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ABSTRACT 

A time-spectral method for solution of initial value partial differential equations is outlined. Multivariate Chebyshev 
series are used to represent all temporal, spatial and physical parameter domains in this generalized weighted residual 
method (GWRM). The approximate solutions obtained are thus analytical, finite order multivariate polynomials. The 
method avoids time step limitations. To determine the spectral coefficients, a system of algebraic equations is solved 
iteratively. A root solver, with excellent global convergence properties, has been developed. Accuracy and efficiency 
are controlled by the number of included Chebyshev modes and by use of temporal and spatial subdomains. As exam- 
ples of advanced application, stability problems within ideal and resistive magnetohydrodynamics (MHD) are solved. 
To introduce the method, solutions to a stiff ordinary differential equation are demonstrated and discussed. Subse- 
quently, the GWRM is applied to the Burger and forced wave equations. Comparisons with the explicit Lax-Wendroff 
and implicit Crank-Nicolson finite difference methods show that the method is accurate and efficient. Thus the method 
shows potential for advanced initial value problems in fluid mechanics and MHD.  
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MHD 

1. Introduction 

Initial-value problems are traditionally solved numeri- 
cally, using finite steps for the temporal domain. The 
time steps of explicit time advance methods are chosen 
sufficiently small to be compatible with constraints such 
as the Courant-Friedrich-Lewy (CFL) condition [1]. Im- 
plicit schemes may use larger time steps at the price of 
performing matrix operations at each of these. Semi- 
implicit methods [2,3] allow large time steps and more 
efficient matrix inversions than those of implicit methods, 
but may feature limited accuracy. These methods never- 
theless provide sufficiently efficient and accurate solu- 
tions for most applications. For applications in physics 
where there exist several separated time scales, however, 
the numerical work relating to advancement in the time 
domain can become very demanding. Another computa- 
tional issue is that it may be advantageous to determine 
parametrical dependences without performing a sequence 
of runs for different choices of parameter values. 

We here outline a fully spectral method for computing 
semi-analytical solutions of initial-value partial different- 
tial equations [4]. To this end all time, space and physical 
parameter domains are treated spectrally, using series 
expansion. By semi-analytical is meant that approximate 
solutions are obtained as finite, analytical spectral Cheby- 

shev expansions with numerical coefficients. Important 
applications are scaling studies, in which the detailed 
parametrical dependence preferably should be estimated 
in analytical form. Here the envelope of the characteristic 
dynamics may often be of higher interest than, for exam- 
ple, fine scale turbulent phenomena. Thus the possibility 
to filter out, or average, fine structures to obtain higher 
computational efficiency is a main theme of this work. 
However, the GWRM may also provide high accuracy 
when modelling more detailed phenomena. In all cases, 
the resulting functional solutions are immediately avail- 
able for differentiation, integration or other analytic sub- 
sequent usage.  

The GWRM approach consistently employs Cheby- 
shev polynomials for all temporal, spatial and parameter 
domains for linear and non-linear initial-value problems 
with arbitrary initial and periodic or non-periodic bound- 
ary conditions. As such it appears not to have been ex- 
tensively pursued earlier. The idea to employ orthogonal 
sets of basis functions to globally minimize spatial spec- 
tral expansions (weighted residual methods, WRM) is, 
however, far from new [5,6]. The GWRM is indeed a 
Galerkin WRM, using the weak formulation of the dif- 
ferential equation, as in finite element methods (FEM). 
An important difference to FEM is the use of more ad- 
vanced trial functions, valid for larger domains. This is of 
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particular importance for “smearing out” small scale 
fluctuations.   

A number of authors have investigated various aspects 
of spectral methods in time. Some early ideas were not 
developed further in [7]. In 1986, Tal-Ezer [8,9] pro- 
posed time-spectral methods for linear hyperbolic and 
parabolic equations using a polynomial approximation of 
the evolution operator in a Chebyshev least square sense. 
Later, Ierley et al. [10] solved a a class of nonlinear para- 
bolic partial differential equations with periodic bound- 
ary conditions using a Fourier representation in space 
and a Chebyshev representation in time. Tang et al. [11] 
also used a spatial Fourier representation for solution of 
parabolic equations, but introduced Legendre Petrov- 
Galerkin methods for the temporal domain. More re- 
cently Dehghan et al. [12] found solutions to the non- 
linear Schrödinger equation, using a pseudo-spectral 
method where the basis functions in time and space were 
constructed as a set of Lagrange interpolants.  

Chebyshev polynomials are used here for the spectral 
representation in the GWRM. These have several desir- 
able qualities. They converge rapidly to the approxi- 
mated function, they are real and can easily be converted 
to ordinary polynomials and vice versa, their minimax 
property guarantees that they are the most economical 
polynomial representation, they can be used for non- 
periodic boundary conditions (being problematic for 
Fourier representations) and they are particularly apt for 
representing boundary layers where their extrema are 
locally dense [13,14]. The GWRM is fully spectral; all 
calculations are carried out in spectral space. The pow- 
erful minimax property of the Chebyshev polynomials 
[14] implies that the most accurate n-m order approxima- 
tion to an nth order approximation of a function is a sim- 
ple truncation of the terms of order > n-m. Thus nonlin- 
ear products are easily and efficiently computed in spec- 
tral space. Since the GWRM efficiently uses rapidly 
convergent Chebyshev polynomial representation for all 
time, space and parametrical dimensions, pseudospectral 
implementation [13] has so far not been pursued. The 
GWRM eliminates time stepping and associated, limiting 
grid causality conditions such as the CFL condition.  

The method is acausal, since the time dependence is 
calculated by a global minimization procedure acting on 
the time integrated problem. Recall that in standard 
WRM methods, initial value problems are transformed 
into a set of coupled ordinary, linear or non-linear, dif-
ferential equations for the time-dependent expansion 
coefficients. These are solved using finite differencing 
techniques.  

The structure of the paper is as follows. First, the 
GWRM is outlined mathematically. We show, in Sec-
tions 2-4, how integration, differentiation, nonlinearities, 
as well as initial and boundary conditions are handled in 

multivariate Chebyshev spectral space for arbitrary solu- 
tion intervals. Having transformed the initial-value prob- 
lem, a set of algebraic equations for the coefficients of 
the Chebyshev expansions result. These are solved using 
a new, efficient global nonlinear equation solver which is 
briefly described in Section 5. The introduction of tem- 
poral and spatial subdomains, for increasing efficiency, is 
discussed in Section 6. As an introductory example, we 
solve a stiff, time-dependent ordinary differential equa- 
tion representing flame propagation. For studying accu- 
racy, the nonlinear Burger equation and its exact solution 
is used. Detailed comparisons with the time differencing 
Lax-Wendroff (explicit) and Crank-Nicolson methods 
(semi-implicit) are presented in Section 7. A forced wave 
equation is subsequently used for studying strongly 
separated time scales. Finally, we demonstrate applica- 
tion of the GWRM to stability problems formulated 
within the linearised ideal and resistive magnetohydro- 
dynamic (MHD) models. The paper ends with a sum- 
mary and conclusions. 

2. Generalized Weighted Residual Method 

2.1. Method 

Consider a system of parabolic or hyperbolic initial-value 
partial differential equations, symbolically written as 

D
t

f


 

u

u                (1) 

where  , ;tu u x p  is the solution vector, D is a linear 
or nonlinear matrix operator and  is an 
explicitly given source (or forcing) term. Note that D 
may depend on both physical variables (t, x and u) and 
physical parameters (denoted p) and that f is assumed 
arbitrary but non-dependent on u. Initial u(t0, x; p) as 
well as (Dirichlet, Neumann or Robin) boundary u(t, xB; 
p) conditions are assumed known.    

 , ;f f t x p

Our aim is to determine a spectral solution of Equation 
(1), using Chebyshev polynomials [14] in all dimensions. 
To avoid inverting a matrix solution vector, associated 
with the time derivative, Equation (1) is now integrated 
in time. The resulting formulation of the problem is con- 
veniently coupled to the fixed point algebraic equation 
solver SIR described in Section 5. Thus 

   

    
0

0, ; , ;

, ; , ; d
t

t

t t

D t f t t



  

u x p u x p

u x p x p 
   (2) 

The solution  , ;tu x p  is approximated by finite, 
multivariate first kind Chebyshev polynomial series. Re- 
call that Chebyshev polynomials of the first kind 
(henceforth simply referred to as Chebyshev polynomials) 
are defined by   cosnT x   1cosn x  . These functions 
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can be written as real, simple polynomials of degree n 
and are orthogonal in the interval  1,1

  x
 over a weight 

. Thus , 1 ,   1/221 x


  0 1T x  T x   2
2 2 1T x x 

   mT P

 
etc. For simplicity, we will now restrict the discussion to 
a single equation with one spatial dimension x and one 
physical parameter p. Schemes for several coupled equa- 
tions and higher dimensions may subsequently be 
straightforwardly obtained. Thus, 

 , ;x p    lT 
0 0 0

K L M

k l m

 

  
   klm ka Tu t    (3) 

with 

, , pt x
p AA

P



t x

x

B B
  
 

pB

t A
         (4) 

and  1 0 , 2z zA z  1 0 2z . Here z = t, x or p. 
Indices “0” and “1” denote lower and upper computa- 
tional domain boundaries, respectively. The basic Che- 
byshev polynomials have the limited range of variation 

B z z 

 1,1  and they require arguments within the same 
range. The variables  ,   and P used here allow for 
arbitrary, finite computational domains. We note that, at 
the spatial boundaries,  and  0 1x    1 1x  . 
Primes on summation signs in Equation (3) indicate that 
each occurence of a zero coefficient index should render 
a multiplicative factor of 1/2. 

