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Abstract 
 
In this paper, we use the lower record values from the inverse Weibull distribution (IWD) to develop and 
discuss different methods of estimation in two different cases, 1) when the shape parameter is known and 2) 
when both of the shape and scale parameters are unknown. First, we derive the best linear unbiased estimate 
(BLUE) of the scale parameter of the IWD. To compare the different methods of estimation, we present the 
results of Sultan (2007) for calculating the best linear unbiased estimates (BLUEs) of the location and scale 
parameters of IWD. Second, we derive the maximum likelihood estimates (MLEs) of the location and scale 
parameters. Further, we discuss some properties of the MLEs of the location and scale parameters. To 
compare the different estimates we calculate the relative efficiency between the obtained estimates. Finally, 
we propose some numerical illustrations by using Monte Carlo simulations and apply the findings of the 
paper to some simulated data. 
 
Keywords: Scale Parameter, Location Parameter, Best Linear Unbiased Estimates (BLUEs), Maximum 

Likelihood Estimates, Relative Efficiency and Monte Carlo Simulations 

1. Introduction 
 
Record values arise naturally in many real life 
applications involving data relating to weather, sport, 
economics and life testing studies. Many authors have 
studied record values and the associated statistics; see, 
for example, [1-7]. Reference [8] has established some 
recurrence relations for the moments of record values 
from the Gumbel distribution. Similar work has been 
carried out by [9,10] for the generalized extreme value 
and exponential distributions, respectively. Reference 
[11] have also discussed some inferential methods based 
on record values from Gumbel distribution. [12,13] have 
discussed inferential techniques based on Weibull and 
generalized Pareto distributions, respectively. Reference 
[14] have compared different estimates based on record 
values from Weibull distribution. Reference [15] has 
considered different loss functions to develop the 
Bayesian estimates of the parameters of the IWD. 

Let (1) (2) ( ), , ,L L L nX X X  be the first n  lower 

record values from the IWD with density function 
( )pdf   

1( ) = , 0, > 0,
cc xf x cx e x c

            (1.1) 

and cumulative distribution function ( cdf )  

( ) = , 0, > 0.
cxF x e x c

            (1.2) 

The scale form of the IWD has its density function 
given by 

 
1

exp , 0, > 0
c c

c
f y y

y y

  


            
     

    (1.3) 

while the location-scale IWD has its density function 
given by 

 
1

exp , 0, > 0, 0
c c

c
f y y

y y

   
  

                   
 (1.4) 

Reference [16] calls the IWD as the complementary 
Weibull distribution, while [17] call it the reciprocal 
Weibull distribution. Reference [18] have discussed 
some useful measures for the IWD. 

The IWD plays an important role in many applications, 
including the dynamic components of diesel engines and 
several data set such as the times to breakdown of an 
insulating fluid subject to the action of a constant tension. 
[19] provide an interpretation of the IWD in the context 
of the load-strength relationship for a component. 
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Reference [20] has fitted the IWD to the flood data. For 
more details on the IWD, see for example, [21]. 

The joint density function of the first n  lower record 
values (1) (2) ( ), , ,L L L nX X X  is given by [5]  

1
( )

1,2, , (1) (2) ( ) ( )
=1 ( )

( )
( , , , ) = ( ) .

( )

n
L i

n L L L n L n
i L i

f x
f x x x f x

F x



   (1.5) 

From (1.5), the .pdf  of ( )L mX  can be obtained as  

  11
( ) = log[ ( )] ( ), 0, = 1,2, ,

( )
m

mf x F x f x x m
m

 


  

(1.6) 

where (.)f  and (.)F  are given in (1.1) and (1.2), 

respectively. 
The the joint pdf  of ( )L mX  and ( )L nX  is given by  

  1

,

1
( , ) = log[ ( )] { log[ ( )]

( ) ( )
m

m nf x y F x F y
m n m

 
  

 

1 ( )
log[ ( )]} ( ) ,0 < < ,

( )

, = 1, 2, , < ,

n m f x
F x f y y x

F x

m n m n

   


   (1.7) 

where (.)f  and (.)F  are given in (1.1) and (1.2), 
respectively. 

The single and product moments of record values are 
(see [22]) 

( )
( )

= , < ,
( )

i
m

i
m

c i mc
m


 


            (1.8) 

and   

( , )
,

( ) ( )
= , < , < ,

( ) ( )

i j
m n

i i j
m n

c c i j nc m n
i

m n
c




   


  

  (1.9) 

where ( )   is the gamma function. 
In the following section, we derive the exact form of 

the BLUE scale parameter and present the BLUEs of the 
location-scale case of IWD. Next in Section 3, we derive 
the maximum likelihood estimates of the parameters of 
IWD. Finally, in Section 4 we discuss the relative 
efficiency of the obtained estimates. 

