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ABSTRACT 

The functions of Bessel are used extensively in the various problems of the science and the technology. A laser offers 
practical remote sensing technologies for measuring environmental changes on both global and local scales. We de-
scribe a computer model that was developed to simulate the performance of three-dimensional (3D) laser radars (lidars). 
The principle of the problem consists in interpreting information on the absorption of the laser impulse in a spectral line 
assigned to the chemical body that one studied. Our purpose is to estimate the vertical variation of extinction and at-
mospheric transmission due to aerosol particles near the air-geographical surface interface. The feasibility and effec-
tiveness of the proposed method is demonstrated by computer simulation. 
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1. Introduction 

The measure air pollution over large European cities with 
lidar, mobile differential absorption lidar (DIAL). Re-
gardless of the measures aiming to reduce the broadcasts 
of atmospheric pollutants, it appears indispensable all at 
once to improve information and to pursue the efforts of 
research. Systems have been developed to produce 2D 
and 3D maps of concentrations of nitrous oxide, nitrogen 
dioxide, sulfuric dioxide, and ozone. The city, concentra-
tion gradients are high and rapidly changing periods of 
active traffic flow (Figure 1). In absorption of light in 
the spectral lines of the specter often provides precious 
information on the properties physics of matter [1-3]. 
This is how the displacements of the lines (effect Dop-
pler) inform on the speed of the movement directed of 
matter, and the width of the line, on the temperature and 
the density of this one. One uses the laser radiance exten- 
sively to determine the content of the atmosphere in dif-
ferent chemical bodies and sprays, and more especially to 
detect concentrations petty of the sparkling impurities dis- 
tributed in the atmosphere. In this study, a three-dimen- 
sional simulation MATLAB program for multi-pollutants 
dispersion from an industrial stack has been presented. 

2. Formalism of Method 

The most efficient method is probably the one of the ab-

sorption compared, that implies the use of the laser ra-
dars (lidar). It consists has send in the atmosphere of the 
impulses lasers to two neighboring frequencies 1  and 

2 , nearly confounds itself with the center of the line of 
absorption of the studied body, i.e. 1 a    and 2  
the other is located out of this line. All processes of in-
teraction of the radiance with matter for the neighboring 
frequencies 1  and 2  are appreciably equal [4-6]. 
Are indeed  lk   the contour of the line absorption, i.e. 
the spectral intensity of the laser impulse;  ak   the 
contour of the line of absorption of the studied body; 
 k   the spectral coefficient of absorption for the other 

processes of interaction of the radiation with matter; The 
power of the laser radiation captured in the hypothesis of 
homogeneity of the atmosphere [7-9], will express itself 
then by:  

      

0

da ak k m
lk e    


 

            (1) 

where aμ  is the concentration (%) mass (of the com-
ponent considered in the atmosphere; m: the absorbing 
matter mass crossed by the laser impulse m = LSρ0, L: 
the distance the impulse between emitter and the receiv-
ing S: area of the surface of the receiving antenna and ρ0 
the density of the atmosphere (Figure 2) 

0m LS                 (2) 
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Figure 1. Landscape of a city to quoted of the sea. 
 
we deal with a simplified model of a coupled transport 
and Bessel (Figures 3-5) equations. 
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We can interpret the function transmittance as a wave 
that has to fulfill the homogeneous wave equation. 
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When one suppose the following conditions 
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One will be able to write the transmittance:  
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Figure 2. General case: curve represents the variation of the 
light intensity in one atmosphere according to the distance. 
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ite   

   , 1 cos
n n
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For the left boundaries we have do discretize the fol-
lowing equation: 
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Noticing that ρ < 1 and that for value fixed of z and 

one has , n     1
2!

n
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The gotten formulas permit to calculate the function 
transmission T for values arbitrary of a ,  , a , 1 , 

2 , a , as well as to examine some cases different lim-
its. Let’s suppose for example th 1 aat   , i.e. that the 
frequency of the signal confounds itself with the center 
of the absorption line [10-12]. One then: 