Next, we use a weighted residual formulation in order 
to determine the unknown coefficients aklm of the solu- 
tion ansatz (3). 

2.2. Spectral Coefficients from Weighted  
Residual Method 

The weighted residual method (WRM) is based on the 
idea that a residual, when using the ansatz (3) in Equa- 
tion (2), is to be minimized globally. The residual is in- 
tegrated over the entire solution domain in order to pro- 
duce a set of equations for the coefficients of Equation 
(3). In the Galerkin WRM approach, the simplifying con- 
tinuous orthogonality properties of the basis functions are 
employed through first multiplying the partial differential 
equation by basis functions of the same kind as those of 
the ansatz. Weight functions may also be included. Thus, 
similarly as for FEM, the weak formulation of the pde is 
used. The Galerkin WRM of the present method, provid- 
ing the equations for the coefficients , is qrsa

      d dq r s t x pRT T T P w w w t 
1 1 1

0 0 0

t x p

t x p
  

R u

d 0x p 

 du f t
 

   (5)  

where the residual R is defined as 

   
0

0, ; , ;
t

t

t x p u t x p D      
  

 

with 

     1 2 1 2 1 22 21 , 1 , 1t x pw w w 
 

      2P


. 

The solution ansatz (3) is now inserted into Equation 
(5). The separation of variables inherent in the Galerkin 
WRM approach, enables separately performed integra- 
tions. Consequently 
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

     



 

 



  (6) 

We have used the variable transformation cos   
and introduced the Kronecker delta ik  (being 1 if i = k 
and 0 otherwise). The integrals over the spatial and pa- 
rameter domains may be computed likewise, and the first 
term of Equation (5) becomes 

       
1 1 1

0 0 0

3

, ; d d d

π

2

t x p

q r s t x p
t x p

t x p qrs

u t x p T T T P w w w t x p

B B B a

 

   
 

  
  (7) 

where the indices obey 0 ≤ q ≤ K, 0 ≤ r ≤ L, 0 ≤ s ≤ M. 
For the second term of Equation (5) the initial condition 
is expanded as 

     0
0 0

, ;
L M

lm l m
l m

u t x p b T T P 

 

            (8) 

with 

   0
0 0

1
K K

k
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b a T a 
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            (9) 

where  0 t  0  has been used. We find 

       
1 1 1

0 0 0

0

2

0

, ; d d d

π
π

2

t x p
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 
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 

  
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Next, we apply the expansions  

      

      

0

0

1
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1
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f t x p t F T T T P
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  
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
  
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(11) 

which yield 
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       
1 1 1t x p t

0 0 0 0

3

, ; d d d d

π

2

q r s t x p
t x p t
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Du t x p t T T T P w w w t x p
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  

  

   
 

   

(12) 

and similarly for the coefficients qrsF . The final expres- 
sion for the GWRM coefficients of uation (3) becomes 
simply, using Equations (5), (7), (10) and (12), 

02qrs q rs qrs qrsa b A F

 Eq

              (13) 

defined for all 0 ≤ q ≤ K + 1, 0 ≤ r < LBC, 0 ≤ s ≤ M. Note 
that the number of modes in the temporal domain is ex- 
tended to K + 1 due to the time integration, that the initial 
conditions are included at this stage and that the high end 
spatial modes with BCr L  are saved for implementa- 
tion of boundary conditions. Since the solution ansatz (3) 
extends to K temporal modes only, the K + 1 mode needs 
special attention as discussed below.  

It may also be noted that Equation (13), the equation 
for the Chebyshev coefficients, is the same as that which 
would obtain if the residual R, using Equations (3), (8) 
and (11), is set identically to zero. How can the global 
WRM solution of Equation (13) correspond to a “lo-
cal” Chebyshev approximation? The explanation is that 
Chebyshev approximations are not local in contrast to, 
for example, Taylor series expansions of ordinary poly-
nomials. They are always defined on an interval (see 
Equations (3) and (4)). Due to the uniqueness given by 
their minimax property, “local” or “global” Chebyshev 
approximations are identical once a domain is defined. 

Whether solving a single differential equation or a 
system of coupled linear/nonlinear differential equations, 
Equation (13) will constitute a set of coupled linear/ 
nonlinear algebraic equations. Here the coefficients qrsA  
are themselves functions of the coefficients ,klma  whereas 
the coefficients qrsF  are uniquely determined from the 
forcing term f. For example, if f equals a constant C, 
then  0 0 14 2qrs t r s po pF B C     . This is shown using 
Equation (11). Thus Equation 3) specifies a com- 
plete, implicit relation for the coefficients qrsa  of the 
solution together with the boundary conditions, which 
will be discussed in the next section. Methods for effi-
cient iterative solution of Equation (13) will be intro-
duced in Section 5. Convergence is controlled by re-
quiring that the absolute values sum of the first few co-
efficients of the solution (3) deviates less than some 
value 

 (1

  from one iteration to the next. Usually we as-
sume 61 10   .  

2.3. Representation of Integrals and Differentials 

     (14) 

we may employ the Chebyshev representation of time 

By also letting 
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     (15) 

If the operator D contains spatial derivatives, the fol- 
lowing formulas are used [14]:  

   
1
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1

,
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1
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Note that the coefficients klmg  and are valid for 
th

klmh  
e intervals 1l L   and 2l  , re ctively.  

2.4. Trunca d the Minim x Property 

L spe

tion an a

e sub- The finite number of spectral terms introduces som
tleties. Although Equation (13) may be solved to order K 
+ 1, the solution ansatz (3) is limited to order K. Assum- 
ing that K is the highest temporal mode number used in 
the computation, the term 1,K lmA   in the sum of Equa- 
tion (15) must still be retained so that 0lmA  is correctly 
calculated for a true K order minimax proximation. 
Since the integrals in Equation (11) are subsequently 
truncated to order K, the initial condition 

 ap

 0 , ;u t x p  
will not be exactly reproduced when setting t  
solution Equation (3) due to that the integrals will be- 
come non-zero (to order K + 1 they are indeed zero). 
There is, however, a remedy to save both minimax accu- 
racy and true representation of the initial condition. By 
letting 1, 0K lma 

= t0 in the

  everywhere except for on the left 
hand side of E tion (13), a solution is obtained which 
exactly reproduces the initial condition for t = t0. We do 
not give a formal proof here; rather we conjecture (after 
having studied a few cases) that this solution exactly co- 
incides with the WRM solution produced directly from 
the original differential form Equation (1). This is not 
overly surprising, since the information used by both the 
differential and the integral formulations becomes the 
same in this case. Both of the procedures discussed are 
used in this work. 

qua
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All computations are here performed using the com- 
puter mathematics programme Maple, since editing, 
co

of initial 
eir number 

is c

 space, associated with tempo- 
ra

 

mpilation, linking, execution, plotting and debugging 
are conveniently performed within the same environment. 
For some computations, like when solving Equations 
(13), analytic differentiation and analytic simplification 
of expressions, being easily carried out in Maple, is de- 
sirable. The GWRM is easily coded in numerically effi- 
cient languages like Matlab or Fortran. The computa- 
tional speed per se is not important for the benchmarking 
and comparisons with other methods given in Section 7; 
rather it is here more important that all comparisons are 
carried out within the same computational environment. 

3. Boundary and Initial Conditions 

We now turn to a discussion of implementation 
and boundary conditions in the GWRM. Th
depends on the number of equations in (1) and by the 
order of the spatial derivatives. It is already shown that 
initial conditions enter directly into Equation (13).  

Boundary conditions should be applied at coefficients 

klma  at the upper end of the spatial mode spectrum. This 
can be seen in several ways. From Equations (16), (17) it 

lear that the Chebyshev representation of functions 
differentiated l times is only valid up to order L − l. Thus 
the coefficient Equations (13) do not apply for higher 
spatial mode numbers.   

Furthermore, it is instructive to consider the flow of 
information in Chebyshev

l integration and spatial differentiation during iteration 
of Equation (13); see Figure 1. Note that for differentia- 
tion, only higher order modes contribute to the value of 
the Chebyshev coefficient at a specific modal point 
 

 

Figure 1. Flow of information in Chebyshev space to a mo-
dal point (k, l), associated with the coefficient aklm (the mo-
dal point is marked with a cross) from nearby modes when 
performing integration (I) in time as well as single differen-
tiation (D1) or second differentiation (D2) in space. Modes 
that are used for implementing initial conditions (empty 
squares) and boundary conditions (filled squares) are also 
indicated (two boundary conditions are shown). 

whereas for integration, the Chebyshev coefficient at 
modal point k samples information from modal points 
both at k − 1 and k + 1. Modes that contribute to the val- 
ues of the integral or derivatives are marked. Modes out- 
side the computational domain (dashed region and be- 
yond) are defined to give zero contribution. The spatial 
domain behaviour is consistent with that the solution (13) 
is defined only to spatial orders less than BCL . Thus L − 
LBC is the number of boundary conditions that should be 
imposed for all k and m.  

In the diagram, modal points used for two boundary 
conditions are shown (filled squares). It is seen that any 
error occuring at high spatial mode numbers is amplified 
through the multiplicative terms in Equations (16), (17), 
and numerical instability could result. Since Chebyshev 
coefficients usually converge rapidly with mode numbers 
and since the boundary conditions are considered known, 
numerical stability is usually not compromised by this 
effect.  

