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ABSTRACT 

In this paper, we presented an initial value approach for solving singularly perturbed two point boundary value prob-
lems with the boundary layer at one end (left or right). By employing asymptotic power series expansion, the given 
singularly perturbed two-point boundary value problem is replaced by two first order initial value problems. To demon-
strate the applicability of the present method three linear and two nonlinear problems with left end boundary layer are 
considered. It is observed that the present method approximates the exact solution very well. 
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1. Introduction 

The theory of singular perturbations has been with us, in 
one form or another, for a little over a century (although 
the term “singular perturbation” dates from the 1940s). 
The subject, and the techniques associated with it, has 
evolved over this period as a response to the need to find 
approximate solutions (in an analytical form) to complex 
problems. Typically, such problems are expressed in 
terms of differential equations which contain at least one 
small parameter, and they can arise in many fields: fluid 
mechanics, particle physics and combustion processes, to 
name but three. The essential hallmark of a singular per-
turbation problem is that a simple and straightforward 
approximation (based on the smallness of the parameter) 
does not give an accurate solution throughout the domain 
of that solution. Perforce, this leads to different approxi-
mations being valid in different parts of the domain (usu-
ally requiring a “scaling” of the variables with respect to 
the parameter). This in turn has led to the important con-
cepts of breakdown, matching, and so on. 

Singularly perturbed second order two-point boundary 
value problems have been received a significant attention 
in past and recent years. These problems arise very fre-
quently in fluid mechanics and other branches of Applied 
Mathematics. These problems depend on a small positive 
parameter in such a way that the solution varies rapidly 
in some parts and varies slowly in some other parts. So, 
typically there are thin layers where the solutions can 
jump abruptly, while away the layers the solution be-

haves regularly and vary slowly. Thus more efficient, 
simpler computational techniques are required to solve 
singular perturbation problems. Awoke A, Y. N. Reddy 
[1,2] presented the method of Asymptotic Inner Bound-
ary Condition and a terminal boundary condition for 
Singularly Perturbed Two-Point Boundary value Prob-
lems. The papers by Kadalbajoo and Reddy [3], and Ka-
dalbajoo and Patidar [4] give an erudite outline of the 
singular perturbation problems. The approach were char- 
acterized by using a terminal point, the original second 
order problem is divided in to two problems namely in-
ner region and outer region problems. For more discus-
sions, one can refer: Bender and Orsazag [5], Kevorkian 
and Cole [6], Nayfeh [7,8], O’Mally [9] and Van Dyke 
[10].  

In this paper, a couple of initial-value problems for 
solving singularly perturbed two-point boundary value 
problems with the boundary layer at one end (left or right) 
point is presented. By employing asymptotic power se-
ries expansion, the given singularly perturbed two-point 
boundary value problem is replaced by two first order 
initial value problems. To demonstrate the applicability 
of the present method three linear and two nonlinear 
problems with left end boundary layer are considered.  
Table of absolute maximum error is presented and it is 
observed that the present method approximates the exact 
solution very well for step size (h) significantly larger 
than the perturbation parameter (ε). 

2. A Pair of Initial Value Problems 
*Corresponding author. Consider a linear singularly perturbed two-point bound-
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ary value problem of the form:  

             , 0,y x a x y x b x y x f x x      1   (1) 

with  

 0y                   (2a) 

and 

 1y                   (2b) 

where  is a small positive parameter ( 0 1 
 a x

) and , 
 are known constants.  We assume that ,  b x  
and   f x  are sufficiently continuously differentiable 
functions in [0, 1] and that the problem has a unique so-
lution  y y x . Further more, we assume that  y x  
exhibits a boundary layer at left end of the interval [0, 1].   