1
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If 0 a     , or π a      
One has then according to the Equation (10)  
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In particular, if , one has  
 

 1a a  
 z


 ,1,0 zT z e I 0

The contribution [Piazzola & all] to coefficient K in 
inverse kilometers by aerosol particulates can written as 

    2, , π dK Q r m N r r r           (11) 

We calculate the atmospheric transmission using the 
expression  

 expT  KL              (12) 

The relative variation of the atmospheric transmission 
is given by 

1 expT KL
T
               (13) 

3. Simulation Distribution-Diffusion 

Before you begin to format your paper, for the 3D di-
mensional diffusion equation we apply a second order 
finite difference scheme in space and a higher order dis-
cretization scheme in time. We deal with higher order 
time-discretization methods. Therefore [13-16] we  
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Figure 3. Transmittance a function of Bessel modified. 
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Figure 4. Weak variability spatial and temporal movement. 
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Figure 5. Distributions of pollutants particles.  

 
propose the Runge-Kutta as adapted time-discretization 
methods to reach higher order results. For the time-dis- 
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cretization we use the following higher order discretiza- 
tion methods (Figures 6-8).  

We deal with the following semi-discretized partial 
differential equations; such equations are used in each 
iterative splitting step:  

     0

0, 0

0 ,

u u x H

u u u H u H 0

 
 

     
   

     (14) 

where ν is the operator that we implicit solve in the equa-
tion and is the explicit operator, with a previous solution, 
e.g. last iterative solution. One supposes that the total 
flux 0,u u     one generalizes the problem (11) 
under the form:   

            ,u x u x u x f x        0 1x ,   

one approached the calculation with the method of 
Galerkin non consolidated. 

For flexible specification of these model properties, a 
great number of variables and functions are available. 
with   = 10 m2/s, β = −0.3 m/s. In the simulations id 
given by Quartaroni & All [17,18], one took a concentra-
tion u0 of 1 particle by m3 a height of 10 km the number 
of global. 

Peclet is therefore 2 1EglP H   5, with   = 10 
m2/s, β = −0.3 m/s. Several examples on the effects of 
meteorological parameters (i.e., wind velocity, ambient 
air temperature, atmospheric stability and surface rough-
ness) on pollutant dispersion were illustrated using the 
program. 

4. Conclusions  

The aim of this paper was to assess the vertical variations 
in atmospheric transmission calculated from vertical 
aerosol concentration profiles recorded in stratospheric  
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Figure 6. The oscillations of the parasites in function of 
winds.  
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Figure 7. Distributions particles with speed winds.  
 
area. The analysis of the data revealed a negative trans-
mission gradient between 0.3 and 0.4 m height during 
winds of marine origin lower than 8 m/s, whereas a posi-
tive gradient occurs between 0.5 to 0.6 to 0.9 m height 
during high-wind-speed periods (  > 8 m/s), these dis-
tribution particles gradients induce a relative difference 
in atmospheric transmission between the two sample 
heights, which is maximal in the 3 - 5 μm band for winds 
lower 8 m/s, compared to the 8 - 12 μm band. 
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Figure 8. Simulation of the pollutants with random speed 
winds distributions. 
 

However, comparisons with in situ data show the need 
for realistic source function and to model the specific 
situation of the geographical location. The present paper 
provides a simple approach to the complex problem of 
the aerosol dynamics during severally seasons. A realis-
tic simulation would take into account a set of the aque-
ous or gaseous chemistry equations which we have ig-
nored here. This tool is under development in our labo-
ratory, and includes specialized modules: dust/radiation 
interaction, wet scavenging, an improved dust scheme, 
and a more detailed emission map for the carbonaceous 
particles. Finally, the pollutants, emitted once in the at-
mosphere, can be transported on long distances and to 
cause some damages in regions relatively faraway of the 
places of emission. 
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