The initial condition is imposed at k = 0 for all modes 
with 0 ≤ l < LBC ≤ L and 0 ≤ m ≤ M and are marked by 
empty squares. The initial condition may be chosen arbi- 
trarily. If the initial condition requires many, or all, tem- 
poral modes for sufficient resolution, care must be taken 
not to conflict with the boundary conditions applied at 
high l values. Preferably, initial conditions are chosen so 
that they satisfy the boundary conditions. 

Chebyshev Expansion of Boundary and Initial 
Conditions 

The boundary conditions are implemented into the 




  (18) 

We choose to apply discrete Chebyshev interpolation 
bot

GWRM in the following way. We chose here to describe 
the case of Dirichlet boundary conditions; one at each 
end of a 1D spatial interval. Other types of boundary 
conditions may straightforwardly be implemented once 
this case is understood. For systems of equations with 
many boundary equations, subroutines for handling this 
are preferably programmed. The boundary conditions are 
Chebyshev expanded as  

   , ; ;
K M

u t x p t p    

      

0
0 0

1
0 0

, ; ;

km k m
k m

K M

km k m
k m

T T P

u t x p t p T T P

 

  

 

 

 

 

 

 

 

h for initial and boundary conditions since this pro- 
cedure has precisely the same effect as taking the partial 
sum of a Chebyshev series expansion and is easily com- 
puted [14]. We have generalized the well known one- 
dimensional Chebyshev polynomial interpolation of a 
function to three variables in time, physical space and 
parameter space, being shifted so that  0 1,t t t , 

 0 1,x x x  and  0 1,p p p . This formula can then be 
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reduced in an obvious way to two variables f - 
nsion o dary and initial conditions 

discussed here, or further generalized to include more 
variables.  

We thus approximate a function  , ;t x p  with the 
finite Chebys

or Cheby
shev expa f the boun

hev series  

   (19) 

with coefficients 

 , ;
K L M

t x p          
0 0 0

klm k l m
k l m

c T T T P

  

       
1 1 1

1 1 1

2 2 2

1klmc
K L


 1 1

, ;
K L M

q r s k q l r m s
q r s

M

t x p T t T x T p
  

  

  




 (20) 

where 
* *

*

, ,

π 1
cos ,

1 2

π 1
cos ,

1 2

π 1
cos

1 2

q t q t r x r x

s p s p

q

r

s

t B t A x B x A

p B p A

t q
K

x r
L

p s
M

   

 

        
        
        

 

The Chebyshev approximation given by Equations (19), 
(20) can be shown to be, under rather mild conditions, an 
accurate polynomial approximation of  , ;t x p  [14]. 
The boundary condition Chebyshev expansion coeffi- 
cients km  and km  are obtained by us twodi- 
mensional version of Equations (19), (20) with the 
known functions

ing the 

  ;t p  and  ;t p . Clearly, if 
   ; ; 0t p t p    then all coefficients km  and km  

must be zero. From Eq ns (3) a we obtain the 

L

uatio nd (18) 
relations 

           (21) 

Since  and 

  

  

0
0

1
0

.

km klm l
l

L

km klm l
l

a T x

a T x

 

 

















 0 1x    1 1x  , we use Tl(−1) = (−1)l 

and  = 1 to im t the two bou y cond
at the highest mod ers of 

Tl(−1) plemen ndar itions 
al numb the spatial Chebyshev 

coefficients; 

   
   

, , 2k L ma S S      

, 1, 2

km km

k L m km kma S S

 

  

 
      




    (22) 

for L being even (upper sign) or odd (lower sign
spectively, with 

The Chebyshev coefficients in Equa
(13), for the initial condition expa on, are computed by 
us

), re- 

 
2 2L L

l

l l

S a S a

 
 

 

           (23) 
0 0

1 ,klm klm

lmb  
nsi

u

tions (8) and 

ing the analytical form for 0 , ;t x p  in a two-di- 
mensional formulation of Equations (19), (20) in physic- 
cal and parameter space. 

It should be noted that a useful simplification occurs 
for periodic boundary conditions, for which case  



   0 1, ; , ;t x p u t x p . This relation is only satisfied for 
even Chebyshev polynomials. Considerable computation 
tim only computing coefficients klma  
with even values of l. 

In summary, initial and boundary conditions are ni- 
tially transformed into Chebyshev space by use of Eq  
tio

u

e is thus saved by 

i
ua-

pec

fully spec- 
udo-spectral 

  4) 

A basic and useful relationship is the ide

ns (19), (20) in suitable dimensional forms. All sub- 
sequent computations are performed in Chebyshev space, 
using Equations (13) and equations for the boundary con- 
ditions of the form (23). When sufficient accuracy in the 
coefficients klma  is obtained, the solution Equation (3) 
is obtained in physical variables. For periodic boundary 
conditions, coefficients klma  with l odd can be ne- 
glected. 

4. Nonlinearities in S tral Space 

Nonlinear terms of the operator D are treated 
trally in this method, in contrast to in pse
schemes [13], where the nonlinearities are transformed to 
physical space, multiplied there and then transformed 
back to spectral space. This procedure causes the prob- 
lem of aliasing, which is avoided in the present scheme. 
In the GWRM, as nonlinear products are produced in 
spectral space, Chebyshev modes that lie outside the 
modal representation (K, L, M) will be truncated with 
associated loss of accuracy. As mentioned earlier it can 
be shown that truncated Chebyshev polynomials, because 
of their minimax properties, are the most accurate poly- 
nomial representation to this order [14].  

For the sake of simplicity, we now discuss the han- 
dling of a second order nonlinearity in one-dimensional 
Chebyshev spectral space. Higher dimension cases are 
easily obtained from that of one dimension. We also omit 
the arguments of the Chebyshev functions, which are 
assumed identical. 

Thus we wish to determine the coefficients kc  in  
M



0 0 0
m m n n k k

m n k

a T b T c T 

  

          (2
N M N

ntity TmTn =  
 | | 2m n m nT T 
tai

, which “linearizes” expressions con-
 

all variable ex a
within the same space (tempo  

ning simple products of Chebyshev polynomials. Since
p nsions have the same number of modes 

ral, physical or parameter
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space), we may assume that N M  in Equation (24). 
After some algebra, the following exact expression is 
determined: 

     1
| | 02 1 1

M

k k m km k m k k mc f a b b  
        (25) 

0m

being valid for 0 ≤ k ≤ 2M. Here 1 2kf   for 0k  , 
on

 and of b
and  for . Th summati
deno all nces of dex of a  

1kf 
tes that 

0k 
 occure

e prime on the 
 a zero in

 sign 

should render a multiplying factor of 1 2 . Note that

uations for Cheby efficients 

 is found 
) are 

de lem, 

 only 
the ients for the employed spectral space are 
computed (we thus compute kc  for 0 ≤ k ≤ M); other 
terms are truncated. The computation is best facilitated 
by creating a procedure that can be repeatedly called also 
when computing coefficients fo higher order nonlineari- 
ties. 

5. Solution of Algebraic Systems of  
Eq

coeffic

r 

shev Co

The GWRM solution to an initial-value problem
when the Chebyshev coefficients of Equation (13

termined to sufficient accuracy. For a linear prob
the coefficients can be obtained by a simple Gaussian 
elimination procedure. Nonlinear differential equations, 
however, lead to nonlinear algebraic equations and these 
may be difficult to solve numerically [15]. We thus need 
a robust nonlinear solver that converges both globally 
and rapidly. Although various such methods already exist 
[15], we have found it rewarding to develop a new 
semi-implicit root solver, SIR [16], as described below.  

The GWRM is well adapted for solution using itera- 
tive methods for two reasons. First, Equation (13) can be 
immediately cast in the fixed-point iterative form  

 x x                 (26) 

where the solution vector x here contains the Chebyshev 
coefficients to be determ
tion 

qrsa  ined, and the vector func- 
  reflects the functional  forms of qrsA  and qrsF . 

Second, all iterative methods require an initial estimate 
of the solutio ctor, and if this deviates too much from 
the solution to be determined, numerical instability re- 
sults. For the GWRM, the coefficients that correspond to 
the solution for the entire time domain (the roots of the 
equations) may deviate strongly from the coefficients of 
the initial state. One of the simplest and most frequently 
used solvers, Newton’s method, features a fairly limited 
domain of convergence [15,17,18], however. Because the 
initial guess in the case of the GWRM is precisely the 
initial condition, there always remains the possibility to 
reduce the solution time interval 

n ve

0 1,t t , for example by 
using subdomains as described below, so that the solu- 
tion Chebyshev coefficients become sufficiently close to 
the initial Chebyshev coefficien his, incidentally, 

shows that a GWRM formulation of a well posed initial- 
value problem in principle always will lead to a solution, 
although we do not prove this rigorously at present.  

Newton’s method is usually globally improved by the 
addition of line-search methods, in which the iteration 
step size is decided from the minima of the function,

ts. T

 the 
ro

e semi-implicit method leads in- 
st

ots of which are to be determined. Unfortunately, these 
methods may land on spurious solutions, corresponding 
to local minima rather than to true zeroes of the function. 
We have thus developed the semi-implicit root solver 
(SIR), being an iterative method for globally convergent 
solution of nonlinear equations and systems of nonlinear 
equations. By “global” is here meant that correct global 
solutions are usually (but not always) found, having the 
the new feature that they are never local, non-zero min- 
ima. It is shown in [16] using a set of test problems, that 
global convergence is at least as good as for Newton-like 
line-search methods. Convergence is quasi-monotonous 
and approaches second order in the proximity of the real 
roots. The algorithm is related to semi-implicit methods, 
earlier being applied to partial differential equations. We 
have shown that the Newton-Raphson and Newton 
methods are limiting cases of the method. This relation- 
ship enables efficient solution of the Jacobian matrix 
equations at each iteration. The degrees of freedom in- 
troduced by the semi-implicit parameters are used to 
control convergence.  