2. The BLUEs 

In this section, we derive the BLUE of the scale 
parameter and present the BLUEs of the location and 
scale parameters of the IWD. 

2.1. The Scale Case 

Let (1) (2) ( ), , ,L L L nY Y Y  denote the first n  lower record 

from the distribution in (1.3), and let 

( ) ( )= / , = 1, 2, ,L i L iX Y i n   be the corresponding 

record values from the IWD in (1.1). Assume   

      1 2, , , ,
T

L L L nY Y Y Y   

 1 2, , ,
T

n      

 1 1,1, 1
T

n

   

and   , , 1 ,i j i j n   . Then, the BLUE of the 

scale parameter   is given by   
1

*
1 ( )1

=1

= = ,
T n

i L iT
i

Y a Y

 





 
 

 
          (2.1) 

and its variance is given by   

* 2
1 1

1
( ) = ,

T
Var  

 

 
 

 
            (2.2) 

for details, refer to [23,6]. Since the double moment 

,m n  can be written as 

,

( 1/ )
= , =

( )

( 2 / ) ( 1/ )
= , > 2 / ,

( 1/ ) ( )

m n m n m

n

m c
p q p and

m

n c n c
q n c

n c n

  


   


  

    (2.3) 

then the covariance matrix   can be inverted 
analytically. Then ( , )thi j  element ij of 1  can be 
derived as  

2 2 2 2

2

1

=

( 1) ( 1)
, = 1, = 1,2, , 1,

( 2 / )

(2 2 4 2 1) ( )
= = 2 1

( 2 / )

( 1)
, = = 1,

(1 2 / )

( 1) ( )
, = =

( 1 2 / )
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ij

n

n
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j i i n

i c

i c ic ic c c i
i j and n

i c

c
i j

c

q c nc c n
i j n

q n c

j i





      
      

  
 

 

   


  
 




， ，
 

(2.4) 

From (1.8), (2.1) and (2.4), we have the BLUE of the 
scale parameter   as   

*
1 ( ) ( )

( )
= = ,

( 1/ )n L n L n

n
a y Y

n c
 

 
       (2.5) 

with variance is given by   

2
* 2
1 2

( ) ( 2 / ) ( 1/ )
( ) = , n 2 / c.

( 1/ )

n n c n c
Var

n c
 

     
   

   (2.6) 
It is clear from (2.5) that *  is an unbiased estimate of 
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 . 
Table 1 below shows the coefficients na  of the 

BLUE of   when = 4n  to 7  and = 3,4,5c . 
The BLUE of   given in (2.5), can be used to 

construct 100(1 )%  confidence interval for   
through the formula   

* *
1 1

1 /2 /2

( 1/ ) ( 1/ )
1 ,

( ) ( )

n c n c
P

n T n T 

 
 



    
      

   (2.7) 

where /2T  and 1 /2T   are the lower and upper 
percentage points of the pivotal quantity  

*
1 ( 1/ )

= .
( )

n c
T

n



 


 

The cdf of T  is obtained to be 
( , )

( ) = ,
( )

c

T

n t
F t

n




 

where ( , )cn t  is the incomplete gamma function. 

Example 
Five lower record values are simulated from IWD with 
= 3c  and = 1.0  as follows: 3.07586, .90607, 

68454, .62296, .62283, by using the coefficients of the 
BLUE of the scale parameter given in Table 1, we have 

*
1 = 1.63139(.62283) = 1.016079,  and the standard 

error of this estimate is *
1. .( ) =S E  1.016079 .02692  

= 0.166711.  Now, we calculate the lower and upper  
5%  percentage points of of T  to be 

0.025 = 0.46048001250T  a n d  0.975 = 0.8508449965T .  

Then 95%  confidence interval for   can be calcu- 
lated from (2.7) to be (0.7320149148 , 1.352569185) .  

 
2.2. The location-Scale Case 
 
Reference [15] has used the single and product moments 
of the record values from IWD. Then, he has used these 
moments to calculate the coefficients of BLUEs and the 
variances for records of size 4,5,6 and 7 and = 3, 4,5c  
by using the forms (see [23]).  

* *
2 ( ) 2 ( )

=1 =1

= , = .
n n

i L i i L i
i i

AY and B Y         (2.8) 

Table 2 represents the coefficients of the BLUEs iA  
and iB  for records of sizes 4, 5, 6, 7 and the shape 
parameter = 3, 4,5c . while Table 3 represents the 
variances and covariances of the BLUEs in this case. 

