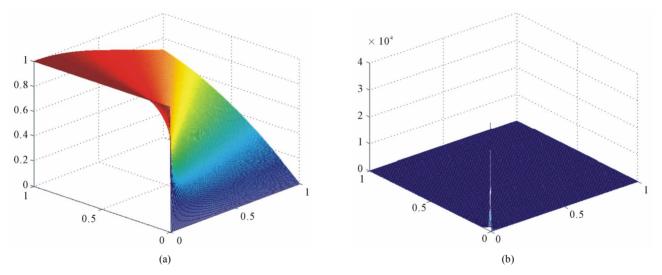


Figure 13. (a) Surface plot of exact solution u; (b) f blows up at the boundary.

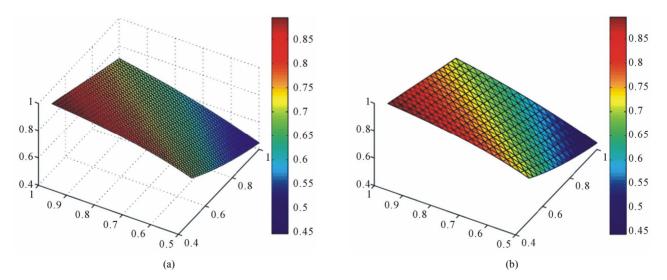
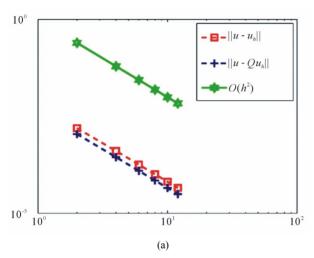


Figure 14. (a) Surface plot of approximation solution u_h ; (b) Surface plot of approximation solution $Q_\tau u_h$.

h	$ u-u_h _1$	$\ u-u_{_h}\ $	$\left u-Qu_{_h}\right _{_1}$	$ u-Qu_{h} $
2 ⁻³	0.1186e-1	0.4006e-3	0.4708e-2	0.2779e-3
3 ⁻³	0.5979e-2	0.1009e-3	0.1621e-2	0.6959e-4
4^{-3}	0.3992e-2	0.4490e-4	0.9518e-3	0.3094e-4
5 ⁻³	0.2996e-2	0.2527e-4	0.6760e-3	0.1740e-4
6^{-3}	0.2397e-2	0.1617e-4	0.5261e-3	0.1113e-4
O(h)	0.9943	1.9949	1.3304	1.9989

Table 6. Errors on uniform triangular meshes T_h and T_{τ} .



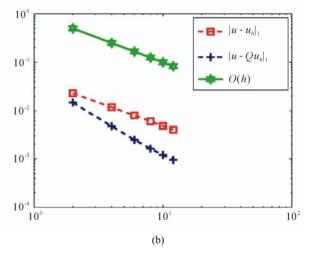


Figure 15. (a) Convergence rate of L^2 -norm error; (b) Convergence rate of H^1 -norm error.

Table 6 gives the errors profile for Example 6. Notice that, the gradient estimate is of order $O(h^{1.3})$ that is much better than the optimal order O(h). Although, there is no improvement in the L^2 -norm, see **Figure 15**. Also, the numerical results and theoretical conclusions show highly consistent.

REFERENCES

- [1] J. Wang, "A Superconvergence Analysis for Finite Element Solutions by the Least-Squares Surface Fitting on Irregular Meshes for Smooth Problems," *Journal of Mathematical Study*, Vol. 33, No. 3, 2000, pp. 229-243.
- [2] R. E. Ewing, R. Lazarov and J. Wang, "Super-convergence of the Velocity along the Gauss Lines in Mixed Finite Element Methods," *SIAM Journal on Numerical Analysis*, Vol. 28, No. 4, 1991, pp. 1015-1029. doi:10.1137/0728054
- [3] M. Zlamal, "Superconvergence and Reduced Integration

- in the Finite Element Method," *Mathematics Computation*, Vol. 32, No. 143, 1977, pp. 663-685. doi:10.2307/2006479
- [4] L. B. Wahlbin, "Superconvergence in Galerkin Finite Element Methods," Lecture Notes in Mathematics, Springer, Berlin, 1995.
- [5] A. H. Schatz, I. H. Sloan and L. B. Wahlbin, "Superconvergence in Finite Element Methods and Meshes that Are Symmetric with Respect to a Point," SIAM Journal on Numerical Analysis, Vol. 33, No. 2, 1996, pp. 505-521. doi:10.1137/0733027
- [6] M. Krizaek and P. Neittaanmaki, "Superconvergence Phenomenon in the Finite Element Method Arising from Avaraging Gradients," *Numerische Mathematik*, Vol. 45, No. 1, 1984, pp. 105-116.
- [7] J. Douglas and T. Dupont, "Superconvergence for Galerkin Methods for the Two-Point Boundary Problem via Local Projections," *Numerical Mathematics*, Vol. 21, No. 3, 1973, pp. 270-278. doi:10.1007/BF01436631