We assume that ,  a x  b x  and   f x  have as-
ymptotic power series expansions of the form: 
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for suitable smooth functions ,  k ka a x  k kb b x  
and  k kf f x  and suitable constants k  and k . 
The reduced problem by taking 0   in (10.1) is: 

         0 0a x y x b x y x f x   0  with  1y    (4) 

From the theory of singular perturbation, it is possible 
to find a two-variable expansion for y in the form: 

     
0

, , with k
k

k

h x
y x y x s s







        (5) 

where the function h is at our disposal subject to the con-
ditions that it be strictly monotonic and vanish at 0x  , 
i.e. , . A possible choice for h includes  0h   0 0h 

  :h x x  and . For details one can refer    0
0

:
x

h x a 
Smith ([11] pages 287-289). Substituting the expansions 
(5) and (3a) in to Equation (1), the equation for the coef-
ficients  will take the form: ky
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where the right side of (6) is understood to be zero when 
the value for k = −1. For this case let us choose the func-  

tion   0
0

:
x

h x a  , which satisfies the above conditions. 

And then we have  

  0h x a x                   (7) 

By substituting (7) in to (6), we get 
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   (8) 

where again the right side of (8) is put equal to zero in 
the case of k = −1. 

We can solve Equation (8) recursively with respect to 
s, for each fixed x. For k = −1, we get 

0, 0, 0ss sy y                   (9) 

The solution of (9) for suitable quantities U0, V0 which 
still depend on x is given by: 

     0 0 0, sy x s U x V x e           (10) 

We now insert (10) back to the right side of (8) with k 
= 0 and we get the differential equation for y1: 
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s
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   (11) 

If we take the right side of (11) to be zero, we get 

1, 1, 0ss sy y                (12) 

Its solution takes the form 

     1 1 1, sy x s U x V x e          (13) 

for suitable function  and V  dependent only on x. 1 1

This procedure can be continued recursively, and we 
get in general, 

U

     , s
k k ky x s U x V x e          (14) 

for suitable function  and V  dependent only on x. 

1,xx

  (6) 

k k

Here to find an approximate solution for y of Equations 
(1) and (2), we are taking the right side of (11) equal to 
zero and we get two initial value problems of the form: 

U

         0 0 0 0 0a x U x b x U x f x         (15a) 

and  
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             0 0 0 0 1 0

d

d
a x V x b x a x a x V x

x
   (15b) 

In order to set up the boundary condition to solve 
Equations (15), we insert (10) in to (3b) and we get  

   0 00 0U V 0             (16a) 

and  

 0 1U 0                (16b) 

Now we solve the following pair of initial value prob-
lems: 

         0 0 0 0 0a x U x b x U x f x   , with  0 01U   

(17a) 
and  

             

   
0 0 0 0 1 0

0 0 0

d
,

d
with 0 0

a x V x b x a x a x V x
x

V U

 

 
(17b) 

Finally the approximate solution for (1) and (2) is de-
termined by using (17) and (10). 

3. Numerical Examples 

Three linear singular perturbation problems with left-end 
boundary layer were considered to demonstrate the ap-
plicability of the present method (Table 1).  

Example 3.1: Consider the following homogeneous 
singular perturbation problem from Bender and Orszag 
([5], page 480; problem 9.17 with  = 0)  

      0y x y x y x     ;  0,1x

 1 1

, with  

 and .  0 1y  y

The two initial value problems are: 

   0 0 0U x U x   , with     0 1 1U y 1

   0 0 0V x V x   , with     0 00 1 0V U 

The exact solution is given by: 

 
   2 1 1 2

2 1

1 1m m x m m

m m

e e e e
y x

e e

    
  

x 
 

where    1 1 1 4 2m       and  

   2 1 1 4 2m        

Example 3.2: Now consider the following non-ho- 
mogeneous singular perturbation problem from fluid 
dynamics for fluid of small viscosity, Reinhardt ([12], 
example 2) 

    1 2y x y x x     ;  0,1x

 1 1

,  

with  and .  0 0y  y

The two initial value problems are: 

 0 1 2U x x   , with     0 1 1U y 1

 0 0V x  , with     0 00 0V U 

Example 3.3: Finally we consider the following vari-
able coefficient singular perturbation problem from 
Kevorkian and Cole [6], page 33; Equations (2.3.26) and 
(2.3.27) with  = −1/2]  