Details of SIR are given in [16]; we here only briefly 
describe the basic formulation. Instead of direct iteration, 
using Equation (26), th

ead to the problem of finding the roots to the N equa- 
tions  

    

or, in matrix form 

 ;
N

m mn n n m mx x       x x x A    (27) 
1n

      ;     x A x x x x A     

 has the same solutions as the original 
system, but contains free parameters in the f
components 

 (28) 

The system (28)
orm of the 

mn  of the matrix A. These para
de

meters are 
termined by specifying the values of m nx  , the 

gradients of the hypersurfaces m . The latter gradients 
control global, uasi-monotonous and superlinear con- 
vergence. In SIR, 

 q
0m nx    for all m ereas  ≠ n, wh

m mx   is finite and is chosen to produce limited step 
lengths and quasi-monotonous convergence; it usually 
approaches zero aft l iterations. Since New- 

hod is a limiting case of the present method, 
namely when all 

er some ini
ton’s met

tia

0m nx   , rapid second order con- 
vergence is generally approached after some iteration 
steps. The relationship to Newton’s method fortunately 
leads to approxim r numerical work, essen- 
tially that of solving a Jacobian matrix equation at each 

ately simila
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iteration step.  
There are two aspects of the GWRM that are of par- 

ticular importance for the root solver. First, the algebraic 
equations to be solved are polynomials of the same order 
as the nonlinearity of the original differential equations. 
For example, second order nonlinear pde’s lead to the 
solution of a system of second order polynomial equa- 
tions by SIR. Since a large class of problems in physics, 
formulated as pde’s, feature second (or third) order 
nonlinearities, there is a potential to device more efficient 
versions of SIR where this fact has been utilized. Second, 
most of the computational time in SIR, when applied to 
the GWRM, is not spent on matrix equation solution, but 
rather on function evaluation. If the functions n  are 
formulated and evaluated more economically, computa- 
tional efficency may be improved.  

We conclude this section by stating that the SIR algo- 
rithm has turned out to be robust and well suited for all 
GWRM applications tried to date. F

 

urther development 
w

etical operations due to matrix in- 
he num- 
quation 

ould focus on the possibility to enhance SIR efficiency 
by economizing the handling and evaluation of the poly- 
nomial Equation (13). 

6. Temporal and Spatial Subdomains 

The number of arithm
version typically feature a cubic dependence on t
ber of unknowns. The root solver, applied to E
(13), thus may dominate computational time. Applied to 
Equation (3), straightforward application of GWRM and 
SIR would require about      3 3 3

1 1 1K L M      
operations for each iteration when solving Equation (13). 
Using LU decomposition rather than matrix inversion, the 
number of operations is reduced to 3  [15]. As shown 
in the examples of the next section, this may often be an 
acceptable amount of work.  

In more complex calculations, efficiency requires the 
temporal and spatial domains to be separated into subdo- 
mains. This enables a linear rather than a cubic depend- 
ence of efficiency on, for example, the number of spa-
tial modes applied to the entire domain, given that the 
number of subdomains is proportional to L. Assume that 
the temporal and spatial domains are divided into Nt and 
Nx subdomains, respectively. This reduces 3  opera-
tions to  

     
   

3 3 3
1 1 3t x t xN N K N L N M        

 
  

2

1

3 t xN N

operations when solving a particular problem, ass ng 
that the same total number of modes are sufficient in both 
cases. As an example, for K = L = 11, M = 2 and Nt = Nx = 

umi

3 there would be a reduction from about 2.7 × 107 to 3.3 × 
105 operations Additionally it should be noted that the 

functions m  in SIR will become substantially less com- 
plex when subdomains are used, with resulting reduced 
computational effort. 

Temporal and spatial subdomains must be implemented 
differently. For the temporal domain the procedure can be 
more straightforward. As initial condition for each do- 
m

 
A

displayed using Heaviside 
fu

ain, we here simply use the end state of the previous one. 
It should be recalled, however, that a GWRM (as well as 
any WRM) solution is not per se a Chebyshev approxi- 
mation of the true solution, but rather stems from a mini- 
mization of the residual, including information concern- 
ing the differential formulation of the problem, over the 
solution domain. Simple averaging (by using a few modes) 
over regions with strong temporal gradients is thus likely 
to produce large errors, due to the poorly approximated 
differential character of the problem. As will be shown, a 
preferred solution is to use an adaptive scheme, which 
uses few modes by default in each subdomain, but in- 
creases this number whenever accuracy so requires. Fur- 
thermore, the use of temporal subdomains is beneficial for 
SIR convergence, since the initial condition for each do- 
main will be closer to the final solution than what would 
be the case using a single temporal domain instead.  

Spatial subdomains must be treated in another fashion. 
The reason is that boundary conditions are usually only 
known at the exterior, rather than at interior, boundaries.

 computation is not conveniently progressed success- 
sively through a sequence of spatial subdomains, as for 
temporal subdomains. Instead the boundary conditions are 
imposed on the outermost spatial subdomains, and the 
subdomains are connected at interior boundaries through 
continuity conditions. The functions themselves and their 
first derivatives are continuous across each subdomain 
(interior) boundary. All spatial subdomains are updated in 
parallel at each solution iteration. Computationally, the 
choice of procedure is a nontrivial task. Due to the large 
coefficients, appearing in higher order derivatives (see 
Equations (16), (17)), derivative matching is sensitive to 
small errors and numerical instability may result. Instead 
we have found that a ”handshaking procedure” where the 
functions are allowed to overlap into neighbouring do- 
mains, and are doubly connected, yields improved stabi- 
lity over derivative matching. 

Subdomains may also be introduced into the physical 
parameter domain, if desired. The final set of piece-wise 
solutions (3) may easily be 

nctions as global solutions. Should a single global, 
semi-analytic solution be desired, a Chebyshev approxi- 
mation covering all subdomains may be carried out at the 
end of the computation. Concluding, the use of temporal, 
spatial and parameter subdomains offers substantial po- 
tential for reducing GWRM computational time, because 
of the possible transition from cubic to near linear de- 
pendence on the number of modes. Details of subdomain 
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applications will be published separately. 

7. Example Applications of the GWRM 

We now turn to the important questions of accuracy and 
ed by 

ntial 

ains are here showed 
to

curacy is com- 
pa

WRM turns out to be considerably 
m

ic (MHD) equations. Similar 
pr

idly until 
ygen that 

com e surface of the ball of flame. A simple 

efficiency. In this section, the GWRM is compar
example to other methods for solving partial differe
equations, that use time discretization in the form of fi- 
nite differencing. Even though the GWRM generates 
semi-analytic solutions, it must be comparable to these 
standard methods with regards to accuracy and efficiency 
to be of practical use. 

To study performance when applied to nonlinear 
problems, a stiff ordinary differential equations is first 
solved. Adaptive, temporal subdom

 provide high accuracy and efficiency.  
As a second example the nonlinear, 1D viscous Burger 

equation is solved. It features a shock-like structure near 
the boundary. It is shown that GWRM ac

rable to that of the (explicit) Lax-Wendroff and (im- 
plicit) Crank-Nicolson schemes for a similar number of 
floating operations. 

Next we study a problem with two strongly separated 
time scales. For the wave equations without and with a 
forcing term, the G

ore efficient than both the Lax-Wendroff and the Crank- 
Nicolson solution methods when tracing the dynamics of 
the slower time scale. 

The GWRM is finally applied to the demanding prob-
lems of solving the linearized systems of ideal and resis-
tive magnetohydrodynam

oblems are of key importance when studying the sta-
bility of magnetically confined plasmas for purposes of 
controlled thermonuclear fusion. 

7.1. Introductory Example: The Match  
Equation 

When a match is lighted, the flame grows rap
the oxygen it consumes is balanced by the ox

es through th
model for the flame propagation in terms of the ball ra- 
dius  u t  is 

2 3d du t u u                (29) 

with 

 0 , 0 2u t  .            (30)   

 small values of For   
ce 

this problem becomes very 
stiff through the presen of a ramp at 1t  , repre- 

ball towards its senting the explosive wth of the 
st e

form o

gro
eady state size [19]. W  have solved this problem by 

using Equation (25), transforming it to the f Equa- 
tion (2), yielding a set of equations corresponding to 
Equation (13) in which spatial and parameter modes are 

omitted. A solution with 0.0001   is presented in 
Figure 2. We have imposed an accuracy of   = 1.0 × 
10−4. The GWRM solution is compared with the exact 
solution to Equations (29), (3

   
0);  

1 1a tu t W ae               (31) 

where 1 1a    and W is the Lambert
all value of 

 W
Clearly, for this sm

 function. 
  t

 Consequently, explicit 
he ramp is very 

distinct and hard to resolve. finite 
ce method eps 

to
differen s will need extremely small time st

 resolve this problem. An optimised Matlab solution to 
the problem uses implicit methods that may reduce the 
computational effort to about 100 time steps, taking a 
few seconds on a tabletop computer. The GWRM solu- 
tion in Figure 2 uses 69 temporal domains and takes just 
about the same amount of computational time, but has 
the additional feature to provide analytical approxima- 
tions to the solution in each domain. These may be of 
particular interest in the ramp region. For efficiency, the 
temporal domain length has been automatically adapted 
as follows. Since   1nT t  , we obtain the criterion for  

accuracy    1 0 1K Ka a a a     . 