Reference [24] has used the coefficients of BLUEs in 
Table 2 to construct different confidence intervals for 
the location and scale parameters of IWD based on 
Edgeworth approximation and compare them with those 
based on Monte Calro simulation. 
 
3. The MLEs 
 
In this section, we discuss the maximum likelihood 
estimates of the parameters of IWD when the available 
data are lower record values. We consider two different 
cases: 1) the scale-parameter case and 2) the 
location-scale parameter case. 
 
3.1. The Scale-Parameter Case 
 
Let (1) (2) ( ), , ,L L L nY Y Y  represents the first n  lower 
record values from the scale-parameter IWD in (1.3), 
then the log likelihood function is given by   

( ) ( )
=1

( , ) =

log( ) log( ) ( 1) log .
n

c c
L n L i

i

c

nc n c y c y



      


 (3.1) 

Now, we discuss two cases. They are:    
1) When   unknown and c  known: the maximum 

likelihood estimate of   can be obtained from (3.1) as  
1/

1 ( )ˆ = .c
L nn y                 (3.2) 

2) When both of   and c  are unknown: the 
maximum likelihood estimates of   and c  can be 
obtained from (3.2) by solving the following two 
equations as 

   
1

( ) ( )
=1

ˆ = log log( ) log ,
n

L i L n
i

c n x n x


  
 
    (3.3) 

and  
ˆ1/

1 ( )
ˆ̂ = .c

L nn y                (3.4) 

From (3.2), we see that 

 
 

Table 1. The coefficients of the BLUE of the scale parameter and the variance when = 1 . 

 = 3c  = 4c  = 5c  

n  na  *
1( )Var   na  *

1( )Var   na  *
1( )Var   

4 1.49544 03548 1.35655 .01929 1.27818 .01211 

5 1.63139 .02692 1.44699 .01476 1.34545 .00931 

6 1.74792 .02169 1.52314 .01194 1.40151 .00756 

7 1.85073 .01815 1.58937 .01003 1.44984 .00636 
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Table 2. The Coefficients of the BLUEs. 

 = 3c  = 4c  = 5c  

n  iA  iB  iA  iB  iA  iB  

4 -0.2353 0.3519 -0.5294 0.7182 -0.8421 1.0764 

 -1.4118 2.1112 -1.7647 2.3939 -2.1053 2.6909 

 -2.1176 3.1668 -2.3529 3.1919 -2.6316 3.3636 

 4.7647 -5.6299 5.6471 -6.3040 6.5789 -7.1309 

5 -0.1400 0.2284 -0.3383 0.4896 -0.5591 0.7523 

 -0.8400 1.3704 -1.1278 1.6319 -1.3978 1.8807 

 -1.2600 2.0555 -1.5038 2.1759 -1.7473 2.3509 

 -1.6200 2.6428 -1.8045 2.6111 -2.0161 2.7126 

 4.8600 -6.2972 5.7744 -6.9085 6.7204 -7.6966 

6 -0.0942 0.1647 -0.2395 0.3649 -0.4071 0.5706 

 -0.5653 0.9881 -0.7985 1.2162 -1.0178 1.4265 

 -0.8479 1.4821 -1.0646 1.6216 -1.2723 1.7831 

 -1.0902 1.9055 -1.2776 1.9459 -1.4680 2.0575 

 -1.3082 2.2866 -1.4601 2.2239 -1.6311 2.2861 

 4.9058 -6.8270 5.8403 -7.3725 6.7964 -8.1238 

7 -0.0684 0.1266 -0.1809 0.2875 -0.3143 0.4556 

 -0.4104 0.7595 -0.6029 0.9582 -0.7857 1.1391 

 -0.6156 1.1393 -0.8038 1.2776 -0.9821 1.4239 

 -0.7915 1.4648 -0.9646 1.5331 -1.1332 1.6429 

 -0.9498 1.7578 -1.1024 1.7521 -1.2591 1.8255 

 -1.0959 2.0282 -1.2249 1.9468 -1.3686 1.9842 

 4.9316 -7.2763 5.8794 -7.7552 6.8429 -8.4712 

 
Table 3. The variances and covariances of the BLUEs when = 1 . 

c  n  *
2( )Var   *

2( )Var   * *
2 2( , )Cov    

3 4 0.3152 0.6834 -0.4713 

3 5 0.1875 0.4901 -0.3059 

3 6 0.1262 0.3803 -0.2206 

3 7 0.0916 0.3103 -0.1696 

4 4 0.3128 0.5646 -0.4243 

4 5 0.1999 0.4138 -0.2893 

4 6 0.1415 0.3255 -0.2156 

4 7 0.1069 0.2680 -0.1698 

5 4 0.3135 0.5055 -0.4007 

5 5 0.2082 0.3739 -0.2801 

5 6 0.1516 0.2960 -0.2124 

5 7 0.1170 0.2447 -0.1696 

 
1/

1 ( )ˆ( ) = ( ),c
L nE n E x             (3.5) 

which upon using (1.8) gives 

1/
1

( 1 / )
ˆ( ) = .

