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Abstract 
 
Abstract problems about attainability in topological spaces are considered. Some nonsequential version of 
the Warga approximate solutions is investigated: we use filters and ultrafilters of measurable spaces. Attrac- 
tion sets are constructed. AMS (MOS) subject classification. 46A, 49 K 40. 
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1. Introduction 
 
This investigation is devoted to questions connected with 
attainability under constraints; these constraints can be 
perturbed. Under these perturbations, jumps of the attai- 
ned quality can arise. If perturbation is reduced to a wea- 
kening of the initial standard constraints, then we obtain 
some payoff in a result. Therefore, behavior limiting with 
respect to the validity of constraints can be very interest- 
ing. But, the investigation of possibilities of the above- 
mentioned behavior is difficult. The corresponding “stra- 
ight” methods are connected with constructions of asym- 
ptotic analysis. Very fruitful approach is connected with 
the extension of the corresponding problem. For example, 
in theory of control can be used different variants of gen- 
eralized controls formalizable in the corresponding class 
of measures very often. In this connection, we note the 
known investigations of J. Warga (see [1]). We recall the 
notions of precise, generalized, and approximate contr- 
ols (see [1]). In connection with this approach, we recall 
the investigations of R.V. Gamkrelidze [2]. For problems 
of impulse control, we note the original approach of N.N. 
Krasovskii (see [3]) connected with the employment of 
distributions. If is useful to recall some asymptotic const- 
ructions in mathematical programming (see [4,5]). We 
note remarks in [4,5] connected with the possible emplo- 
yment of nonsequential approximate (in the Warga ter- 
minology) solutions-nets. 

The above-mentioned (and many other) investigations 
concern extremal problems. But, very important analogs 

are known for different quality problems. We recall the 
fundamental theorem about an alternative in differential 
games established by N.N. Krasovskii and A.I. Subbotin 
[6]. In the corresponding constructions, elements of exte- 
nsions are used very active. Moreover, approximate moti- 
ons were used. The concrete connection of generalized 
and approximate elements of the corresponding construc- 
tions was realized by the rule of the extremal displace- 
ment of N.N. Krasovskii. 

In general, the problem of the combination of general- 
ized and approximate elements in problems with constr- 
aints is very important. Namely, generalized elements (in 
particular, generalized controls) can be used for the rep- 
resentation of objects arising by the limit passage in the 
class of approximate elements (approximate solutions). 
These limit objects can be consider as attraction elements. 
Very often these elements suppose a sequential realize- 
tion (see [1]). But, in other cases, attraction ele- ments 
should be defined by more general procedures. 

So, we can consider variants of generalized represent- 
tation of asymptotic objects. This approach is developed 
by J. Warga in theory of control. 

Similar problems can arise in distinct sections of mat- 
hematics. For example, adherent points of the filter base 
in topological space can be considered as attraction ele- 
ments. Of course, here nonsequential variants of the limit 
passage are required very often. 

In the following, the attainability problem with cons- 
traints of asymptotic character is considered. 

Fix two nonempty sets E  and H, and an operator h 
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from E  into H. Elements of E  are considered as so-
lutions (sometimes controls) and elements of H play the 
role of estimates. We consider h as the aim mapping. If 
we have the set o oE E E    of admissible (in traditi- 
onal sense) solutions, then 1( ) ( )o oE { x x E }  h h  
play the role of an attainability domain in the estimate 
sp- ace. But, we can use another constraint: instead of 

oE   a nonempty family   of subsets of E is given. In 
this case, we can use sequences 1( )i ix 

  in E  with a 
special property in the capacity of approximate solutions. 
Nam- ely, we require that the sequence 1( )i ix 

  has the 
follo- wing property: for any oE   the inclusion 

ojx E   takes place from a certain index (i.e. for 

oj j   where oj  is a fixed index depending on oE ). 
For such solutions we obtain the sequences   1

( )i i
x




h  

in H. If H is equipped with a topology t, then we can 
consider the limits of such sequences   1

( )i i
x




h  as at-

traction elements (AE) in (H,t) Of course, our AE are 
“sequential”: we use the limit passage in the class of se-
quences. This approach can be very limiting. The last 
statement is connected both with our family   and with 
topology t  The corresponding examples are known: 
see [7,8]. In many cases, the more general variants of the 
limit passage are required. Of course, we can consider 
nets ( )x  in E  and, as a corollary, the corresponding 
nets ( ( ))xh  in H. In addition, the basic requirement of 
admissibility it should be preserved: for any oE   the 
inclusion ox E    is valid starting from a certain index. 
With the employment of such nets, we can realize new 
AE; this effect takes place in many examples. 

But, the representation of the “totality” of above-ment- 
ioned ( -admissible) nets as a set is connected with dif- 
ficulties. Really, any net in the set E  is defined by a 
mapping from a nonempty directed set (DS)   into 
E  the concrete choice of   is arbitrary (   is a 
nonempty set). Therefore we have the very large “total-
ity” of nets with the point of view of traditional Zermelo 
axiomatics. But, this situation can be corrected by the 
employment of filters of E  it is possible to introduce 
the set of all  -admissible filters of the set E  In addi-
tion, the  -admissibility of a filter F  is defined by the 
requirement   F  So, we can consider nonseq- uen-
tial approximate solutions (analogs of sequential app- 
roximate solutions of Warga) as filters F  of E  with 
the property   F  Moreover, we can be restricted to 
the employment of only ultrafilters (maximal filters) with 
the above-mentioned property. In two last cases, we ob-
tain two variants of the set of admissible nonsequential 
approximate solutions defined in correspondence with 
Zermelo axiomatics. In our investigation, such point of 
view is postulated. And what is more, we give the basic 

attention to the consideration of ultrafilters. Here, the im- 
portant property of compactness arises. Namely, the cor-
responding space of ultrafilters is equipped with a co- 
mpact topology. This permits to consider ultrafilters as 
generalized elements (GE) too (we keep in mind the abo- 
ve-mentioned classification of Warga). 

The basic difficulty is connected with realizability: the 
existence of free ultrafilters (for which effects of an ex-
tension are realized) is established only with the emp- 
loyment of axiom of choice. Roughly speaking, free ult- 
rafilters are “invisible”. This property is connected with 
ultrafilters of the family of all subsets of the correspond-
ing “unit”. But, we can to consider ultrafilters of meas-
urable spaces with algebras and semialgebras of sets. We 
note that some measurable spaces admitting the represe- 
ntation of all such ultrafilters are known (see, for exam-
ple, [9,§7.6]; in addition, the unessential transformation 
with the employment of finitely additive (0,1)-measures 
is used).  
 