In performing th putation, a default of 10 time 
ns is assu K = 6 is used throughout. If 

e com
med and 

cy criterion is satisfied, the ubd ain length 
is

 plateau u = 1 at t = 1.0 × 1 . Perhaps 
w

subdomai
the accura  s om

04

 doubled at the next domain, and if not it is halved. In 
the latter case, the calculation is repeated for the same 
subdomain until the accuracy criterion is satisfied. This 
goes on as the calculation proceeds in time until near the 
endpoint, where the subdomain length is adjusted to land 
exactly on the predefined upper time limit. Due to the 
stiffness of the problem in Figure 2, the subdomains are 
concentrated near t = 1.0 × 104 where the subdomain 
length may be as small as about 2 time units. The auto- 
matic extension of the subdomain length in smoother 
regions saves considerable computational time; at the end 
of the calculation the subdomain length is several thou- 
sand time units. 

The essential information provided by the computa- 
tions of Figure 2 is in the transformation from the pla- 
teau u = 0 to the

e are willing to sacrify accurate details of the transition 
region, and would be satisfied with a global GWRM so- 
lution that only approximately models the transition, us- 
ing only a few modes. As discussed earlier, GWRM so- 
lutions are not identical to Cheyshev approximations of 
the true solutions, but also mirrors the effect that results 
from the differential formulation of the problem. In other 
words—an implicit formulation of a function as a differ- 
ential equation plus initial and boundary conditions will 
render approximate solutions that are, in some sense, 
imprints of the formulation. This imprint will, of course, 
diminish as the true solution is approached. We note that    
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(a) 

 
(b) 

 
(c) 

Figure 2. (a) Solution to the match equation (29), with δ = 0.0001, K = 6, ε = 0.0001, using initial subdomain length of (2/δ)/10
(b) As (a), with ramp region at t = 1/δ enlarged; (c) Absolute error for the computation of (a). 

onlinearities. As a result a global, low mode approxima- 
tudies.  

In summary, a stiff ordinary differential equation has 

optimised 

; 

 
in Equation (29) there are quadratic as well as cubic interesting topic for future s
n
tion of the solution is not trivially obtainable. The transi- 
tion region needs a certain amount of resolution to “tie” 
with the solutions at lower and higher times t. This is an 

been solved to high accuracy using the GWRM. Due to 
use of automatic domain length adaption, high efficiency 
is also obtained, comparing well with highly 
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M

e 
on. The one- 

uation  

atlab routines for implicit finite difference methods.  

7.2. Accuracy; Burger’s Equation 

Burger’s equation is of particular interest since it is 
nonlinear and contains two time scales as a result of th
competition between convection and diffusi
dimensional Burger partial differential eq

2

2

u u u
u

t x x
  

  
  

             (32) 

Thus contains essential physics, such as convective 
nonlinearities and dissipation, expected to be encoun- 
tered also in more complex problem
and MHD. Here 

s of fluid mechanics 
  denotes (kinematic) viscosity. Since 

th

ti

f transformation [6] 

is equation has an analytical solution, it provides ex- 
cellent benchmarking. 

7.2.1. Exact Solu on of Burger’s Equation 
The exact solution to Equation (32) is found by first in- 
troducing the Cole-Hop

2u               
x

to produce a standard diffusion equation in 

     (33) 

 ,t x  and 
then by using the Fourier method. The result, for the 
boundary conditions 



  ,0u t u t ,1 0  is 

 


 

2 2π

0

2π sin π
,

π

m t
m

m

mA e m x
u t x

x

  






     (34) 

2 2π

0

cosm t
m

m

A e m 



with coefficients 



   
1

0

2 cos π dmA x m x  x ,         (35) 

where    0,x x   . As an example, the initial condi-
tion 

   0, 1u x x x      

in 

         (36) 

results 

     2 33 2 12x x
x e




 
 .           (37) 

It shoul
Equation (

d be noted that the sums of the exact solution 
34) may need to be carried out over a large 

number of terms for sufficient accura
poor convergence at low viscosity.

cy, because of the 
 As 0.005   at 

le

functions

radients are often difficult to resolve in spectral 
re

condition 

ast 100 terms are required to compute a solution that 
gives a reasonably accurate solution near t = 0. Further- 
more, in contrast to polynomials or Chebyshev polyno- 
mials, the exponential and trigonometrical  of 
Equation (34) are costly to evaluate numerically. This is 
one example of an exact solution that is of limited prac- 
tical use. 

The most challenging aspect of the Burger equation, 
from the modelling point of view, is the shock-like 
structure that evolves for weak dissipation. The as- 
sociated g

presentations. Highly accurate modelling may require a 
high number of Chebyshev modes. The case we study 
develops a strong gradient near the boundary x = 1, and 
is representative of the gradients in, for example, edge 
pressure or temperature, encountered in magnetohydro- 
dynamic computations in fusion plasma physics model- 
ling. The structure may also appear when modelling lo- 
calized resistive instabilities in tokamak and reversed- 
field pinch magnetic fusion configurations. It is desired 
that the GWRM should be able to resolve these structures 
for limited values of mode numbers. To see the dif- 
ference as compared to standard modelling, we make 
comparisons to solutions obtained from the standard 
explicit Lax-Wendroff and implicit Crank-Nicolson finite 
difference schemes for partial differential equations [15].  

7.2.2. GWRM Solution of Burger’s Equation 
In Figure 3(a), the GWRM solution of Burger’s equation 
for boundary conditions    ,0 ,1 0u t u t   and initial 

   1x x x  

iven by 

 is shown. Nine te

he solution is vali

mporal (K 
 (viscos- = 8), eleven spatial (L = 10) and three parameter

ity) modes (M = 2) were required to obtain an error better 
than 1% after 7 iterations. T d within the 
domains g    0 1 0,5 , , tt   0 1, 0,1x x   and 
   0 1, 0.01,0.05   , and is displayed for fixed t = 2.5. 
Note that the solution was attained for all viscosities in 
the given range in a single computation. It is seen that a 
sharp gradient builds d  pro- 

ues of viscosity. If the number of 
temporal or spatial modes are reduced somewhat, the 
same accuracy is retained everywhere except for near the 
edge x = 1. Since the “exact” Cole-Hopf solution con- 
verges slowly at these low values of 

up
r small val

 near the e ge, being most
found fo

 , the obtained 
GWRM semi-analytical solution is actually computa- 
tionally more economical to use in applications. 

To enable comparisons with explicit and implicit finite 
difference partial differential equation solvers, we will 
now fix viscosity to 0.01   and compute the solutions 
as functions of t and x. The Burger equation, defined as 
ab

latter tw

odes. With mode 
nu

ove but now using t1 = 10, is solved using all GWRM, 
explicit Lax-Wendroff, and implicit Crank-Nicolson 
methods [15]. The o schemes are accurate to 
second order in both time and space.  

For the GWRM solution, two spatial subdomains with 
internal boundary at x = 0.75 are used. A similar result 
would be obtained using only one spatial domain with 
slightly higher number of spatial m

mbers K = 9, L = 7 an absolute global accuracy of 
0.001 is obtained after 10 iterations, with a tolerance of 
1.0 × 10−6 for the coefficient values. Results are dis-
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played in Figures 3(b) and (c). The peak near t = 0 in 
Figure 3(c) is due to the poor convergence of the exact 
solution of which 60 terms are used. 

7.2.3. Lax-Wendroff Explicit Finite Difference  
Solution of Burger’s Equation 

We now turn to solution of the Burger equation using 
finite difference methods. Accurate solutions are not 

 edge 
gradie p length required 
straightforwardly obtained because of the strong

nt. Let us estimate the spatial ste
for a global error   = 0.001. A second order estimate 
of the mid-point error resulting from finite spatial differ- 
encing with spacing x  is 

 

   

1 1
2

2 2

1 2

8

f x x f x x f x

f x 

                 

  

   (38) 

x

where a prime denotes spatial differentiation. F
exact solution it is found that 

rom the 
 max f x  = 20

= (2.05, 0.94). A maximum global error of δ = 0.001 thus 
requires 

.3 at (t, x) 

x < 0.02.  

and becaus

 ma  becomes limited, however. 
A

The Lax-Wendroff finite difference scheme is widely 
used because of its reliability e it is accurate 
to second order in both time and space. Since it is ex- 
plicit, the ximum time step

 von Neumann analysis of the Lax-Wendroff method 
applied to the Burger equation (32) features the limiting 
cases of strong convection or strong diffusion. When 
convection dominates the CFL condition ct x u   , 
where cu  is a characteristic fluid velocity, results. This 
condition characterises the required causality on the so- 
lution grid for hyperbolic problems. When the diffusion 
term dominates, the problem is parabolic an e 
step is ited to    

d the tim
lim  2

2
crit

t x t      by causality. 
Computations show that the latter criterion is the more 
relevant one for the present Burger problem.  

Recall that accuracy requires x < 0.02 according to 
Equatiom (38). Th ment with the 
value 

is is in reason  agreeable
x  ≤ 1/70, that was found numerically. For 
 0.98t t   , the number of time steps

crit

00 for the given accuracy. Th rror of a Lax-Wen- 
droff computation is shown in Figure 3(d). High accu-
racy is obtained everywhere except near the maximum 

 Using Maple 12 on the same platform 
for both methods, the Lax-Wendroff method needs 50% 
less time than the GWRM. It is thus somewhat more ac-
curate for the same number of computational operations 
in this case. Note, however, that the discussion in Section 
3.1 shows that for the case of a single spatial domain, the 
boundary conditions would be periodical (or homogene-
ous) in which case odd spatial mode numbers can be 
omitted and an eight-fold gain in efficiency would be 

attainable. The GWRM solution has also the advantage 
of being in analytic form whereas the Lax-Wendroff so-
lution is purely numeric.   

