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ABSTRACT 

This paper made a discuss on the relative efficiency of the generalized conditional root square estimation and the spe-
cific conditional root square estimation in paper [1,2] in inhomogeneous equality restricted linear model. It is shown 
that the generalized conditional root squares estimation has not smaller the relative efficiency than the specific condi-
tional root square estimation, by a constraint condition in root squares parameter, we compare bounds of them, thus, 
choose appropriate squares parameter, the generalized conditional root square estimation has the good performance on 
mean squares error. 
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Consider inhomogeneous equality restricted linear model 
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where Y is a n-dimension vector, X is a -order de-
sign matrix which is known, e is 1n dom error vec-
tor, n
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n

I   n-order unit matrix, 2  error variance, 
R is q p ix, r is 1q  di nsion vector,  

 is a n-dimension parameter vector 
which is unknown. This paper all assume X is full rank of 
column, R is full rank of row.  
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The RLSE of the regression coefficient   in the 
model (1) is noted as  in the paper [1],  WX Y V  

11 where , 1 1W S S R RS R RS       
1 S X X  ,  

11 1V S R RS R r
      . In the paper [1], the conditional  

root square estimation of parameter of restricted linear 
model is derived, when multicollinearity of explanatory 
variables exists. It is shown that it has smaller mean 
squares error than the RLSE, and the admissibility of the 
conditional root estimation is discussed. Under the MDE 
matrix comparisons criterion, the necessary and suffi-
cient condition or sufficient condition, under which 
CRSE is superior to RLSE, is obtained. Two methods 
(Root Trace, Variance Inflation Factor) are used to 
evaluate the optimal value. In the paper [2], proposes 
generalized root squares estimation in inhomogeneous 

Equality Restricted Linear Model, we show that it have 
smaller mean squares error than the conditional root 
squares Estimation, and give display solution of general-
ize root squares estimation, propose the estimate methods 
of the optimal parameter value. Based on all the research 
work above, we made a discuss on the generalized condi-
tional root square estimation and the specific conditional 
root square estimation in paper [1,2] that the relative ef-
ficiency has in inhomogeneous equality restricted linear 
model. It is shown that the generalized conditional root 
squares estimation has not smaller the relative efficiency 
than the specific conditional root square estimation, by a 
constraint condition in root squares parameter, we com-
pare bounds of them, thus, choose appropriate squares 
parameter, the generalized conditional root square esti-
mation has good nature on terms mean squares error. 

1. Definition and Lemma  

Definition 1 [1] In the model (1), defined as  k  is 
the specific conditional root square estimation of  : 

       
k k

k W W WX Y V       , 

where 0 < k < 1,    1diag , , ,0, ,0
k k k

p qW Q    
 Q   , 

W, V defined as above paper, Q is p-orthogonal matrix, 
make  1 2diag , , , ,0, ,0 ˆp q   Q WQ     i,   is 
Non-zero characteristic values of W, and  

1 2 0p q       . 
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Definition 2 [2] In the model (1), defined as  K  
is the generalized conditional root square estimation of 
 : 

       
K K

K W W WX Y       V . 

where  1 2diag , , , pK k k k  ,  

   1 2
1 2diag , , ,0, ,0p q

K kk k
p qW Q     
 Q   . 

said 1 2, , , p qk k k   is -root square parameter, W, 
Q, V defined as above paper. 

p q

Definition 3 [3] Two estimation   and ̂  of the 

model (1), defined as    
 

MSE

MSE
ˆ, 1

ˆ
e


 


 


  is elative  

efficiency of estimation   for elative efficiency esti-
mation of ̂ . If ̂  is the best linear unbiased estima-
tion of  , then note  ˆ,  e e    . 

For the above definition 3, if , then 
shows that 

 ˆ0 ,e    1
  is better than ̂  under mean squares 

error and if the bigger of  ˆ,e    (that efficiency 
highter),   improve the degree of ̂  bigger. 

Lemma 1 [1] , . WSW W WSW W 

Lemma 2 [1] 1 is posi- 

tive semidefinite matrix, and rank of W is . 

11 1 1W S S R RS R RS
       
p q




Lemma 3 [1] Exist Q is p-order orthogonal matrix, 

make ,  1 2diag , , , ,0, ,0 ˆp qQ WQ         i  is 
Non-zero characteristic values of W, and  

1 2 0p q       . 

Lemma 4 [1] Mean squares error of   is  

  2

1

MSE
p q

i
i

  




  , i  is Non-zero characteristic val- 

ues of W, and 1 2 0p q      . 

