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ABSTRACT 

The best finite-difference scheme for the Helmholtz equation is suggested. A method of solving obtained finite-differ- 
ence scheme is developed. The efficiency and accuracy of method were tested on several examples. 
 
Keywords: The Best Finite-Difference Scheme for the Helmholtz and Laplace’s Equations 

1. Introduction 

The finite-difference method is a standard numerical 
method for solving boundary value problems. Recently, 
considerable attention has been attracted to construct a 
best (or exact) difference approximation for some ordi-
nary and partial differential equations [1-3]. In this paper 
a best finite-difference method is developed for Helm-
holtz equation with general boundary conditions on the 
rectangular domain in R2. The method proposed here 
comes out from [4] and is based on separation of vari-
ables method and expansion of one-dimensional three- 
point difference operators for sufficiently smooth solu-
tion. The paper is organized as follows. The statement of 
problem and the separation of variables method are con-
sidered in Section 2. A detailed description of the best 
difference approximation to the Helmholtz equation in 
rectangular domain is given in Section 3.  

Section 4 is devoted to derive the best approximation 
for the given third kind boundary conditions. The method 
of solution for the obtained difference equations is con-
sidered in Section 5 and numerical examples are given 
last Section 6. 

2. Statement of Problem 

Let  be an open rectangular domain in 
Euclidean R2 space with boundary given by 

  , ,a b c b   
 . The 

aim is to determine a function , satisfying equa-
tion 

 ,u x y

 0, ,u Cu x y                (2.1) 

with boundary condition  

   , , ,
u

x y
n

u x  


 

where C in (2.1) is a given number and 
n




 is the out-

ward normal on  . 
It is well known that the stabilized oscillation prob-

lems and diffusing processes in gas lead to the so called 
Helmholtz Equation (2.1) with a positive coefficient 

2.C   The diffusing process in the moving field leads 
to the Equation (2.1) with negative coefficient 2C   . 
If C = 0 the Equation (2.1) leads to Laplace’s ones. Ob-
viously, the properties of the solution of Equation (2.1) 
depend essentially upon the sign of the coefficient C in 
(2.1). We will assume that the problem (2.1), (2.2) has an 
unique and sufficiently smooth solution. 

By virtue of variables method looking for the solution 
 ,u x y  of Equation (2.1), (2.2) in the form      

    1 2,u x y U x U y              (2.3) 

we arrive at equation 

 
 

 
 

1 2

1 2

,
U x U y

C
U x U y

 
    

which is splitted into two independing equations  

  1 1U y U x                (2.4a) 

and  

   2 2 ,U y U y C ,             (2.4b) 

where the unknown separation constant ω is to be found.  
By virtue of (2.3) the boundary condition (2.2) is 

splitted info ones for  1U x  and   2U y

   
   

1 1 1 1 10

2 1 2 1 2

,

N

U a U a x

U b U b x

 

 

 

 
         (2.5) ,y        (2.2) 
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and 

   
   

3 2 3 2 30

4 2 4 2 4

,

N

U c U c x

U d U d x

 

 

 

 
          (2.6) 

The solution of boundary value problem (2.4a), (2.5) is 
founded in a closed from  

     
   

10 1 2 2
1

3 4

,Nx F x F
U x

F F

 
  





        (2.7) 

where  

      1 2 2 ,F sh b x ch b x          

       2 1 1 ,F sh x a ch x a          

0   

and  

      3 1 2 1 2 ,F sh b a         

      4 1 2 2 1 .F ch b a         

0   

When ω < 0 the functions sh and ch in (2.7) are to be 
replaced by sin and cos respectively and ω replaced by 
–ω. Analogously, we can find the solutions of boundary 
value problem (2.4b) and (2.6) in closed form. Then from 
(2.3) and (2.7) clear, that the problem consists in deter-
mining the separation constant ω. 