2. General Notions and Designations 
 
We use the standard set-theoretical symbolics including 
quantors and propositional connectives; as usually,   
replaces the expression “there exists and unique”,   is 
the equality by definition. In the following, for any two 
objects x  and y ,  ;x y is the unordered pair of x and 
y (see [10]). Then,   :x   ;x x  is singleton contai- 
ning an object x. Of course, for any objects x and y  the 
object    , : ;x y x   ;x y  is the ordered pair of ob- 
jects x and y; here, we follow to [10]. By   we denote 
the empty set. By a family we call a set all elements of 
which are sets.  

By ( )P X  we denote the family of all subsets of a set 
X   then,  ( ) ( ) \P X P X    are the family of all 

non- empty subsets of X. Of course, for any set A  in 
the fo- rm of ( ( ))P P A  and ( ( ))P P A    we have the 
family of all nonempty subfamilies of ( )P A  and 

( )P A  respectively. 
If X  is a set, then we denote by ( )Fin X  the fam- 

ily of all finite sets of ( )P X   then ( )[ ]FIN X   
( ) { }Fin X   is the family of all finite subsets of X    

For any sets A  and B  we denote by AB  the set of 
all mappings from A  into B  If A  and B  are sets, 

Af B   and ( )C P A   then  
1( ) ( ) ( )f C {f x x C} P B     

(the image of C  under the operation f )  and ( )f C   
CB  is the usual C -restriction of ( )( ) ( )f f C y f y    
y C  . In the following,  : 1;2;   and   is the 

real line;    Of course, we use the natural order 
  of  . If n , then  
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 1, : .n i i n    

Transformations of families. For any nonempty fam-
ily A  and a set B  we suppose that 

  ( ( ))B A B A P P B      A A  

If X and Y are sets and Xf Y , then we suppose that  

 

 

1 1

1 1

( [ ] ( )

( ( )))

( [ ] ( )

( ( )))

f f A A

P P X &

& f f B B

P P Y



 



  

 

  

  

X X

X

Y Y

Y

       (2.1) 

of course, in (2.1) nonempty families are defined. 
If   is a family, then we suppose that  

 ( ) ( )
H

H P


        
  



  

(we keep in mind that ( )P   is a nonempty set 
 ( )P   and, for ( )R P  , R  is a family) and  

 ( ) '( )
H

H P


        
  



  

(of course, for ( )P  ,   is a nonempty family); 
mor- eover  

  ( ) ( )
H

H Fin


 
       

 




f

 

So, for any nonempty family  , we obtain that  

   ( ) ( )
E

P P E &



                
  

   ( ) ( )
E

& P P E &



                
  

   ( ) ( ) ;
E

& P P E



                
f f

 

of course,    ( ) ( )    
f

. 
Special families. Let I be a set. Then, we suppose that  

 


[ ] ( ) ( ) ( )

 (   )

I P P I & I &

& A B A B

     

      

L L L

L L L
     (2.2) 

elements of (2.2) are called  -systems with “zero” and 
“unit”. Moreover,  

  



LAT [ ] ( ( )) ( )

              (   ( )

              ( ))

I P P I &

& A B A B &

& A B

   

     

  

L L

L L L

L

    (2.3) 

elements of (2.3) are lattices of subsets of I (with “zero”). 
Finally,  

 (LAT) [ ] ( )[ ] ( [ ])o I LAT I I P I     L L   (2.4) 

Of course, in (2.4) lattices of sets with “zero” and “unit” 
are introduced. We note that  

  (LAT) [ ]  (LAT)[ ]oI I I    L L  

Of course,  

( )[ ] [ ]  ( )

           [ ]  ( )

G

G

top I I G P

I G P

   

   







        
  
        
  





G

G

G

G

   (2.5) 

is the set of all topologies of I. If ( )[ ]top I    then the 
pair ( )I   is a topological space (TS);  

(clos)[ ] ( ( )) ( )

( ) (   )

(  ( ))
H H

I F P P I F &

& I F & A B F A F B F &

& H F H P F







   

      


   



   (2.6) 

in (2.6) we have families dual with respect to topolo- 
gies. It is obvious that  

 
 
(top)[ ] (LAT) [ ]

(clos)[ ] (LAT) [ ]

o

o

I I &

I I



 
         (2.7) 

We suppose that    ( ) ( )I P P I P P I  C  is the ma- 
pping for which  

   ( ) \  ( ) .I H I H H H H P P I      C   (2.8) 

From (2.5) – (2.8), we obtain the following propert- ies:  

( ( ( )) ( ( )))

( ( ) (clos)[ ] (top)[ ])

( ( ) (top)[ ] (clos)[ ])

I I

I

I

P P I &

& I I &

& I I

 

  
  
   

C C

C

C

  

 

       (2.9) 

We note that ( ) (top)[ ] (clos)[ ]P I I I    in addition,  

( ( )) ( )I P I P I C  
Of course, in (2.9), we have (in particular) the natural 
duality used in general topology. Let  

( top)[ ] (top)[ ] ( )

Fin( )
G G

c I I P

I G I G


  





 

    

            
   

 



 

(the set of all compact topologies of I) Now, we intro-
duce in consideration algebras of sets. Namely,  

(alg)[ ] [ ] \  

(LAT) [ ]o

I {A I I L A L A}

I

     
 

   (2.10) 
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In connection with (2.10), we note that  

 \ (alg)[ ] (LAT) [ ]oL I L I I          

If (alg)[ ]I   then ( )I   is a measurable space with 
an algebra of sets.  

