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ABSTRACT 

A numerical analysis has been carried out to study the problem of plane stagnation double-diffusive MHD convective 
flow with convective boundary condition in a porous media. The governing nonlinear partial differential equations have 
been reduced to systems of nonlinear ordinary differential equations by the similarity transformations. The transformed 
equations are solved numerically by using the classical fourth order Runge-Kutta method together with the shooting 
technique implemented on a computer program. The effects of the physical parameters are examined on the velocity, 
temperature and concentration profiles. Numerical data for the skin-friction coefficients, Nusselt and Sherwood num- 
bers have been tabulated for various parametric conditions and are also shown graphically and discussed.  
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1. Introduction 

The effect of free convection on the flow of a viscous 
incompressible fluid past a plane stagnation point on an 
infinite vertical plate has many important scientific and 
technological applications in the astrophysical, geophy- 
sical and engineering problems. The heating of rooms 
and buildings by the use of radiators is a familiar exam- 
ple of heat transfer by convection. Heat and mass transfer 
play an important role in manufacturing industries for the 
design of fins, steel rolling, nuclear power plants, gas 
turbines and various propulsion device for aircraft, com-
bustion and furnace design, materials processing, energy 
utilization, temperature measurements. Most studies have 
been concerned with constant surface velocity and tem-
perature, but for many practical applications the surface 
undergoes convective cooling or heating.   

The growing interest in the field of flow through 
porous media stems from the fact that heat and mass 
transfer through porous media occurs in many engineer-
ing, geophysical and biological applications. Convection 
flows in porous media are particularly important in envi- 
ronmental studies involving air and water pollution. In 
order to assess the impact of an emission source, it is 
necessary to predict both the trajectory and the diffusion 
of the plum or jet at several distances away from the 
source. In practice, most emissions of a buoyant effluent 
are accompanied by a discharge momentum flux, hence 
the need to study the combined effect of heat and mass 

transfer in a buoyant driven flow. 
The subject of Magneto hydrodynamics has attracted 

the attention of a large number of scientists due to its 
diverse application. In astrophysics and geophysics, it is 
applied to study the stellar and solar structures, interstel- 
lar matter and radio propagation through the ionosphere. 
In engineering, it finds its application in MHD pumps 
and MHD bearing. The study of effects of magnetic field 
on free convection flow is important in liquid metals, 
electrolytes, and ionized gases. At the high temperature 
attained in some engineering devices, gas, for example, 
can become ionized and so becomes an electrical con- 
ductor. The ionized gas or plasma can be made to interact 
with the magnetic field and alter heat transfer and friction 
characteristic. Recently, it is of great interest to study the 
effect of magnetic field on the temperature distribution 
and heat transfer when the fluid is not only an electrical 
conductor but also when it is capable of emitting and 
absorbing thermal radiation.  

Heat transfer characteristics in stagnation point flow 
has also been studied by several authors, for example 
Hiemenz [1] studied the two dimensional flow of an in- 
compressible viscous fluid, Attia [2] studied the MHD 
stagnation point flow with heat transfer over a permeable 
surface, Massoudi and Ramezan [3] carried out an analy- 
sis of the boundary layers heat transfer of a viscoelastic 
fluid at a stagnation point. While Chiam [4] studied the 
heat transfer with variable conductivity in a stagnation 
point flow towards a stretching sheet. On the MHD stag- 

Copyright © 2012 SciRes.                                                                                AJCM 



O. T. GIDEON, S. O. ABAH 224 

nation point flow, several works has been published 
which include the papers of Ariel [5], Chamkha [6] and 
Attia [7]. 

Heat and mass transfer play an important role in 
manufacturing industries for the design of fins, steel 
rolling, nuclear power plants, gas turbines and various 
propulsion device for aircraft, combustion and furnace 
design, materials processing, energy utilization, tem- 
perature measurements. Most studies have been con- 
cerned with constant surface velocity and temperature, 
but for many practical applications the surface undergoes 
stretching and cooling or heating that cause surface ve- 
locity and temperature variations. Crane [8], Velggaar [9], 
and Gupta [10] have analyzed the stretching problem 
with a constant surface temperature, while Soundalgekar 
and Ramana [11] have investigated the constant surface 
velocity case with a power-law temperature variation. 
Grubka and Bobba [12] have analyzed the stretching 
problem for a surface moving with a linear velocity and 
with a variable surface temperature.  