3. Construction of the Best Finite-Difference 
Equations 

For the numerical solution of problem (2.1), (2.2) is in-
troduced the uniform rectangular grid  :h

 


0 1 0 2, ;

0,1 , ; 0,1 ,

h i j i j ;x y x x ih y y jh

i N j M

    

 



 
 

where 
 

1

b a
h

N


  and 

 
2

d c
h

M


  are the mesh sizes  

in the x and y directions respectively. Usually, the Equa- 
tion (2.1) is approximated by the five-point difference 
equation 

1, , 1, , 1 , , 1
,2 2

1 2

2 2
0,

1, , 1, 1, , 1.

i j i j i i i j i j i j
i j

y y y y y y
Cy

h h

i N j M

      
  

    



 

(3.1) 

The local discretization error of the Equation (3.1) is 
of  order. Now we describe how to derive 
the best difference scheme for Equation (2.1). To this end, 
we consider expression 

 2 2
1 2O h h

  1, , 1, , 1 , , 1
1 2 2 2

1 2

2 2i j i j i i i j i j i j
ij

u u u u u u
u

h h
     

      

(3.2) 

where  , ,i j i ju u x y
,i jU U

. If we denote by 1U U  the 
values of 1 2  the values of  and 

2,i i

 1 iU x  2 jU y  
respectively, the using (2.3) the Equation (3.2) may be 
written as  

 1 2 2 1 1 1 2 2 .ij j i i ju U U U U           (3.3) 

Due to smoothness assumption of solution  , ,u x y  
as well as, functions  1U x  and  the Taylor 
series expansion yields  

 2 ,U y

   
 

2 2 2
1 1

1 1 1
1

2 ,
2 2 !

k k
i

i i
k

h U x
U U x

k





  
      (3.4a) 

   
 

2 2 2
2 2

2 2 2
1

2
2 2 !

k k
j

j j
k

h U y
U U y

k





  
     (3.4b) 

Because of (2.4) we have 

   2 2
1 1 2 ,

1,

,

2,

k kk kU U U

k

 
 

2U
        (3.5) 

Taking into account (3.4), (3.5) in (3.3) it follows that 

 
2 1 2 1

1 2
1 2

1

2 0
2 2 !

1, 2, , 1; 1,2, , 1,

k k k k

ij
k

h h
C E

k

i N j M

  



   
,u          

   



 

(3.6) 

where E is unit operator. The difference Equation (3.6) 
contains unknown nonzero parameter ω and therefore it 
may be considered as a nonlinear equation with respect 
to the parameter ω and  The series in (3.6) may be 
expressed through analytical functions depending on the 
sign of quantities ω and β and thereby the Equation (3.6) 
can be rewritten as 

.iju

    1 2 2 0, , hD E u x y .        (3.7) 

There are three cases: 
1) Let 2 0.C    Then it is easy to show that  

     

     

   
 

1 2 2
2 2

1 2

1 2 2
2 2

1 2

1 2

2 2
1 2

cos 1 1
if , ,

cos 1 cos 1
if ,0 ,

1 cos 1
if 0, ,

h ch h

h h

h h
D

h h

ch h h

h h

 
 

 
 

 


  
 

   
   

  













 

 



 

(3.8) 

2) Let 0.C   In this case D is given by 
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   

   

1 2

2 2
1 2

1 2

2 2
1 2

ch 1 cos 1
if 0

cos 1 1
if 0

h h

h h
D

h ch h

h h

 


 


  
  
 

   
 



 (3.9) 

3) Let  In this case D is given by  2 0.C   

   

     

   

1 2

2 2
1 2

1 2 2
2 2

1 2

1 2 2
2 2

1 2

cos 1 1
if 0

1 1
if 0,

1 1
if

h ch h

h h

ch h ch h
D

h h

ch h ch h

h h

 


 
 

 
 

   
  



    

    




 

(3.10) 

Thus we obtain the best (or exact) five-point differ-
ence Equation (3.7) for the Equation (2.1) (see, for ex-
ample, Mickens [2] and Agarwal [1]). The function 
 D   in (3.7) can be presented as a sum of two ones, 

i.e.,  

     1 1 ,D D D            (3.11) 

where  1D   and  2D   correspond to the first and 
second terms in (3.8), (3.9) and (3.10) respectively. 