If [ ]I n    and ( )A P I   then by ( )n A   
we denote the set of all mappings  

1
( ) 1i i n
L n

 
     

for each of which:  

1) 
1

n

i
i

A L


    

2)  
1 2 1 2 11 1 \i iL L i n i n i          

Then  



[ ] [ ]  

( \ )n

I I L n

I L

  


       
   


           (2.11) 

is the set of all semialgebras of subsets of I. Of course,  

 (alg)[ ] [ ] \  I I I L L          

see (2.10). If we have a semialgebra of subsets of I, then 
algebra generated by the initial semialgebra is realized 
very simply: for any [ ]I    




( ) ( )

             ( ) (alg)[ ]

o
I

n

A P I n

A I

    

    





a
 

has the properties: 1) ( )o
I  a  2) (alg)[ ]I    

( ) ( ( ) )o
I      a  

Now, we introduce some notions important for con-
struc- tions of general topology. Namely, we consider 
topologi- cal bases of two types:  

 





1 2

1 2 3

3 3 1 2

(op BAS)[ ] ( )

 

( ) ( )

B

I P P I

I B & B B

x B B B

x B & B B B





 




  

 
     

 
     
   

          (2.12) 







1 2

1 2

3 1 2 3 3

(cl BAS)[ ] ( ( ))

( )

 

\ ( )

( ) ( ) .

B

I P P I

I &

& B & B B

x I B B

B B B B & x B







 







   



 
      

 
  

     

     (2.13) 

Of course, 

  (op BAS)[ ] ( ( )) ( ) (top)[ ]I P P I I         

In connection with (2.12), we suppose that  

 (op BAS) [ ] : (op BAS)[ ] |I I      , 

 (op BAS) [ ] ( )I P P I  ; 

  (op BAS) [ ] (op BAS)[ ].I I          

Moreover, the following obvious property is valid:  

     ( ) ( ) (op BAS)[ ]I          
 

We note the natural connection of open and closed 
bases:  







( ) (op BAS) [ ]

(cl BAS)[ ]

( ) (cl BAS)[ ]

(op BAS) [ ]

I

I

I

I &

& I

I








 
  

 
   





C

C
         (2.14) 

Along with (2.14), we note the following important 
property:  

 ( ) (clos)[ ] (cl BAS)[ ]I I             (2.15) 

From (2.9) and (2.15), we obtain the obvious state- 
ment:  

  ( ) (top)[ ] (cl BAS)[ ]I I I      C    (2.16) 

So, closed bases can be used (see (2.16)) for topolo- gies 
constructing. We note the following obvious property 
(here we use (2.14) and (2.16)):  

     ( ) ( ) (cl BAS)[ ]I I I        C C (2.17) 

Of course, in (2.17), we use the usual duality property 
connected with (2.14) – (2.16).  

Some additions. In the following, we suppose that  

  
( top)[ ]

(top)[ ] [ ]I

I

I x x I 

 

     



C
  (2.18) 

if ( top)[ ]I     then TS ( )I   is called 1T -space. 
We use (2.18) under investigation of properties of topo- 
logies on ultrafilter spaces.  

Finally, we suppose that (LAT) [ ] (LAT)o
oI    

  [ ]  I x x I    . So, we introduce “continuous” lat- 
tices.  
 
3. Nets and Filters as Approximate Solutions 

under Constraints of Asymptotic Charac-
ter 

 
In this section, we fix a nonempty set   considered (in 
particular) as the space of usual solutions. We consider 
families  ( )P P   as constraints of asymptotic 
character. Of course, in this case, we use asymptotic ver-
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sion of solutions. The simplest variant is realized by the 
employment of sequences in : in the set   the set of 
 -admissible sequences (see Section 1) is selected. It is 
logical to generalize this approach: we keep in mind the 
employment of nets. Later, we introduce so- me defini-
tions connected with the Moore-Smith convergence. But, 
before we consider the filter convergence.  

We denote by [ ]   (by [ ])o   the set of all fami-
lies  ( )B P P   (families  ( )B P P   ) for which 

1 2 3 3 1 2B B B B B B             

[ ] [ ]o     Then, [ ]o   is the set of all filter bases 
on  . By ˆ[ ]F   we denote the set of all filters on :  

    
  

    

[ ] ( )

, ( )

F F P P A B F

A F B F &

& H P F H F F F

     

   

      

 



    (3.1) 

Using (3.1), we introduce the set  u[ ]F   of all ultrafil- 
ters on :  

  
 

u[ ] [ ] [ ]

( ) ( )

F F EF    

         

  

   
.        (3.2) 

In connection with (3.1) and (3.2), see in particular [11, 
ch. I]. In addition,  

 


( )[ ] ( )

[ ] [ ]o

H P B B H

F

 

 

      

  

fi

            

 
 

.  (3.3) 

By (3.3) we define the filter on   generated by a base 
of [ ]o    

If  ( )P P   then by 0[ ]F   (by  [ ])o
F u   

we denote the set of all filters [ ]F   (ultrafilters 
   [ ]F u  ) such that    . Then, for any filter 
F   [ ] , we have  [ ] ( [ ])o P EF F


 u u   and 

what is more   is the intersection of all ultrafilters 
 [ ]o
F   u    see [11].  

If a family  ( )P P E  is considered as the constra 
int of asymptotic character, then ultrafilters  [o EF u  

]  are considered as (nonsequential) approximate sol- 
utions; of course, filters  [ ]oF   can be consider- 
ed in this capacity also. But, ultrafilters have better prop-
erties; therefore, now we are restricted to employment of 
ultrafilters as approximate solutions.  

The filter of neighborhoods. If (top)[ ]    and x 
 , then  

 ( ) [ ]o
oN x G x G         

and ( ) ( )[ ( )]oN x N x   fi  of course, ( ) [ ]N x F    

in correspondence with (3.3). We were introduce the fil- 
ter of neighborhoods of x  in the sense of [11,ch.I]. In 
the following, 

 cl( ) ( )A x A H H N x           

(top)[ ] ( )A P        

So, we introduce the closure operation in a TS. Moreo- 
ver, we suppose that  

 


( bas)[ ] ( )

( )

(top)[ ]

x { P N x

A N x B B A

x





 




   
     

    
 

  
      (3.4) 

The filter convergence. We follow to [11]. Suppose 
that (top)[ ] [ ]o x             

 ( ) ( ) ( )[ ]
def

x N x


    fi     (3.5) 

In addition, [ ] [ ]oF     see (3.1). Therefore, we can 
use (3.5) in the case of     where [ ]F   we 
note that ( )[ ]  fi    Then, by (3.5)    

(top)[ ] [ ]F x E         

 ( ) ( )x N x


            (3.6) 

Of course, it is possible to use the variant of (3.6) cor- 
responding to the case     where 

u[ ]EF    
Nets and the Moore-Smith convergence. On the ba-

sis of (3.6), we can to introduce the standard Moore- 
Smith convergence of nets. We call a net in the set   
arbitrary triplet ( )D f    where ( )D  is a nonemp- 
ty DS and Df    If ( )D f   is a net in the set   
then  



  

( ass)[ ] ( )

( ) ( ( ) ) [ ]

D f V P
d D D

d f V F


 

     
   
   

 

  

 
     (3.7) 

we obtain the filter of   associated with ( )D f    
Now, for any topology (top)[ ]    a net ( )D f   
in the set   and x   we suppose that  

 
 
( )

( ass)[ ]

def

D f x

D f x





  

   



 
          (3.8) 

From (3.6) and (3.7), we obtain that (3.8) is the “us- ual” 
Moore-Smith convergence (see [12]). Of course, any se-
quence ( )i ix   

x   generates the net ( )  x  
where   is the usual order of  .  