7.2.4. Crank-Nicolson Implicit Finite Difference  
Solution of Burger’s Equation 

Next, we solve the Burger

 becomes 

spatial gradient.

 equation using the Crank- 
Nicolson method. This scheme allows for arbitrarily 

 the 
functi t the previous and 

10 e e

large time steps by using an implicit approach where
onal values are determined both a

present time steps. On the spatial scale, the resolution 
x ≤ 1/70 is, however, still needed to obtain a global 

accuracy of 0.001. To avoid costly matrix inversion at 
each time step, due to the implicit finite difference for- 
mulation, a tridiagonal matrix solution procedure has 

n developed [15] that radically speeds up the calcula- 
tions for linear equations. To be able to use this scheme 
for the nonlinear Burger equation, we advanced the lin- 
ear diffusive term using the standard Crank-Nicolson 
method, but advanced the nonlinear convective term ex- 
plicitly. As a result, a von Neumann analysis shows that 
the time step is no longer unrestricted, but must obey the 
relation 

bee

22 ct u  . Note that this relation is inde- 
pendent of x . 

For a time step t  = 1/500 and with x  = 1/70, an 
accuracy of 0.001 was achieved for the Burger equation, 
as shown  3(e). The computer time used was 
about half t of

 in Figure
hat  the Lax-Wendroff method. For general 

no ord

quation is more economic than the 
“exact” Cole-Hopf solution for use in applications at low 

nlinear problems, when a linear higher er term that 
can be advanced explicitly does not exist, this method 
may be less accurate however. The reason is that, for 
making use of efficient tridiagonal matrix solving, the 
differential equation should be time linearized, which 
introduces errors.   

7.2.5. Conclusions on Solution of Burger’s Equation 
Interestingly, we have found that the analytical GWRM 
solution of Burger’s e

values of   for given accuracy, due to the poor con-
vergence of the latter. Although the GWRM is pri- 
marily intended for computing long time behaviour of 
complex problems with several time scales, it can thus be 
used for accurate solution of stiff problems. For the case 
of Burger’s equation, the GWRM was nearly as efficient 
as the Lax-Wendroff and Crank-Nicolson schemes for 
given accuracy. For nonlinear problems, where all terms 
must be advanced implicitly, the Crank-Nicolson method 
is expected to compare less favourably with the GWRM 
either due to reduced efficiency when solving a nonlinear 
system of equations at each iteration or due to reduced 
accuracy if nonlinear terms are time linearized. Improved 
GWRM efficiency is also expected for problems with    
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(a)                                                              (b) 

     
(c)                                                              (d) 

 
(e) 

Figure 3. (a) GWRM solution of Burger’s Equation (32) with initial condition φ(x) = x(1 − x y condition u(t, 0) = u(t, 
1) = 0, shown versus x and ν at time t = 2.5. K = 8, L = 10, and  2; (b) GWRM solution of Equation (32) with φ(x) = x(1 − x) 

), boundar
M =

and u(t, 0) = u(t, 1) = 0, for ν = 0.01. Two spatial subdomains are used, with internal boundary at x = 0.8, and K = 9, L = 7; (c) 
Difference between the exact solution of Burger’s equation (first 60 terms of Equation (34)), and the GWRM solution; (d) 
Difference between the exact and the Lax-Wendroff solutions of Burger’s equation, for ν = 0.01. Here 1000 time steps were 
used, and ∆x = 1/70. Only each 20th time step and each 2nd spatial step are shown; (e) Difference between the exact and the 
Crank-Nicolson solutions of Burger’s equation, for ν = 0.01. Here 500 time steps were used, and ∆x = 1/70.  
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periodic boundary conditions. The GWRM has the addi- 
tional advantage of providing approximate, analytic solu- 
tions.  

7.3. Efficiency: The Forced Wave Equation 

Problems in physics often feature multiple time scales, 
dyna- whereas it may be of main interest to follow the 

moics of the slowest time scale. Efficient partial differ-
ential equation solvers therefore must be able to employ 
long time steps, retaining stability and sufficient accu-
racy. By omitting resolution of the finer time scales, im-
proved efficiency and the possibility to study complex 
systems are expected. As a test problem, we choose a 
wave equation with a forcing (source) term, also called 
the inhomogeneous wave equation:  

 
2 2

2 2
,

u u
f t x

t x

with boundary and initial conditions 

 
 

 
            (39) 

   ,0 ,1 0u t u t   

  0, sin πu x n x   

  0, sin
u x A x
t

 



 

Here A, n, ,   and   
 

are free parameters, and 
in   , sin s 2 2f t x A xt    

function. The exact solution is 
 is the forcing 

      0.5, cos π sin π sinu t x n t n x A   sint x     (40) 

for πm  , with m an integer. This problem has the 
stem and forcing function time scales separate sy  2 n   

and 2π  . Using the parameter value 1  , 10A  , 
π 15  , 3π   and 3n  , the ratio of these time  

scales becomes  π 1 45R n   . Thus he g 

(4 here i uced a time scale much 

 t  forcin  

term in 0) has ntrod
f the “unperturbed” s

GWRM, 
 

longer than that o ystem.   

7.3.1. GWRM Solution of the Forced Wave Equation 
We now wish to solve Equation (39) using all 
Lax-Wendroff and Crank-Nicolson methods. The prob-
lem is thus posed as a set of two first order partial dif- 
ferential equations: 

 
2

,
U u

2
f t x

t
 

 
 x
u

U
t







            (41) 

with boundary and initial conditions corresponding to
those of Equation (39). The GWRM solution, using one 

 condition, which for this 

 

spatial domain with K = 6 and L = 8, is rapidly obtained 
within a single iteration with a tolerance of 1.0 × 10−6 for 

(system) time scale and follows the slower (forced) time 
scale in an averaging sense. This is shown in more detail 
in Figure 4(b), where the temporal evolutions of both the 
exact and the GWRM solutions are shown jointly for 
fixed x. The averaging character of the solution remains 
at least for all values K ≤ 20.  

7.3.2. Lax-Wendroff Explicit Finite Difference  
Solution of the Forced Wave Equation 

We now turn to finite difference solution of Equation (39) 
using the Lax-Wendroff method. Being an explicit 
method, it must obey the CFL

the coefficient values. It is displayed in Figure 4(a). The 
solution behaves as desired; it averages over the faster 

case becomes t x   . We find that sufficient acc
is obtained for 

uracy 
x  ≤ 1/30. Thus the maximum allowed 

time step is 1/30, and the number of time steps becomes 
900 for the domain    0 1, 0,30t t  . The calculation re- 
quires about ten times more computer time than the 
GWRM. It can be seen in Figure 4(c) that the solution 
initially traces t exact solution, but thereafter follows 
the slower time scale. The solution appears not to aver- 
age as accurately as the GWR  ov r the fast time scale. 

7.3.3. Crank-Nicolson Implicit Finite Difference  
Solution of the Forced Wave Equation 

The Crank-Nicolson method, being implicit, has no time 
step restriction and no amplitude dissipation and would 
perhaps intuitively be well suited for the present problem

he 

M e

. 
qua- 
 [6] 

Additionally, to avoid time-consuming large matrix e
tions, the so-called Generalized Thomas algorithm
uses a block-tridiagonal matrix algorithm that substan- 
tially speeds up the calculations at each time step. If the 
associated sub-matrix equations are solved for, rather 
than computing inverse matrices, a gain from Gauss 
elimination O((MN)3/3) operations to O(5M3N/3) opera- 
tions is possible, that is the speed gain factor becomes 
N2/5. Here the number of equations M = 2 and the num- 
ber of spatial nodes N = 30. The handling of a number of 
sub-matrix equations, required at each time step, is still 
limiting performance however. With x  = 1/30, tem- 
poral resolution requires at least 50 time steps. Using 
matrix inversion, the corresponding computation is about 
three times slower than Lax-Wendroff and thus about 30 
times slower than that of the GWRM. A speed gain of a 
factor three is expected by solving the sub-matrix equa-
tions rather than determining inverse matrices, but the 
GWRM remains considerable faster. It should be noted 
that the sub-matrices used in the Thomas algorithm are 
here only 2 × 2 in size. Thus negligible time is spent in 
matrix inversion; it is rather the extensive use of matrix 
manipulations in the algorithm that affects efficiency. 
The solution is shown in Figure 4(d) and in Figure 4(e) 
the solution is Chebyshev interpolated at x = 0.2 to    
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(a)                                                    (b) 

        
(c)                                                    (d) 

 
(e) 

Figure 4. (a) GWRM solution of the forced wave Equation (39), using a single spatial domain, with K = 6 and L = 8; (b) 
GWRM temporal evolution of the forced wave Equation (39) for x = 0.2 (smooth curve) as compared to exact solution (oscil-
latory curve); (c) Lax-Wendroff temporal evolution of the forced wave Equation (39) for x = 0.2 (smooth curve) as compared 
to exact solution (oscillatory curve). Here 900 time steps are used, and ∆x = 1/30; (d) Crank-Nicolson temporal evolution of 
the forced wave equation (39) for x = 0.2. 50 time steps were used with ∆x = 1/30; (e) Chebyshev interpolated solution of (d) as 
compared to exact solution (oscillatory curve).  