4. The Best Finite-Difference Boundary 
Condition 

Now we will derive a best difference boundary condition 
for (2.5), (2.6). Using (2.4) in the Taylor series expansion  

2 3
1 1

11 10 1 10 10 102! 3!

h h
U U hU U U        

we obtain 

   

   

1

1 10 10

11

1

1 10 10

, 0

sin
cos 0,

sh h
ch h U U

U
h

h U U







 




 


 


 


 



 (4.1) 

If 1 0   in (2.5), then we have  

10
10

1

x
U


                (4.2a) 

If 1 0,   then finding 10U   from (2.5) and substi-
tuting it in (4.1) we get  

   11 1 10 2 ,U U             (4.2b) 

where  1   and  2   are given by  

 
   

   

11
1

1
1

11
1

1

, 0

sin
cos , 0

sh h
ch h

h
h

 
 

 
 

 


  
 


  



 (4.3a) 

and 

 

 

 

110

1
2

110

1

, 0

sin
, 0

sh hx

hx




 
 




 


 
 


 



      (4.3b) 

Analogously, it is easy to verify that the exact differ-
ence boundary condition for  at point  1U x x b  is 
given by 

2
1

2

N
N

X
U


  when 2 0,          (4.4a) 

  1 1 3 1 1 4 ,N NU U        when 2 0,    (4.4b) 

where  3   and  4   are given by 

 
   

   

12
1

2
3

12
1

2

0

sin
cos 0

sh h
ch h

h
h

 
 

 
 

 


  
 


  



  (4.5a) 

and 

 

 

 

12

2
4

12

2

0

sin
0

N

N

sh hx

hx




 
 




 


 
 


 



       (4.5b) 

In the same way, as before, one can construct the best 
difference boundary conditions for . We omit the 
evaluation and present only the final results: 

 2U y

30
20

3

X
U


 , when 3 0,           (4.6a) 

   21 1 20 2 ,U U     when 3 0,      (4.6b) 

and  

4
2

4

,M
M

X
U


  when 4 0          (4.7a) 

   2, 1 3 2, 4 ,M MU U      when 4 0     (4.7b) 

where  i   are defined by 
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 
   

   

23
2

3

1

23
1

3

sin
cos , 0

, 0

h
h

sh h
ch h


 

 


 


 
 


  









  (4.8a) 

 

 

 

230

3

2

230

3

sin
, 0

, 0

hx

sh hx




 
 




 



 


 





      (4.8b) 

and 

 
   

   

24
2

4

3

24
2

4

sin
cos , 0

, 0

h
h

sh h
ch h

 
 

 


 


  
 


  




 (4.9a) 

 

 

 

24

4

4

24

4

sin
, 0

, 0

M

M

hx

sh hx




 
 




 


  
 







     (4.9b) 

5. Method for Solution of Finite-Difference 
Equations 

In this section we consider a method for solving the fi-
nite-difference Equations (3.7). For this purpose we re-
write it in the from  

     2 1 1 1 1 2 2 22 2

1, , 1, 1, , 1,

j i iU D E U U D E U

i N j M

      

    

0,j  

(5.1)  

in which we have used (3.11) From this it is clear, that 
Equation (5.1) will be fulfilled if we choose  and 1iU

2 jU  such that  

  1 1 12 0, 1,iD E U i N    , 1,

, 1

    (5.2a) 

  2 2 22 0, 1,iD E U j M        (5.2b) 

The last weakly coupled system of Equation (5.2) is 
splitted into two equations with corresponding boundary 
conditions. First, we consider the Equation (5.2a) subject 
to boundary conditions (4.2) and (4.4). 

According to (2.1), (2.2) and (2.3) the function  1U x  
will be defermined within an arbitrary multiplicative 
constant. Therefore the three-point finite-difference 
Equation (5.2a) can be solved by shooting method start-
ing with ,  and 0

10U 0
11U 0  which are required to be 

known. Thanks to (4.2) it is possible to find 10  or  
depending on the 1

U 11U
 . For example, if 1 0   then 10U  

is determined by (4.2a) and 11U  and ω to be chosen 
arbitrary. Otherwise, 11U  is determined by (4.2b) and 

 and ω to be chosen arbitrary.  10U
Note, that when 0C   one of the boundary condi-

tions (2.5), (2.6) is assumed to be homogeneous. For 
Laplace’s equation we always can leads to equation with 
homogeneous boundary conditions by change of vari-
ables. The exact value of parameter ω must satisfy  

  0,                  (5.3) 

where   , for examples, when  defined by  10 0X

 
  1

,N N

N NU U  

2

1, 1

1
0

n 0





1 2

2

3

U X

  4 2

n

e





whe

, wh

   


(5.4) 

  

The nonlinear Equation (5.3) can be solved by New-
ton’s method: 

 
 1 , 0,1,2,k

k

kk k 

 




 


     (5.5) 

The value  k  in the dominator of (5.5) is found 
by differentiating the Equation (5.4) and (5.2a) with re-
spect to ω. The iteration process (5.5) is terminated by 
criterion 

1k k                  (5.6) 

where  is a reassigned accuracy. 
If the evaluation of    causes some difficulty we 

can use secant method instead of Newton’s ones. After 
finding ω the three-point difference equations (5.2b) with 
boundary conditions (4.6), (4.7) can be solved by elimi-
nation method. 