     1
1 0

2 2

x
y x y x y x       

 
;  0,1x , 

with  0 0y   and .  1 1y 

The two initial value problems are: 

   0 0

1
1 0

2 2

x
U x U x    

 
 , with    0 1 1U y 1  

 0 0V x  , with     0 00 0V U 

We have chosen to use uniformly valid approximation 
(which is obtained by the method given by Nayfeh ([7], 
page 148; Equation (4.2.32)) as our “exact” solution:  

   2 41 1

2 2

x x
y x e

x

 
 


 

4. Nonlinear Examples 

The method of Quasilinearization is used to solve the 
nonlinear singular perturbation problems (Table 1).  

Example 4.1: Consider the following singular pertur-
bation problem from Bender and Orszag ([5], page 463; 
Equation (9.7.1))  

     2 y xy x y x e   0   ; ,  

with 

0 1x 

 0 0y   and .  1 1y

The linear problem concerned to this example is 

     2 2 2
2 log

1 1 1ey x y x y x
x x x

       1             
  

The two initial value problems are: 

   0 0

2 2 2
2 lo

1 1 1eU x U x
x x x

     g 1            
,  

with    0 1 1U y  0  

   0 0

2
2 0

1
V x V x

x
  


, with    0 00 0V U   

We have chosen to use Bender and Orszag’s uniformly 
valid approximation ([3], page 463; Equation (9.7.6)) for 
comparison,   

       2log 2 1 log 2 x
e ey x x e     

For this example, we have boundary layer of thickness 
 O   at x = 0 (cf. Bender and Orszag [5]). 
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Table 1. Maximum absolute error.  

 Maximum absolute error for 210h   

 210   310   410   

Example 3.1 3.61E−03 3.67E−04 3.66E−05 

Example 3.2 3.55E−01 1.96E−03 1.99E−04 

Example 3.3 3.69E−01 4.63E−05 2.00E−07 

Example 4.1 9.38E−04 1.00E−07 1.00E−07 

Example 4.2 3.46E−01 1.00E−06 1.00E−06 

 
Example 4.2: Consider the following singular pertur-

bation problem from Kevorkian and Cole ([6], page 56; 
Equation (2.5.1))  

        0y x y x y x y x   

 0 1y    1y 

 0 1x 

3.9995

; ,  

with  and  

The linear problem concerned to this example is 

     2.9995 2.9995y x x y x x       

The two initial value problems are: 

   02.9995 2.9995x U x x  

   0 1 1 3.9995U y 

, with 

 

     0 02.9995 0x V x V x 

   0 00 1 0V U  

 , with 

 

We have chosen to use the Kevorkian and Cole’s uni-
formly valid approximation [6], pages 57 and 58; Equa-
tions (2.5.5), (2.5.11) and (2.5.14) for comparison, 

  1
1 2tanh

2

c x
y x x c c


        

   
 

where c1 = 2.9995 and      2 1 1 11 log 1 1ec c c c    
For this example also we have a boundary layer of 

width 

 

 O   at x = 0 (cf. Kevorkian and Cole [6], pages 
56-66). 

5. Discussion and Conclusion 

Converting the second order boundary value problem in 
to the corresponding first order initial value problems is 
always preferable as the numerical solution of a bound-
ary value problem will be more difficult than getting the 
numerical solution of initial value problems. The solution 
of the given singularly perturbed two-point boundary 

value problem is computed numerically by solving pair 
of initial value problems. The applicability of the present 
method is tested by considering three linear and two 
nonlinear problems with left end boundary layer by tak-
ing different values of . To solve the pair of initial value 
problems we used the classical fourth order Runge-Kutta 
method. Table of absolute maximum error is presented, 
which shows that the present method approximates the 
exact solution very well for step size (h) significantly 
larger than the perturbation parameter ().   
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