If  ( )P P E , then a net ( )D f   in E  is call- 
ed  -admissible if ( ass)[ ]D f       In this case, 
  can be considered as a constraint of asymptotic char-
acter and ( )D f   plays the role of nonsequential (ge- 
nerally speaking) approximate solution.  
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In conclusion, we note that  

 


( ult)[ ] ( )

[ ]

x H P x H

xF

    
   u             

 
       (3.9) 

In (3.9), trivial ultrafilters are defined.  
 
4. Attraction Sets 
 
In this section, we construct nonsequential (generally sp- 
eaking) attraction sets (AS) using different variants of the 
representation of approximate solutions. Since nets are si- 
milar to sequences very essential, we begin our considera- 
tion with the representation (of AS) using nets.  

For brevity, in this section, we fix following two no- 
nempty sets: X  and Y   In addition, under Xf Y  
and  [ ]o X  

1[ ] [ ]of Y               (4.1) 

of course, in (4.1), we can use a filter or ultrafilter in- 
stead of  . In addition, the important property takes 
place: if Xf Y and [ ]o X , then  

   1( )[ ] [ ] ( ) [ ] [ ]X X Y f YF F       u ufi fi  (4.2) 

So, by (4.2) image of an ultrafilter base is an ultrafilter 
base. Of course, the image of an ultrafilter is an ultrafil-
ter base also.  

Introduce AS: if (top)[ ]Xf Y Y   and X P  
 ( )P X , then by ( )[ ]X Y f X    as  we denote the set 
of all y Y  for each of which there exists a net 
( )D g   in the set X such that  

 ( ass)[ ]

( )

X X D g &

D f g y


   

 
   

 





         (4.3) 

we consider ( )[ ]X Y f X   as  as AS. In this definition, 
we use nets. But, for any filter [ ]F X  there exists a 
net ( )D g   in the set X for which ( ass)X   
[ ]D g   (see [13]).  

Proposition 4.1. For any (top)[ ]Xf Y Y    and 
  ( )X P P X   

 

  1

( )[ ]

[ ] [ ] .o

X Y f X y Y

X X f yF


      

    




as

 
      (4.4) 

Proof. Fix (top)[ ]Xf Y Y     and   ( )X P P X   
Suppose that A  and B  are the sets on the left and ri- 
ght sides of (4.4) respectively. Let y A . Then y Y  
and, for a net ( )D g   in X, the relation (4.3) is valid 
under y y   Then, by (4.3)  

 ( ass)[ ] [ ]oX D g X XF
           (4.5) 

Moreover, by (3.8) and (4.3) ( ass)[ ]Y D f g y
      

So, by (3.6)  
( ) ( ass)[ ]N y Y D f g

             (4.6) 

Let ( )H N y
    Then by (3.7) and (4.6), for some 

d D    the following property is valid: d D    

  ( ) ( )d d f g d H           (4.7) 

In addition,   ( )D d D d d P D       and by (3.7) 
and (4.5)  

1( )g D    

As a corollary,  1 1 1 1( ) ( ) ( ) [ ]f g D f g D f      
But, by (4.7)  1 1( )f g D H    By (3.3) (H Y    

1) [ ]f    fi   Since the choice of H   was arbitrary, 
the inclusion 1( ) ( ) [ ]N y Y f

     fi   is established. 
By (3.5)  

1[ ]f y
              (4.8) 

By (4.5) and (4.8) y  B  The inclusion A B  is 
established.  

Let oy  B  Then, for oy Y   we have a filter 
 [ ]o

o X XF   such that  

1[ ]o of y


             (4.9) 

Choose a net ( )    in X for which ( ass)o X   
[ ]   . By (4.1) 1[ ] [ ]o

of Y  and, as a corollary, 
by (3.5) and (4.9)  

1( ) ( ) [ ]o oN y Y f     fi       (4.10) 

Then by (3.3) and (4.10) we obtain that H N   
1( ) [ ]o oy B f B H      . Using (2.1) we have the 

property: 1( ) ( )o oH N y F f F H         Choose 
arbitrary ( )o oH N y   then, for some  o o

F   the 
inclusion 1( )o of HF   is valid. By (3.7) and the cho- 
ice of ( )     for some od    the following prop-
erty is realized:     

( ) ( ( ) )ood F      

By the choice of  o
F  we obtain that     

( ) (( )( ) )o od f H    
 

Then, ( ass)[ ]oH Y f        So, the important 
inclusion  

( ) ( ass)[ ]oN y Y f        

is valid. Then ( ass)[ ] oY f y


      (see (3.6)). By 
(3.8)  

( ) of y


              (4.11) 

Moreover, by the choice of o  and ( )    the in-
clusion  
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 ( ass)[ ]X X       

is valid. From (4.11), we have the inclusion oy  A  
So, B A  and, as a corollary,  A B  

Proposition 4.2. For any (top)[ ]Xf Y Y     and  
  ( )X P P X   

 

  1

( )[ ]

[ ] [ ]o

X Y f X y Y

X X f yF


      

    u

as

   
     (4.12) 

Proof. We denote respectively by F  an U  the sets on 
the left and right sides of (4.12). Since   [ ]o

oX XF F u  
[ ]X X , we have the obvious inclusion U F  (see Pr- 

oposition 4.1). Let oy  F  Then by Proposition 4.1 
1[ ] of y


  for some  [ ]o X XF    Then F  

[ ]X  and X    We recall (see Section 3) 
that  [ ] ( [ ])o X P XF F

 u u . Choose arbitrary 
 [o XF uU  ]  Then  [ ]XF uU  and X   U  

Therefore, U   [ ]o X XF  u  Moreover, by (2.1) 
1 1[ ] [ ]f f U  and, as a corollary,  

1 1( )[ [ ]] ( )[ [ ]]Y f Y f  fi fi U       (4.13) 

(we recall that by (4.1) 1[ ] [ ]of Y  and 1[ ] of U  
[ ]Y ). By the choice of F  we have the inclusion  

1( ) ( ) [ ]oN y Y f     fi   

(see (3.5)). Then by (4.13) 1( ) ( ) [ ]oN y Y f     fi U  
and, as a corollary (see (3.5)),  

1[ ] of y


U  

Then, oy  U  The inclusion F U  is established.  
Recall that, for any family    ( ( )) ( )X P P X X  

f
  

 ( )P P X  and    ( )X X  
f

 We note the follow-
ing obvious. 