6. Numerical Results 

We have tested the efficiency and accuracy of finite- 
difference scheme (3.7) on the several examples.  

Example 1. 

0, 0 , 1u x y     

with boundary condition 

     
   



, y

 

0,

,0

u

 

6π
0, 6π 0,

6π

0, ,1 sin

sh y
u y y

sh

u x u x





, 1

6π .

u

x

  
 

 

The exact solution is given by 

     
 
6π

.
π

, sin 6π
6

sh y
u x x

sh
 y  

In Table 1 we present the computed values of  

1 2i ju U Uij   (exact values of  present in  ,i jx yiju u
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brackets) for N = 5 and M = 4. In order to use secant 
method we need two first approximations 0  and 1  
to ω. The iteration was terminated by criterion (5.6) with 

. 710

method we need two first approximations 0  and 1  
to ω. In this example choose 0 5    and 1 6   . 
The exact value of ω is  The convergence of 

k

2π .  
  was tabulated in Table 3. The iteration was termi-
nated by criterion (5.6) with . 710Example 2. 

Example 3.  0, 0 , 1u x y     
2 0, 0 ,u u x y 1      

with boundary condition 
with boundary condition     0, 1, 0,u y u y   

      0, 0, 0, 1, exp 1 ,u y u y u y y      
     ,0 0, ,1 sin π .u x u x x   

       ,0 exp , ,1 exp 1 .u x x u x x    
The exact solution is given by 

The exact solution is given by 
     

 
π

, sin π . ,
π

sh y
u x y x

sh
    , expu x y x y   ,  

In Table 2 we present the computed values of  In Table 4 we present the computed values of  

1 2ij i j  (exact values of  present in 
brackets) for N = 6 and M = 6. In order to use secant  
u U U  ,ij i ju u x y 1 2ij i ju U U  (exact values of  present in 

brackets) for N = 6 and M = 4. In order to use secant  
 ,ij i ju u x y 

 
Table 1. Computed values of 

1 2ij i j
u U U  for N = 5 and M = 4. 

,i ju  0 1 2 3 4 5 

4 
0.0000000 

(0.0000000) 
−0.5877853 

(−0. 5877853) 
0.9510565 

(0.9510565) 
−0.9510565 

(−0.9510565) 
0.5877853 

(0. 5877853) 
0.0000000 

(0.0000000) 

3 
0.0000000 

(0.0000000) 
−0.0052802 

(−0.0052802) 
0.0085436 

(0.0085436) 
−0.0085436 

(−0.0085436) 
0.0052802 

(0.0052802) 
0.0000000 

(0.0000000) 

2 
0.0000000 

(0.0000000) 
−0.0000474 

(−0.0000474) 
0.0000767 

(0.0000767) 
−0.0000767 

(−0.0000767) 
0.0000474 

(0.0000474) 
0.0000000 

(0.0000000) 

1 
0.0000000 

(0.0000000) 
−0.0000004 

(−0.0000004) 
0.0000007 

(0.0000007) 
−0.0000007 

(−0.0000007) 
0.0000004 

(0.0000004) 
0.0000000 

(0.0000000) 

0 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 

 
Table 2. Computed values of 

1 2ij i j
u U U  for N = 6 and M = 6. 