The problem of plane stagnation double diffusive 
convective flow with convective boundary conditions in 
a porous media has receive little or no attention by re- 
searchers hence the motivation for this study.  

2. Mathematical Formulations 

A two-dimensional body is placed in a stream of quies- 
cent fluid. We consider heat transfer near the upstream 
stagnation line, where the flow is assumed to be laminar. 
The problem is restricted to the case of a plane plate 
perpendicular to the stream. It is assumed that the fluid 
properties are constant except for the fluid viscosity 
which vary as an inverse linear function of temperature 
as follows.  
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where u and v are the velocity components in the x and y 
directions respectively, T is the temperature, T  is the 
free stream temperature, fT  is the reference tempera- 
ture, W  is the reference concentration and C C  is the 
free stream concentration. g is the acceleration due to 
gravity,   is the coefficient of expansivity, D is the 
molecular diffusion coefficient, C is the mass concentra- 
tion, is the free stream temperature, is the free stream 
concentration, U(x) is the free stream velocity and S(x) is 
the body force, K is the permeability, p is the pressure, B 
is the magnetic field,   is the kinematic viscosity, pC  
is the specific heat capacity,  is the fluid density,   is 
the electrical conductivity,   is the thermal diffusivity.   

In order to solve Equations (1)-(5) above we introduce 
the following dimensionless quantities.  
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Substituting the above variables in Equation (4a) into 
Equations (1)-(4), we obtain 
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where GT is the Grashof number, GC is the solutal 
Grashof number, Sc is the Schmidt number, Pr is the 
Prandtl number, H is the magnetic parameter, Da is the 
Darcy number, and Bi is the Biot number. And prime 
denote differentiation with respect to η.  

3. Numerical Results and Discussion 

The formulation of the problem that account for, the 
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plane stagnation double diffusive convective flow with 
convective boundary conditions in a porous media was 
accomplished. The nonlinear Equations (5)-(8) are solved 
numerically using the classical fourth order Runge-Kutta 
method together with the shooting technique imple- 
mented on a computer program written in Maple (14). A 
convenient step size was chosen to obtain the desired 
accuracy. The values for the velocity, temperature, con- 
centration profiles and the skin-friction coefficients, 
Nusselt and Sherwood numbers have been obtain and 
tabulated for various parametric conditions, as presented 
in Table 1.  

In Figure 1, the typical velocity profiles in the bound- 
ary layer for various values of the thermal Grashof num- 
ber Gt, was shown. It is observed that the more the ther- 
mal Grashof number Gt, it ieads to rise in the velocity 
because of enhancement in the buoyancy force. It was 
also noticed that the velocity increases rapidly near the 
wall of the porous plate as the Grashof number increases 
and then decreases to the free stream velocity.  

Different values of the Solutal Grashof number, veloc- 
ity profiles in the boundary layer are shown in Figure 2. 
The velocity distribution attains a peak value in the vi- 
cinity of the plate and then decreases to approach a free 

stream value. The fluid velocity increases and the peak 
value becomes more distinctive due to increase in the 
buoyancy force represented by the Solutal Grashof num- 
ber. 

Figure 3 illustrates the influence of the Darcy number 
on the velocity profiles. It indicates the velocity profiles 
showing the effect of Darcy number. It can be seen that 
velocity profiles increase with the increase of Darcy 
number. Hence, as Darcy number increases the velocity 
increases.  

The effect of Hartmann number on the velocity pro- 
files is shown in Figure 4. It is observed that an increase 
in the Hartmann number results in a decrease of the av- 
erage velocity within the boundary layer.  