Copyright © 2012 SciRes.                                                                                AJCM 



J. SCHEFFEL 188 

  
facilitate a comparison with the exact solution. The 
Crank-Nicolson solution strives to follow the exact solu- 
ion, and does not accurately average over the fast time 

est MHD time scale—the so-called Alfvén time, being of 
the order fractions of microseconds. If plasma resistivity 
is included in the MHD model, further instabilities (mil- t

scale. 

7.3.4. Conclusions on the Forced Wave Equation 
It was found that the GWRM is well suited for long time 
scale solution of the wave equation test problem, which 

table 

We now turn to applications of the GWRM to more ad- 
ts of coupled 

pde’

features both a slow and a fast time scale. For sui
mode parameters, it traces the slower dynamics using 
substantially less computational time than the Lax- 
Wendroff and Crank-Nicolson schemes. An important 
factor, contributing to the efficiency, is that whereas the 
Lax-Wendroff and Crank-Nicolson schemes must solve 
two first order Equations (41) representing the second 
order wave equation, the GWRM integrates both these 
equations formally in spectral space into one equation 
before the coefficient solver is launched. If results are 
sought for longer times, temporal subdomains are pref-
erably used for the GRWM, to guarantee constant com- 
putational effort per problem time unit. For problems 
with wider separation of the time scales, the GWRM will 
be an increasingly advantageous method as compared to 
the Lax-Wendroff scheme since the latter must follow 
the faster time scale. It may also be noted that the 
GWRM averages more accurately over the fast time 
scale oscillations than the finite difference methods. This 
is a subject that deserves further attention. 

This forced wave equation example featured an im- 
posed, periodic, time scale that was longer than the sys- 
tem time scale. How will the GWRM perform when the 
imposed time scale is shorter than that of the system? At 
present it appears difficult to adequately handle such 
problems using the GWRM. A major complication is that, 
for efficiency, the number of modes used in the calcula- 
tion would not adequately resolve the forcing function, 
so that the problem would not be well defined for the 
GWRM. This is a subject for further investigation. As 
seen in the case of the Burger equation, and as seen in the 
resistive MHD computation below, multiple time scales 
may also be inherent in the systems we are modelling.   

7.4. Magnetohydrodynamic (MHD)  
Stability-Large System of Initial-Value pde’s 

vanced research problems featuring large se
s. In fusion plasma physics research, the stability of 

magnetically confined plasmas to small perturbations is 
of considerable importance for plasma confinement. Sta- 
bility can be studied using a combined set of nonlinear 
fluid and Maxwell equations, magnetohydrodynamics 
(MHD). The configuration must be arranged so that the 
plasma is completely stable to perturbations on the fast- 

liseconds time scale) are accessible for the plasma even if 
it is stable on the faster time scale, and remedies should 
be sought also for these. 

We will study the linear stability of two plasma con- 
figurations within the traditional set of MHD equations, 
both without (ideal MHD) and with resistivity included. 
By “stability” is here meant the absence of exponentially 
growing solutions in time. For simplicity the plasma is 
assumed to be surrounded by a close fitting, ideally con- 
ducting wall. It can be shown that such a wall provides 
maximal stability. The ideal MHD plasma equations are 
the continuity and force equations, Ohm’s law and the 
energy equation supplemented with Faraday’s and Am- 
pere’s laws, respectively: 

  0
t

 
  


u  

d

d
p

t
   

u
j B  

0  E u B              (42) 

 d
0

d
p

t
   

t


  


B

E  

0 B j  

whereas for resistive MHD, Ohm’s law becomes instead 
  E u B j  with   being the resistivity. Here E 

electric and magnetic fields respectively, u 
he current density, p is the ki- 

and B are the 
is the fluid velocity, 
netic pressure, 

j is t
  

ore, 

is the m
n

ass density, = 5/3 is the 
c heats a d μ  is th bility in vac- 

  
earatio of specifi

uum. Furtherm
0 e perm

d dt t    u . To determine the 
temporal evolution of these equations in circular cylinder 
geometry, they are linearized and Fourier-decomposed in 
the periodic coordinates   and z. All dependent vari- 
ables q of Equation (52) are assumed to be superpositions 
of an equilibrium term q0 and a (small) perturbation term 
q1. Perturbations are taken to be proportional to exp[i(kz 
+ mθ)], where k and m denote axial and azimuthal per-
turbation mode numbers, respectively. Next, a non-di- 
mensionalization is carried out using the characteristic 
values (denoted with index “c”) of plasma radius a, 
Alfvén velocity 0A cu B   , with c At a u , cp  

2
0cB u , and c c cE u B . Resulting non-dimensional 

equations become identical to those obtained from Equa-
tion (42) with μ0 = 1. We wish to solve for the time evo-
lution of the perturbed terms for a given equilibrium and 
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a specified perturbation (m, k). If these feature an expo-
nential growth, the plasma is unstable to small perturba-
tions for the assumed equilibrium.  

ility Problem 
The equilibrium is here taken to be that of a simple screw 
pinch with constant axial magnetic field and current den- 
sity and constant mass density: 

0

0

0rB

B r





7.4.1. An Ideal MHD Stab

        (43) 

After eliminating E and j in Equation (42) there result 
seven complex-valued coupled partial differential equa- 
tions for u1, B1 and p1 respectively as functions of the 
independent variables time t and
They are all written on the component form

0 0.2zB         

2
0

0

1

1

p r



 



 cylindrical variable r. 
 1iq t   , 

 conform with 
he seven de- 
nded in t, r 

where q1i denotes perturbed variables, to
the GWRM formulation of Equation (1). T
pendent variables were all Chebyshev expa
and in resistivity   (which was here set equal to a con- 
stant). Since the GWRM is (so far) developed for solu- 
tion of real valued equations, u1, B1 and p1 are finally 
split up in real and imaginary parts, resulting in a system 
of 14 simultaneous equations to be solved  
GWRM.  

Let us now discuss boundary and initial conditions. It 
can be shown that, in circular cylinder geometry, the fol- 
lowing conditions ust hold for m = 1 perturbations near 
the internal boundary r = 0: 

by the

 m

1 11 1

1 1 1

d dd d

z z

0
d d d d

0

r ru bu b

the fluid velocity and mag- 
netic fields, u1r and b1r, must vanish. 

The relation between the initial conditio
sen somewhat arbitrary. The reason is foun
of the corresponding system of eigen-equation and is that, 
fo

he boundary condi-
tio

r r r r
u b p

    

  
        (44) 

We have chosen to study m = 1 perturbations because 
they are often the most critical ones with respect to sta- 
bility. At the outer, ideally conducting, boundary r = 1 
the normal components of 

ns can be cho- 
d from studies 

r unstable behaviour, a competition between modes with 
different number of radial nodes will take place until the 
fastest mode (with zero radial nodes) will dominate the 
behaviour. The memory of the initial perturbation is then 
lost. For consistency with respect to t

ns we however choose the following set of initial con-
ditions: 

 
 

2
1

2
1

1

1 1 1 1

1

1

1

0

r

z

r z

u r

u i r

u r r

b b b p





 

 

 

   

         (45) 

The 14 coupled pde’s we are about to solve are lin- 
earized, but nevertheless contain nonlinear terms with 
products between equilibrium and perturbed variables. 
As an example, a term proportional to 0 1rB u r

ord
 should 

be computed. Some care is needed in 
optimal spectral representation of this an
Due to the finiteness of the spatial spectral space, 
nonlinear products should always be carried out in spec- 
tra

er to obtain an 
d similar terms. 

l space before the “division by r problem” is treated 
using the procedure described below. Otherwise the 
lowest order spectral coefficients may be inadvertently 
eliminated. 

Further complications thus include apparent singulari- 
ties near r = 0 in terms that are divided by r. These arise 
due to the choice of coordinate system and must be care- 
fully handled. For example, terms of the type 1p r  turn 
up when writing the perturbed Equation (42) in compo- 
nent form. Clearly, for m = 1 this term is finite at r = 0 
due to the boundary condition  1 0 0p  . But it must be 
secured that the latter relation holds exactly to avoid sin- 
gularity at r = 0. Furthermore, the equation controlling 
the pressure evolution contains the term  1 1ru imu r . 
For the case m = 0 this is not problematic since then the 
internal boundary condition is 1 0u    at r = ut for 
other values of m the term requires special treatment. 
Similarly, the term 

0, b

 1 1rb imb r  causes difficulties 
for finite resistivity. 

The following procedure was found convenient to deal 
with the abovementioned terms. A separate study is car- 
ried out where firstly all equations are e  
order as ordinary polynomials. Secondly, all internal 
boundary conditions (like 

xpanded to low

 1 0  0p ) are imposed. 
Thirdly, conditions as 1 1 0ru imu    (corresponding to 
finite compressibility 1u ) are imposed at r = 0. 
Fourthly, the resulting expansions near r = 0 are studied 
to determine whether all singularities imposed by the 
cylindrical coordinate system have vanished. This is in- 
deed the case for each of the 14 MHD component equa- 
tions. Thus all apparent singularities may be safely re- 
moved from the code before th ient Equation (13) 
is solved. 