,i ju  0 1 2 3 4 5 6 

6 
0.0000000 

(0.0000000) 
0.5000000 

(0. 5000000) 
0.8660254 

(0.8660254) 
1.0000000 

(1.0000000) 
0.8660254 

(0.8660254) 
0.5000000 

(0. 5000000) 
−0.0000000 
(0.0000000) 

5 
0.0000000 

(0.0000000) 
0.2951674 

(0.2951674) 
0.5112450 

(0.5112450) 
0.5903348 

(0.5903348) 
0.5112450 

(0.5112450) 
0.2951674 

(0.2951674) 
−(0.0000000) 
(0.0000000) 

4 
0.0000000 

(0.0000000) 
0.1731224 

(0.1731224) 
0.2998568 

(0.2998568) 
0.3462448 

(0.3462448) 
0.2998568 

(0.2998568) 
0.1731224 

(0.1731224) 
−0.0000000 
(0.0000000) 

3 
0.0000000 

(0.0000000) 
0.0996342 

(0.0996342) 
0.1725715 

(0.1725715) 
0.1992684 

(0.1992684) 
0.1725715 

(0.1725715) 
0.0996342 

(0.0996342) 
−0.0000000 
(0.0000000) 

2 
0.0000000 

(0.0000000) 
0.0540911 

(0.0540911) 
0.0936885 

(0.0936885) 
0.1081821 

(0.1081821) 
0.0936885 

(0.0936885) 
0.0540911 

(0.0540911) 
−0.0000000 
(0.0000000) 

1 
0.0000000 

(0.0000000) 
0.0237192 

(0.0237192) 
0.0410828 

(0.0410828) 
0.0474384 

(0.0474384) 
0.0410828 

(0.0410828) 
0.0237192 

(0.0237192) 
−0.0000000 
(0.0000000) 

0 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 

0 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
0.0000000 

(0.0000000) 
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Table 3. The convergence of . kω

2  3  4  5  6  7  

−8.4944719 −9.4982904 −9.8358860 −9.8687281 −9.8696023 −9.86960448 

 
Table 4. Computed values of 

1 2ij i j
u U U  for N = 6 and M = 4. 

,i ju  0 1 2 3 4 5 6 

4 
2.7182818 

(2.7182818) 
3.2112705 

(3.2112705) 
3.7936679 

(3.7936679) 
4.4816891 

(4.4816891) 
5.2944901 

(5.2944901) 
6.2547010 

(6.2547010) 
7.3890561 

(7.3890561) 

3 
2.1170000 

(2.1170000) 
2.5009400 

(2.5009400) 
2.9545115 

(2.9545115) 
3.4903430 

(3.4903430) 
4.1233530 

(4.1233530) 
4.8711660 

(4.8711660) 
5.7546027 

(5.7546027) 

2 
1.6487213 

(1.6487213) 
1.9477340 

(1.9477340) 
2.3009759 

(2.3009759) 
2.7182818 

(2.7182818) 
3.2112705 

(3.2112705) 
3.7936679 

(3.7936679) 
4.4816891 

(4.4816891) 

1 
1.2840254 

(1.2840254) 
1.5168968 

(1.5168968) 
1.7920018 

(1.7920018) 
2.1170000 

(2.1170000) 
2.5009400 

(2.5009400) 
2.9545115 

(2.9545115) 
3.4903430 

(3.4903430) 

0 
1.0000000 

(1.0000000) 
1.1813604 

(1.1813604) 
1.3956124 

(1.3956124) 
1.6487213 

(1.6487213) 
1.9477340 

(1.9477340) 
2.3009759 

(2.3009759) 
2.7182818 

(2.7182818) 

 
Table 5. The convergence of . kω

2  3  4  5  

1.1269983 1.0086468 1.0000778 1.0000000 

 
method we need two first approximations 0  and 1  
to ω. In this example we were choose 0 3   and 

1 2  . The exact value of ω is 1  . The convergence 
of k  was tabulated in Table 5. The iteration was ter-
minated by criterion (5.6) with ε = 10−7. 

REFERENCES 
[1] R. P. Agarwal, “Difference Equations and Inequalities: 

Theory, Methods and Applications,” 2nd Edition, CRC 

Press, Boca Raton, 2000. 

[2] R. E. Mickens, “Nonstandard Finite Difference Models of 
Differential Equations,” World Scientific, Singapore, 1994. 

[3] A. A. Samarskii, “Theory of Difference Equations,” 1977. 

[4] B. Batgerel and T. Zhanlav, “An Exact Finite-Difference 
Scheme for Sturm-Liouville Problems,” South Carolina, 
Vol. 1, No. 120, 1996, pp. 8-15. 

 

 

 

 

 

 
 

Copyright © 2012 SciRes.                                                                                AJCM 