The temperature profile for different values of the 
Prandtl number is shown in Figure 5. It is observed that 
an increase in the Prandtl number, results a decrease of 
the temperature within the boundary layer.  

The Temperature profiles for various values of the 
Biot number is depicted in Figure 6. It is clearly seen 
that the temperature increases with the increase of the 
Biot number.  

Figure 7 shows the effect of different values of the 
Schmidt number on Concentration profiles. As the  

 
Table 1. Skin friction coefficient, Nusselt and Sherwood numbers for the various thermo-physical parameters. 

GT GC Pr Da H Bi SC  0f    0   0  

0.1 1 0.71 0.1 1 0.2 0.2 3.801473719283 0.1495443335066 0.3436415082333 

0.1 5 0.71 0.1 1 0.2 0.2 4.823837109913 0.1525163161343 0.3652475123755 

0.1 9 0.71 0.1 1 0.2 0.2 5.824838534277 0.1548558429757 0.3848340516957 

0.3 1 0.71 0.1 1 0.2 0.2 3.813528934007 0.1495764808001 0.3438386510388 

0.5 1 0.71 0.1 1 0.2 0.2 3.825563881182 0.1496084887952 0.3440352216665 

0.1 1 3 0.1 1 0.2 0.2 3.798602770054 0.1690805612993 0.3435750930525 

0.1 1 7 0.1 1 0.2 0.2 3.797509319855 0.1769603421491 0.3435583639669 

0.1 1 0.71 0.01 1 0.2 0.2 10.22199510149 0.1520840963601 0.3556772907856 

0.1 1 0.71 0.001 1 0.2 0.2 31.69423092239 0.1534251725773 0.3624033263083 

0.1 1 0.71 0.1 10 0.2 0.2 4.843242550605 0.1503030629840 0.3471224420185 

0.1 1 0.71 0.1 100 0.2 0.2 10.65321193296 0.1521582458854 0.3560433126883 

0.1 1 0.71 0.1 1 0.5 0.2 3.806381460016 0.2712677585734 0.3437217952756 

0.1 1 0.71 0.1 1 0.7 0.2 3.808387620740 0.3210554399197 0.3437546030517 

0.1 1 0.71 0.1 1 0.2 0.5 3.788643963078 0.1494001047632 0.5054344182582 

0.1 1 0.71 0.1 1 0.2 0.7 3.787372282118 0.2705879729846 0.5860593401186 
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Figure 1. Velocity profile for various values of the thermal 
Grashof number for Gc = 0.1, Da = 0.1, H = 1, Pr = 0.71, Bi 
= 0.2, Sc = 0.2. 
 

 

Figure 2. Velocity profile for various values of the solutal 
Grashof number for Gt = 0.1, Da = 0.1, H = 1, Pr = 0.71, Bi 
= 0.2, Sc = 0.2. 
 

 

Figure 3. Velocity profile for various values of the Darcy 
number for Gt = 0.1, Gc = 0.1, H = 1, Pr = 0.71, Bi = 0.2, Sc 
= 0.2. 

 

Figure 4. Velocity profile for various values of the Hart- 
mann number for Gt = 0.1, Da = 0.1, Gc = 0.1, Pr = 0.71, Bi 
= 0.2, Sc = 0.2. 
 

 

Figure 5. Temperature profile for various values of the 
Prandtl number for Gt = 0.1, Da = 0.1, H = 1, Gc = 0.1, Bi = 
0.2, Sc = 0.2. 
 

 

Figure 6. Temperature profile for various values of the Biot 
number for Gt = 0.1, Da = 0.1, H = 1, Pr = 0.71, Gc = 0.1, Sc 
= 0.2. 
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Figure 7. Concentration profile for various values of the 
Schmidt number for Gt = 0.1, Da = 0.1, H = 1, Pr = 0.71, Bi 
= 0.2, Sc = 0.2, Gc = 0.1. 

 
Schmidt number increases the concentration decreases, 
which makes the concentration buoyancy effects to de- 
crease resulting into a reduction in the fluid velocity.  
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