Proposition 4.3. For any   ( )X P P X , the equality 
     [ ] [ ( )]o oX X X XF F   u u f

 is valid.  
Proof. Recall that    ( )X X  

f
 Therefore,  [o XF u  

    ( )] [ ]oX X XF  uf
; on the other hand, from (3.1), 

we obtain that   ( ) [ ]F X    
f

     Then, for an 
ultrafilter  [ ]o X XF  u   

    ( ) ( )X   
f f

   

and, as a corollary,    [ ( )]o X XF   u f
  So, since the 

choice of   was arbitrary,      [ ] [ ( )]o oX X X XF F   u u f
 

and, as a corollary,      [ ] [ ( )]o oX X X XF F    u u f
 

Corollary 4.1. If (top)[ ]Xf Y Y     and X   
 ( )P P X , then  

   ( )[ ] ( )[ ( )]X Y f X X Y f X           
f

as as  

The corresponding proof is realized by the immediate 
combination of Propositions 4.2 and 4.3. We note that, 
by definitions of Section 2  

     ( ) [ ] ( )X X X P P X     
f

     (4.14) 

In connection with (4.14), we note the following general 
property. Namely, (top)[ ] [ ]Xf Y Y X          

1( )[ ] cl( (B) )
B

X Y f f 


      as


      (4.15) 

Then, by (4.14), (4.15), and Corollary 4.1  


  

 
  

1

( )

( )[ ] cl ( )

(top)[ ] ( )

B X

X

X Y f X f B

f Y Y X P P X

 



 



     

      


f

as

  

 (4.16) 

In connection with (4.16), we note that X P    
 ( )P X   

      ( ) [ ]oX X XF      uf
    (4.17) 

Remark 4.1. By analogy with Proposition 4.3 we have 
that  

        0[ ] ( ) ( )o X X X X X P P XF F
        f

  

Really, fix   ( )X P P X   Then    ( )X X  
f

 The- 
refore,      ( ) [ ]o oX X X XF F      f

 Let   [oF XF   
]X . Then, [ ]F X  and X    But, from (3.1), we 
have the equality   ( )  

f
   where by the choice 

of     ( ) ( )X  
f f

  . So,   ( )X
f

    and, as 
a corollary,   [ ( )]o X X   

f
F  The inclusion 

   [ ] ( )o oX X X X     f
F F  is establish- ed. So, 

   [ ] [ ( )]o oX X X X    
f

F F   
Returning to (4.17), we note that by Proposition 4.2 

  ( )Xf Y X P P X      

    ( ) (( )[ ]

(top)[ ])

X X Y f X

Y





        

  
f

as
 (4.18) 

Remark 4.2. We have that, for the case   
f
 

( )X  it is possible that  

(top)[ ] :( )[ ]Y X Y f X        as  

Indeed, consider the case X Y    ( )f x x x   
X      is the usual    -topology of real line  , 

and  

  [ [X c c      

Then,  [ ]oX X  and   ( )X  
f

 But, by (4.15)  

( )[ ] [ [
c

X Y f X c


       

as  

It is obvious the following.  
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Proposition 4.4. If ( top)[ ]Xf Y c Y      and 
[ ]o X   then  

( )[ ]X Y f     as   

Proof. The corresponding proof follows from known sta- 
tements of general topology (see [11]). But, we consider 
this proof for a completeness of the account. In our case, 
we have (4.15). In addition,  

  1cl ( )f H H            (4.19) 

is nonempty family of sets closed in the compact topo- 
logical space (TS) ( )Y    Moreover, [ ]o Y  (we use 
known properties of the closure operation and the image 
operation). Since    we obtain that    In 
addition, [ ]Y   Therefore, by [9] we have the fol-
lowing property: if n  and  

1
( ) 1i i n
T n

 
     

then  
1

n

i
i

T T T


      As a corollary,   is the non 

empty centered system of closed sets in a compact TS. 
Then, the intersection of all sets of   is not empty. By 
(4.19)  

 1cl ( )
H S

f H S
 

    
 

 

Using (4.15), we obtain the required statement about the 
nonemptyness of attraction set. 

Corollary 4.2. If Xf Y  and   ( )X P P X   then  

    ( ) ( )[ ]X X Y f X        
f

as  

( top)[ ])c Y     

Proof. Let   ( )  
f
  Choose arbitrary topology 

( top)[ ]c Y     By (4.14)   ( ) [ ]X  
f
  Moreover, 

  ( )  
f

   Therefore,    Then,   ( ) 
f
  

o  [ ]X  and by Proposition 4.4 

 ( )[ ( )]X Y f      
f

as   

Using Corollary 4.1, we obtain that ( )[ ]X Y f    as   
  

In the following, we use the continuity notion. In this 
connection, suppose that  

 1
1 2 1 2

1 2

( ) ( )

(top)[ ] (top)[ ]

XC X Y f Y f G G

X Y

   

 

        

    

 
 (4.20) 

So, continuous functions are defined. In the following, we 
use bijections, open and closed mappings, and homeom- 
orphisms. Let  

 
 


1

1 2 1 2

1 2

(bi)[ ] ( )

( ) ( )

( )

XX Y f Y f X Y &

& x X x X f x f x

x x

    

     
  

    (4.21) 

In (4.21), the set of all bijections from X  onto Y  is 
defined. If 1 (top)[ ]X   and 2 (top)[ ]Y    then  




op 1 2 1 2

1
2 1

( ) : ( )

( )

C X Y f C X Y

f G G

   

 

        

    
    (4.22) 




cl 1 2 1 2

1
2 1

( ) : ( )

( ) [ ] [ ]Y X

C X Y f C X Y

f F F

   

 

        

   C C 
    (4.23) 

In (4.22) (in (4.23)), we consider open (closed) mapp- 
ings. In addition,  

1 2 op 1 2

cl 1 2

1 2

(Hom)[ ] ( )

(bi)[ ]

( ) (bi)[ ]

(top)[ ] (top)[ ]

X Y C X Y

X Y

C X Y X Y

X Y

   

 
 

      
  

     
     

     (4.24) 

So, in (4.24), the set of homeomorphisms is defined.  
 