( )
c n c

E n
n

   


          (3.6) 

This shows that  

1 ( )

( )
= ,

( 1/ ) L n

n
y

n c
 

 
             (3.7) 

is an unbiased estimate for   in this case. 
The variance of 1  is calculated to be   

2
2

1 2

( ) ( 2 / ) ( 1/ )
( ) = , n 2 / c.

( 1/ )

n n c n c
Var

n c
 

     
 

  
  

    (3.8) 

Lemma 1 
The MLE of   given in (3.2) is asymptotically 

unbiased and its variance converges to zero as n  . 
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Proof The proof can be easily done by using the 
expansion of gamma function see [24]  

1/2
2 3

1 1 1
( ) = exp( ) 2 1 ( ) .

12 288
zz z z O

z z z
       
 

 

 
3.2 The Location-Scale Case 
 
When (1) (2) ( ), , ,L L L nY Y Y  represents the first n lower re- 

cord values from the location-scale parameter IWD given 
in (1.4), then the log likelihood function is given by 

 

   ( )
( )

1

, ,

log 1 log( ) log( ) .

c
n

L n
L i

i

l c

yc
n c x

 


 

 







         
   


 

(3.9) 
 

Now, we discuss two cases. They are: 
1) When c  is known: the maximum likelihood 

estimates of   and   can be obtained by solving the  
following two equations  

 1/
2 ( ) 2̂ˆ = ,c

L nn y             (3.10) 

    
 

1

2
1 2

ˆ1 0.
ˆ

n

L i
i L n

nc
c y

y








   


      (3.11) 

Table 4 below displays the bias and the estimated 
variance of the MLEs of the location and scale 
parameters in this case.  

2) When c  is unknown: the maximum likelihood 
estimates of  ,   and c  can be obtained from (3.9) 
by solving the following three equations as   

( )

1( ) ( )

log log 0,

c
n

L i

iL n L n

yn

c y y

 
  

     
                

  

     (3.12) 

  1/ ,c
L nn y             (3.13) 

    
 

1

1

1 0.
n

L i
i L n

nc
c y

y








   
      (3.14) 

 
4 Relative Efficiency 
 
To compare between the BLUEs and the MLEs obtained 
in Sections 2 and 3, we calculate the relative efficiency 
in some cases as follows:  

1) For the scale case we have *
1 1( , ) = 1,RE     

2) For the location-scale case we have  
* *

* *2 2
2 2 2 22 2

ˆ ˆ22

( ) ( )ˆ ˆ( , ) = , ( , ) = .
Var Var

RE and RE
S S

 
     

Table 5 given below show the relative efficiency be-

Table 4. The bias and estimated variance of the MLEs. 

c  n  2̂( )Bias   2ˆ( )Bias   2
ˆ
2

S  2
ˆ2

S  

3 4 0.05838 0.04222 0.35204 0.96583 

3 5 0.04556 0.01134 0.30296 0.96390 

3 6 0.06768 -0.11985 0.21086 0.45111 

3 7 0.18492 -0.41586 0.14638 0.32753 

      

4 4 0.17717 -0.13855 0.39000 0.58523 

4 5 0.06416 -0.00930 0.35768 0.48147 

4 6 0.10480 -0.13350 0.21182 0.39013 

4 7 0.02483 -0.01781 0.15638 0.34454 

      

5 4 0.05524 0.01944 0.51265 0.92268 

5 5 0.15418 -0.14972 0.26795 0.42049 

5 6 0.14928 -0.16165 0.21410 0.38703 

5 7 0.12132 -0.14616 0.18654 0.28381 

Table 5. The relative efficiency. 

 = 3c  = 4c  = 5c  

n  *
2 2̂( , )RE    *

2 2ˆ( , )RE   *
2 2̂( , )RE    *

2 2ˆ( , )RE   *
2 2̂( , )RE    *

2 2ˆ ( , )RE    

4 0.89535 0.70758 0.80205 0.96475 0.61153 0.54786 
5 0.61889 0.50846 0.55888 0.85945 0.77701 0.88920 
6 0.59850 0.84303 0.66802 0.83434 0.70808 0.76480 

7 0.62577 0.94739 0.68359 0.77785 0.62721 0.86220 
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-tween the different estimates of the location and scale 
parameters. From Table 5, we see that, the BLUEs give 
more efficiency than the MLEs. 
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