Removal of Chebyshe fficients for physical terms, 
belonging to either of the two cases discussed above, is 
conveniently performed using the following procedure. 
The Chebyshev coefficients of the physical term to 
be ’washed’ are converted to coefficients of ordinary 
polynomials, using a procedure found in [14]. In ordinary 
polynomial spectral space, the lowest order spatial coef- 

e coeffic

v coe
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ficient is then set to zero. This eliminates all spatial sin- 
gularities at r = 0. Subsequently, a back transformation to 
C

pare efficiency 
with other methods here, but merely note that for this 

- 
efficie × 6 × 

hebyshev spectral space is performed.  

7.4.2. Ideal MHD Stability Problem Solved Using 
Both GWRM and Eigenvalue Approaches 

The screw-pinch stability problem defined by Equations 
(42)-(45) is now solved for the perturbation (m, k) = (1, 
10) using the GWRM. Parameters are K = 5, L = 5, M = 
0 and five equidistant temporal domains were used. A 
single SIR iteration is again sufficient due to linearity in 
u1, b1 and p1. We will not specifically com

case, SIR solved only 372 coupled equations for the co
nts (13). This is considerably less than the 14 

6 = 504 equations that obtain before the boundary condi- 
tions are applied. The Chebyshev coefficients corre- 
sponding to the boundary conditions are functions of the 
coefficients that are solved for in SIR. 

Plots of 1ru  and 1p  vs t and r are given in Figures 
5(a) and (b). It is seen that the equilibrium (43) results in 
an unstable configuration. For comparison, we have also 
solved the same problem using an eigenvalue approach 
where time dependence has been eliminated through the 
asymptotic assumption t i     [20]. In this ap- 
proach, the linearized ideal MHD equations are reduced 
to two simultaneous equations that are solved by a shoot- 
ing procedure where the growth rate   is guessed until 
th

e GWRM 

e boundar onditions are satisfied. Very good corre- 
spondence between the GWRM solutions in Figure 5 
and the eigenvalue solutions is found. 

Of particular interest in MHD stability analysis is the 
value of the obtained growth rate. Assuming an exponen- 
tial time behaviour for th solution during the 
last 10% of the temporal evolution, the normalized 
growth rate 

y c

  = 0.83 is obtained in this highly unsta- 
ble case (recall that a normalization to the Alfvén time, 
being less than a microsecond, is used).  

The computed growth rate exactly coincides with that 
obtained from the eigenvalue code. Also for other per- 
tu

 cases without 
ch

rbations (m, k) very good agreement is obtained. Con- 
sidering that the two methods are radically different in 
idea and implementation, these results certainly confirm 
the applicability of the GWRM to complex systems of 
initial value partial differential equations. The equilib- 
rium used in this example is easily changed within the 
existing computer code to more realistic

anging the basic GWRM performance demonstrated 
here.  

7.4.3. A Resistive MHD Stability Problem Solved  
Using the GWRM 

If Ohm’s law is modified to include resistivity; E + u × B 
= ηj, the field lines are allowed to break up and stable,  

 
(a) 

 
(b) 

Figure 5. (a) GWRM solution obtained by solving ideal 
MHD Equation (42) through (45) for perturbation (m, k) = 
(1, 10). Parameters are K = 5, L = 5, M = 0; five equidistant 
temporal domains were used and a single SIR iteration. The 
perturbed radial plasma flow u1r is shown vs t and r; (b) As 
(a) but here the perturbed pressure p1 is shown vs t and r. 
 
infinitely conducting (ideal) MHD equilibria may be- 
come resistively unstable. The finite resistivity relation is 
now used rather than the less mption of ideal realistic assu
MHD. It is easily shown that Equation (42) must now be 
supplemented by two new boundary conditions at r = 1 
due to that the tangential component of the electric field 
is zero. From Ohm’s law we find that 0j   and 

0zj   and thus  

 1

1

d
0

d
d

0
d

z

rb

r
b

r

 


               (46) 

For equilibrium, we choose  
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   
 

3
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0

3.2 1r r
B

p r

 
  

 

j B

5 4 3

2

0.105 0.379 0.393

0.106 0.00991 0.0227

r r r

r r

 

  

   (47) 

characteristic for the so-called rev
configuration. This equilibrium is marginally stable to 
ideal current and pressure driven modes. Stability is ac- 
co ial variation of the axial 
magnetic field, which provides “magnetic shear”. We 
further assume the perturbation (m, k) = (1, −2) which 
has the implication that there is a so-called resonance at 
at r = 0.41, near which region the plasma is par
vulnerable to local instability (the stabilising magnetic 

ersed-field pinch (RFP) 

mplished from the strong rad

ticularly 

field line bending is a minimum there). The Lundquist 
number 1S   is in the range 10−4 - 10−3 in this ex- 
ample. The number of spectral modes are (K, L, M) = (4, 
5, 1). We use 5 time intervals, a total time of 1.2 × 103 
and a single spatial domain. 

Result GWRM computations are shown in Fig- 
ure 6. In particular, the temporal and spatial evolutions 
of the perturbed radial magnetic field, which in analytical 
form is 

s from 

       
4 5 1

0 0 0

, ;r klm k l m
k l m

b t r a T T T   
  

     (48) 

are shown. The GWRM solution also immediately en- 
ables the displayed plots of perturbed radial magnetic 
field and pressure as functions of plasma radius
sistivity. The growth rate of the instability (in inverse 

 and re- 

Alfvén times, assuming exponential dependence) at the 
end of the computation is easily obtained analytically 
from the temporal and parametrical dependence of the 
perturbed radial magnetic field as 

   38.3 10 ln 14 44 2.9 6.8            (49) 

and is plotted in Figure 6(d). These results are approxi- 
mate due to our choice of limited resolution (5th order)  

 

      
(a)                                                             (b) 

      
(a)                                                             (b) 

Figure 6. (a) Time evolution of perturbed radial magnetic field obtained in a resistive MHD computation using the GWRM; 
for details see Section 7.4.2; (b) Perturbed radial magnetic field of (a) vs r and resistivity η at end of calculation; (c) Perturbed 
pressure vs r and resistivity η at end of calculation of (a); (d) Growth rate of instability (in units of inverse Alfvén times) vs 
resistivity η at end of calculation of (a). 
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of the equilibrium. In ongoing work, we introduce spatial 
subdomains in order to provide improved resolution of 
both the equilibrium and the perturbations near the reso- 
nance. 

7.5. Summary-Applications 

We have applied the GWRM to basic linear and nonlin- 
ear initial value problems in the forms of ordinary and 
partial differential equations. Accuracy and efficiency 
have been studied by comparisons with exact solutions. 
Improved performance by using temporal and spatial 
subdomains was discussed. Comparisons with standard 
explicit and implicit finite difference methods showe
positive results with regard

t, exact comparisons of efficiency are not essen- 
tial at this stage. The examples we have given show that 

GWRM is comparable 

RM, represents all time, spatial and physical 
pa

 by iterative solution of a linear or nonlin- 
ear system of algebraic equations, for which a new and 

) has been devel- 
the number of 

modes used and the number of iterations. The use of 
subdomains further increases efficiency and accuracy. In 
a separate publication, details of the use of temporal and 
spatial subdomains for further enhancing efficiency are 
given [21]. Global solutions, valid for the entire compu-
tational domain, may be obtained by carrying out Cheby- 
shev interpolation over the set of subdomains. The prac- 
tical solution of single or systems of partial differential 
equations is handled in spectral space by the use of pro- 
cedures for differentiation, integration, products as well 
as initial and boundary conditions. 

It should be remarked that the focus of this paper is on 
introduction of the method and on example applications. 

e theory presented is minimal. Future theoretical work
iteria for convergence of 

d 
Th  

s to computational efficiency. 
should in particular consider cr

Finally we have also solved advanced fusion plasma sta- 
bility problems formulated within ideal and resistive 
magnetohydrodynamics as 14 simultaneous initial value 
artial differential equations. Very good agreement was 

strongly non-linear problems with well separated time 
scales. 

The GWRM is shown by example to be accurate and 
p
here found with results from established eigenvalue 
methods.  

Although faster computational environments than Ma- 
ple exis

the efficiency and accuracy of the 
to that of both explicit and implicit finite difference 
schemes in a given environment. Further optimisation of 
both GWRM and finite difference codes could increase 
efficiency, but our ambition has been to determine whether 
time-spectral methods for solution of initialvalue pde’s 
are of interest for general use and for computations of 
problems in magnetohydrodynamic and fluid mechanics 
in particular. 

8. Discussion and Conclusions 

A fully spectral method for solution of initial-value ordi- 
nary or partial differential equations has been outlined. 
The time and parameter generalized weighted residual 
method, GW

rameter domains by Chebyshev series. Thus semi- 
analytical solutions are obtained, explicitly showing the 
dependence on these variables. The essence of the 
GWRM is its ability to transform the implicit dependen- 
cies inherent in physical laws formulated as differential 
equations to solutions of explicit, semi-analytical form. 

The method is global and avoids time step limitations 
due to its acausal nature. The characteristic form of the 
problem (hyperbolic, elliptic or parabolic) is thus unim- 
portant. This fact makes the method potentially applica- 
ble to a large class of problems. The spectral coefficients 
are determined

efficient semi-implicit root solver (SIR
oped. Accuracy is explicitly controlled by 

efficient and to have potential for applications in fluid 
mechanics and in MHD. A simple model example shows 
that the method averages over rapid time scale phenom- 
ena, and follows long time scale phenomena. The GWRM 
was indeed developed with the class of non-linear prob- 
lems with widely separated time scales in mind, since 
they are both frequent and important in fusion plasma 
physics modelling. The time scale separation of these 
problems demand the use of extremely many time steps 
in the finite time difference methods that are presently 
used. 
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