5. Some Properties of Ultrafilters of 

Measurable Spaces 
 
In this section, we fix a nonempty set E . We consider the 
very general measurable space ( ) E   where   

[ ] E  is fixed also. According to necessity, we will be 
supplement the corresponding suppositions with respect 
to . We suppose that ( )   is the set of all families 

( )P   such that  

   
( ) ( )

( ( ) ( )).

& A B A B &

& F L F L L

      

      

  

  

   

  
 

Elements of the set ( )   are filters of . In add- 
ition,  


 

( ) ( ) ( )

( ) ( )

o
     

  

      

   
       (5.1) 

is the set of all ultrafilters of L  Recall that (see [16])  

( ) ( )o
              .      (5.2) 

In the following, (5.2) plays the very important role.  
We introduce the mapping  ( )oP        by 

the following rule: 

 ( ) ( )oL L L                (5.3) 

We note that   ( )E    and by (5.2) ( )o
     In 

addition, we recall that (see Section 2)  

 ( )[ ] ( ) [ ( )]oL L        E       (5.4) 

by (5.4) the pair ( ( ) ( )[ ]o
  E   ) is a nonempty 

multiplicative space. We note some simplest general 
properties. We obtain that  
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( set)[ ] ( )

( ) ( )

A P A S S

P P P P E 

         

  

E E

E

 

 
 

We note that  

[ ] [ ] ( set)[ ]A o oA A        E E       

In addition, for ( )A P E  the inclusion [ ]o oA   
[ ]E  takes place. Therefore,  

[ ] [ ] ( set)[ ]A o o A        E E E      (5.5) 

With the employment of (5.5), we obtain that, for any 
  [ ]o E  and ( set)[ ]A  E   

 
  

( )[ ] [ ] ( )[ ]

( )[ ] ( )[ ]
A

A A

F

& A

    
      

E fi E E fi

E fi E fi

 

 
  (5.6) 

Now, we return to the space ( )L E  Suppose that  





1 2

3 3 1 2

[ ] ( ) ( )

)

o P &

& B B

B B B B

    

   
    

E

 

 

   

 



        (5.7) 

(the set of filter bases of  ); ( ) [ ]o  E   and  

 [ ] [ ] ( ) [ ]o
o oP        E E E      

We note the obvious property: ( ) F         
[ ]E  In addition,  

  
( )[ ] ( )[ ]

( ) [ ]oL B B L 

    

         

E fi E fi

E  

   

   
 

Using (5.5) and the obvious inclusion [ ]o
o E  

[ ]E  under [ ]o E  and ( set)[ ]A   E   we 
obtain, that [ ]o

A   E  We note that, under o   
[ ]E  and ( set)[ ]A   E   the filter  

( )[ ( )A
   E fi     

has the following properties  

 
 

( )[ ] ( )[ ]

( )[ ]
A

A

&

& A

     
    

E fi E fi

E fi

   

 
    (5.8) 

Of course, ( )[ ] ( )     E fi        We can 
use this property in (5.8): for any ( )   and 

( set)[ ]A   E   the filter ( )[ ]A
   E fi    

( )  has the properties  

   ( )[ ] & ( )[ ]A AA        E fi E fi      (5.9) 

In connection with (5.9), we recall the very general pro- 
perty: if [ ]o E  and ( set)[ ]A   E   then 

A  [ ]o E  Using the maximality property, we ob-
tain that  

( set)[ ] ( )o
     E        

And what is more, ( ) ( ) ( set)o
            

[ ] E   
Of course, the above-mentioned properties are valid for  

(LAT) [ ]o E              (5.10) 

The following reasoning is similar to the construction of 
[13,§3.6] connected with Wallman extension; in addi-
tion, later until the end of this section, we suppose that 
(5.10) is valid (so, we fix a lattice with “zero” and “un- 
it”).  

So, if ( )o A       and B   then (under 
condition (5.10))  

 ( ) ( ) ( )A B A B             (5.11) 

The property (5.11) is basic. As a corollary, o
   

( ) A B         

 ( ) ( ) ( )A B A B     E        (5.12) 

We note that by (5.11) the following property is valid:  

( ) ( ) ( )A B A B A B                 

As a corollary, we obtain the property  

( )[ ] (LAT) ( )o o
    E          (5.13) 

(so, under (5.10), the statement (5.4) is amplified). In 
(5.13), we have the lattice of subsets of ( )o

    This 
important fact used below.  
 
6. Topological Properties, 1 
 
As in the previous section, now we fix a nonempty set 
E  and a family [ ] E  We note the following ob- 
vious property:  

   ( ) [ ]oL B B L         E      

From definitions of the previous section, the following 
known property follows: 1 2( )o o

          ( )  

1 2 1 2( ) ( )A B A B                (6.1) 

Moreover, we note that ( )oU F L    

   ( ) ( )o
L

U L

 

       
 

    (6.2) 

Moreover, we note that [ ( )] (op BAS)[ ( )]o o      . 
Therefore, by (5.4)  

( )[ ] (op BAS)[ ( )]o
   E          (6.3) 

As a corollary, we obtain (see Section 2) that  

  
 



[ ] ( )[ ]

( )

( ) (top)[ ( )]

o

o

P

L L







  

     

     

T E E

 







 

 


   

 
   6.4) 

We recall the very known definition of Hausdorff topo- 
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logy; namely, we introduce the set of such topologies: if 
M  is a set, then  


 



1

2 1 1 1

2 2 1 2

(top) [ ]

(top)[ ]

\ ( )

( )

o M

M m M

m M m H N m

H N m H H








   

   

      

   

  

 