Lemma 5 [1] Assume  1 2, , , , ,p q pQ V b b b b
     

then 

 1 1, , , , ,p q p q p p

Q Q V

b b

 

   

  

b     
 

where 1 2 0p q p q p         . 

2. Main Results 

We can prove the following exist theorem  

 and bound of  and 

. Now, we have the following lemma. 

     0 1e k e K   

  e K

  e k

Assume , then     1 2, , , pQ V        

1 2 0p q pp q        . 

And the RLSE of   is  

   Q V Q WX Y V V Q WX Y

Q WQQ X Y Q X Y

          

      


 

accordingly, the specific conditional root square estima-
tion of   is  
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0 < k < 1. 

similarly, the generalized conditional root square estima-
tion of   is 

         ,
K K

K Q K V I Q V             
   

 1 2diag , , , pK k k k 
p q

. 

Lemma 6     
1

MSE i
i

K g k
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Lemma 7 ,      MSE MSEk k  

     MSE MSEK K   . 

Lemma 8 When
1

0
2

k  , exist 0 0

1
0

2
k k   
 

, 

when , then  00 k k 

     222 1 2 1k kg k b         

has minimum value. 

Proof: Note ,  

, then 

  2 1 2
1

kg k   

  22
1kb    2g k         1 2g k g k g k  . 

For  1g k , we have   2 1 2
1 2 lkg k n      . When 

1
0

2
k  , if 1  , then ln 0  1 2 1k  , ; if 0 1  , 

then ln 0  , . When 1 2 1k  1   1g k, 0 . So 

 1g k  is a monotonically decreasing function in 
1

0,
2

 
 
 

. 

For  2g k , when 1  , we have  

     2

2 2 1 lk kg k b         n 0 . This means  

 2g k  is a monotonically increasing function in 
1

0,
2

 
 
 

. 

So, there always exist 0 0

1
0

2
k k
   
 

, when 00 k k  ,  

we have      1 2 0g k g k g k     , so  g k
 0

 is a 
monotonically decreasing function in , 0,k  g k  < 

,  0g  g k  has minimum value. 
Lemma 9 In the model (1), for 

     222 1 2 1kg k b       

 
 

k , when  
2 2

2ln

ln

b

b
k

  



 


 , then  g k  has minimum value. 

Proof: According to lemma 8,  

     
   

1 2

22 1 22 ln 2 1 lnk k

g k g k g k

b .k      

   

     
 

Let , we get    0g k 

   22 1 22 ln 2 1 lnk kb            0k  ,  

when 1  , the solution of this equation is 0k  ; 
when 1  , the solution of this equation is  

 
 

2

22

k b

b




  
 


 
, that 
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2ln
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b

b
k

  



 


 . 

So  
 

2 2

2

0, 1

ln

, 1
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bk
b



  







   




. Therefore when  

 
 

2 2

2ln

ln

b

b
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 , then  g k  has minimum value. 

Lemma 10 In the model (1), exist root square pa-
rameter 0 < k < 1, then mean squares error of  k  is  

      222 1 2

1

MSE 1
p q

k k
i i i i

i

k b    


 



       . 

Lemma 11 In the model (1), , always exist 
1

1
p q

i
i







1

0
2

k  , then    MSE MSE k   . 

Proof: Based on the lemma 9 and lemma 10. 

Theorem 1 In the model (1), , always exist 
1

1
p q

i
i







1

0
2

k  , then   0 1e k  . 

Proof: Based lemma 11 and definition 3, we get the 
conclusion. 

Theorem 2 In the model (1), for , exist 0k 

 1diag , , pK k k  , then .  0 e K     , k 1
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2,3, ,i p  , based on lemma 6 and, we have 
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based on lemma 9, we have , then    1 1 0g k g k 

     MSE MSE 0k K   

   

, so  

 , 0e K k    . 
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For above theorem 1, then     0 ,e K k   
he following the conclu

.  
Using theorem 2, we get t sion. 

 (1), for , exist Inference 1 In the model 0k 

 1diag , , pK k k  , then    0 1e k e    K   . 

e mode
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Theorem 5 In the model (1), assume the non-zero 
characteristic root 

   1 0e K e   .

i  of W are not all equal  
 1,2, ,i p  , for the efficiency lower bound  of  0e
 k  and the efficiency lower bound  of 1e  K , 

the relationship of them is 0 1e e . 

Proof: By theore s 3 and 4, we get  m

   222 1 2
1

0 2

1k k
p q p q p q p qb    
     2

1

e
 

 
 , 

Copyright © 2012 SciRes.                                                                                AJCM 



X. L. NONG 

Copyright © 2012 SciRes.                                                                                AJCM 

239

, also 1 2 0k 1 p q   , then , thus 1 2
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