For any set M we suppose that  

( top) [ ] ( top)[ ] (top) [ ]o oc M c M M      

If ( top) [ ]oc M     then TS ( )M   is called a comp- 
actum. Then, the obvious statement follows from the 
ultrafilter properties (see (5.3), (6.1)): 

[ ] (top) [ ( )]o o
  T E              (6.5) 

So, by (6.5) ( ( ) [ ])o
 T E   is a Hausdorff TS. Of cou- 

rse, we can use the previous statements of this section in 
the case of (LAT) [ ]o E  obtaining the Hausdorff to- 
pology (6.5). But, in the above-mentioned case, another 
construction of TS is very interesting. This construction 
is similar to Wallman extension (see [13,§3.6]). Moreo- 
ver, in this connection, we note the fundamental investig- 
ation [14], where topological representations in the class 
of ideals are considered. We give the basic attention to 
the filter consideration in connection with construction of 
Section 3 concerning with the realization of AS. In this 
connection, we note that ( ) [ ]P E E  and the sets   

 ( )P E  and  ( )o P E  are defined. From (3.1) and de- 
finitions of Section 5, we have the equality  ( )P E  
[ ]F E  Moreover, from (3.2) and the above-mentioned 
definitions of Section 5, the equality  

  ( ) [ ]o P F
  uE E            (6.6) 

follows. By these properties (see (6.6)) the constructions 
of Section 3 obtain interpretation in terms of filters and 
ultrafilters of measurable spaces.  

Now, we note one simple property; in addition, we use 
the inclusion chain ( ) ( ) [ ]o o

   E    So, by (3.3)  

( )[ ] [ ] ( )F     E fi E      

In particular, we have the following property:  

( )[ ] [ ] ( )oF     E fi E           (6.7) 

We note one general simple property; namely, in general 
case of [ ] E   

  ( ) [ ]o F
       u E          (6.8) 

Remark 6.1. We note that (6.8) is a variant of Propos- 
ition 2.4.1 of monograph [16]. Consider the correspond- 
ing proof. Fix ( )o

    Then by (6.7)  


 

( )[ ] ( )

[ ]

H P

B B H F

    

     

E fi E

E

 


       (6.9) 

From (6.9), we obtain (see Section 3) that  [ ]o
F  u E   

( [ ])P EF
 u  Let  

 [ ]o
F  u E   

Then,  [ ]F u E  and     In addition (see Sect- 
ion 5), ( )      Let U    Then, U   
and, in particular,  ( )U P E  By (6.9) U   and, as 
a corollary, U    Then, U      So, the inclu-
sion      is established; we obtain that  

( )               (6.10) 

From (5.1) and (6.10), we have the equality    
   So,  

 [ ]F E    u     

Since the choice of   was arbitrary, the property (6.8) 
is established. 
 
7. Topological Properties, 2 
 
In this and following sections, we fix a nonempty set E  
and a lattice (LAT) [ ]o E   We consider the question 
about constructing a compact 1T -space with “unit” o

  
( )  This space is similar to Wallman extension for a 

1T -space. But, we not use axioms of topology and opera- 
te lattice constructions (here, a natural analogy with con- 
structions of [14] takes place). Later we use the fol- 
lowing simple statement.  

Proposition 7.1.  ( )[ ] (cl BAS)[ ( )]oE        
Proof. We use (5.13). In particular, ( )[ ]E     As 
a corollary,  

( )[ ]E


 

 
 

               (7.1) 

Moreover, ( ) ( ) ( )[ ]o E E        (see (5.4)). So, 
( )[ ]E   is a family with “zero” and “unit”. More-
over, by (5.13)  

1 2 1

2

( )[ ] ( )[ ]

( )[ ]

B B E B E

B E

     
   

  

 


 

Therefore, by (2.13) the required statement is realized. 
By (2.15) and Proposition 7.1 we have the following 

construction: 

  ( )[ ] (clos)[ ( )]oE            (7.2) 

Proposition 7.2. The following compactness property 
is valid:  

  
( )

( ( )[ ]) ( top)[ ( )]
o

oE c
    C  


   (7.3) 

Proof. For brevity, we suppose that  
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  ( )[ ]E  U               (7.4) 

and 
( )

[ ]
o

  C U 
 Of course, by (2.9) (top)[ o    

( )]  Moreover, under S  U  the family  

   [ ] ( )[ ] ( )[ ]S T E S T P E      u     

has the following obvious property  

[ ]T S

S T


 
u

                (7.5) 

We have the equality 
( )

[ ]
o

 U C 
 So, U  is the fa- 

mily of all subsets of ( )o
   closed in the TS  

( ( ) )o                    (7.6) 

Let   be arbitrary nonempty centered subfamily of U  
(for any m  and 

1
( ) m

i i m
T 

 
  the intersection of 

all sets 1iT i m     is not empty). If H    then the 
family  

  ( ) [ ] ( )H L L H P    u      (7.7) 

has the property: H H        Of course,  

( )H
H

P






 L    

is centered. Indeed, choose n  and 
1

( ) n
i i n 

  L  
Let 

1
( ) n

i i nH 
 

  be a procession with the property:  

 1
jj H

j n        

Then, in particular, 
1

( ) n
i i n 

    In addition, by (7.7) 

( ) [ ] 1j j j nH      u    Of course,  


1 1

( )
n n

ii
i i

H
 

       

Since the intersection of all sets  1i i nH      is not em- 
pty (we use the centrality of ), we choose an ultrafilter  

 
1

n

i
i

H


   

Then, 
j   under 1j n    By axioms of a filter 

(see Section 5) we obtain that  

1

n

i
i

  
 

Since   is closed with respect to finite intersections, 
we obtain that  

      ( ) ( ) ( ( )) ( )P &       
f f f

L L L L (7.8) 

Moreover, (7.8) is supplemented by the following obvi-
ous property; namely,  

     1 2 3

3 1 2

( ) ( ) ( )B B B

B B B

         

  
f f f

L L L  
 

From (5.7), we obtain that   ( ) [ ]o E  
f

L   As a cor-
ollary,  

 ( )[ ( ) ] ( )E      
f

fi L     

in addition, by (7.8)   ( )   
f

L L   Finally, we use 
(5.2). Let ( )o

   be an ultrafilter for which   
   Then,  L   So,  

( )o
   L             (7.9) 

Let    Then, ( )P L  and the equality  

[ ]T

T


 
u 

              (7.10) 

is valid (see (7.5)). Choose arbitrary [ ] u   Then, 
( )[ ]E    and    Using (5.4), we choose 

D  for which ( )D     Then  

( ) [ ]D D   u   

By (7.7) D   and, in particular, D L . By (7.9) 
D  and, as a corollary, ( )D   see (5.3). So, 

  Since the choice of   was arbitrary, we ob-
tain that [ ]B B   u   By (7.10)    So, 
we have the property:  

H H       

Then, the intersection of all sets of   is not empty. Si- 
nce the choice of   was arbitrary, it is established that 
any nonempty centered family of closed (in TS (7.6)) 
sets has the nonempty intersection. So, TS (7.6) is com-
pact (see [11-13]). 

Using Proposition 7.2, by [ ]o ET  we denote the to-
pology (7.3); so,  

   
( )

[ ] ( )[ ] ( top)[ ( )]
o

o
oE E c
     T C   

   

(7.11) 

We have the nonempty compact TS  

( ( ) [ ])o
o E  T              (7.12) 

Proposition 7.3. If ( )o
    then  

    ( )[ ]E      

The corresponding proof follows from (6.2); of course, 
we use (5.4) also. From (2.18), (7.11), and Proposition 
7.3, we obtain the following property:  

[ ] ( top)[ ( )] ( top)[ ( )]o
o oE c      T       (7.13) 

So, by (7.13) we obtain that (7.12) is a nonempty comp- 
act 1T -space. 

In conclusion of the given section, we note several pr- 
operties. First, we recall that 

   ( ) ( ) ( )o oL L L                 (7.14) 

In addition, from (7.11), the obvious representation fo- 
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llows:  




 

[ ] ( ( ))

\ ( )

( ) ( )

o
o

o

E G P G

L

L G





   

   

   

T

 

  

   

 


       (7.15) 

With the employment of (7.15) the following statement 
is established.  

Proposition 7.4. If ( )o
    then the family  

  ( ) \ ( ) \o L L         

is a local base of TS (7.12) at  :  

  


[ ] [ ]
( ) ( )o oE E

N & H N

B B H





  

    
T T 





 
 

The proof is obvious. So, by (3.4) and Proposition 7.4  

  
*

( ) \ ( ) \ ( bas) [ ]

( ).

o
o

o

L L E        

 

T


    

 
 

We note that, from definitions, the following property is 
valid:  

 ( ) \ ( ) [ ]o
o L E L     T            (7.16) 

 
8. The Density Properties 
 
In this section, we continue the investigation of TS (7. 
12). Of course, we preserve the suppositions of Section 7 
with respect to E and . But, in this section, we postu-
late that  x x E      So, in this section  

(LAT) [ ]o E                (8.1) 

unless otherwise stipulated. So, (LAT) [ ]o E  and x  
x E    . Therefore, with regard (3.9) and (8.1), we 

obtain that  

 ( ult)[ ] ( )oE x x x E             (8.2) 

Of course, for any x E   the inclusion   ( ult)x E   
[ ]x   is valid.  

Proposition 8. 1.  

  ( ) cl ( ult)[ ] [ ]o
o LE x L x E E       T   

Proof. Let ( )o
   and 

[ ]
( )o E

N 
T




  We use Pr- 
opposition 7.4. Namely, we choose a set  \L   for 
which  

( ) \ ( )o L                (8.3) 

Since E  by axioms of a filter (see Section 5), we 
obtain that L E   in addition, L  and by (2.4) and 
(8.1) L E   So, \E L    Choose arbitrary point 

\e E L  and consider the ultrafilter  

( ult)[ ] ( )oE e            (8.4) 

see (8.2). In addition,  e   As a corollary, by defini- 
tions of Section 5  

     L L e             (8.5) 

But,   L e   by the choice of e. Therefore, by (8. 
5) L  From (5.3) we have the property ( )L   
As a corollary, by (8.4)  

( ) ( )o L               (8.6) 

From (8.3) and (8.6), we obtain that    By (8.4)  

 ( ult)[ ]E x x E          (8.7) 

Since the choice of   was arbitrary,  

  cl ( ult)[ ] [ ]oE x x E E      T   

Since the choice of   was arbitrary, the inclusion  

  ( ) cl ( ult)[ ] [ ]o
o E x x E E      T    

is established. The inverse inclusion is obvious (see (7. 
11)). 

So, we obtain that trivial ultrafilters (8.2) realize an ev- 
erywhere dense set in the TS (7.12).  

Returning to (7.11), we note one obvious property co- 
nnected with (7.16). Namely, by (2.14) and Proposition 
7.1, in general case of (LAT) [ ]o E   

 
( )

( )[ ] (op BAS) ( )
o

oE


      C  


   

and, in particular,  
( )

( )[ ] (op BAS) ( )
o

oE
     C  


    

then, for (LAT) [ ]o E   

    ( )
( )[ ] (top) ( )

o
oE



      C    

And what is more by (2.17), (7.11), and Proposition 7.1, 
in general case of (LAT) [ ]o E   

  

    
( )

( )

[ ] ( )[ ]

( )[ ]

o

o

o E E

E





 



    

   

T C

C      








       (8.8) 

so, by (8.8)  
( )

( )[ ]
o

E 
C   is a base of topology 

(7.11). We recall that by (2.8) and (5.4), for general case 
of (LAT) [ ]o E   

 

 

 

( )
( )[ ]

( ) \ ( )[ ]

( ) \ ( )

o

o

o

E

B B E

L L

 








    

     

C 

 


         (8.9) 

Connection with Wallman extension. Let (    
top)[ ]E   Then, [ ] (clos)[ ]E E C  and by (2.18)  x  

[ ]E x E   C   Using (2.7), we obtain that [ ]E  C  
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(LAT) [ ]o E   with the employment of the above-mentio- 
ned closedness of singletons, by the corresponding defi-
nition of Section 2 we obtain that  

[ ] (LAT) [ ]o
E E  C            (8.10) 

Until the end of the present section, we suppose that  

[ ]E  C                 (8.11) 

So, in our case, ( )E  is the lattice of closed sets in T1- 
space. Then, (7.12) is the corresponding Wallman com-
pact space (see [13]). On the other hand, by (8.10) and 
(8.11) we obtain that this variant of ( )E  corresponds 
to general statements of our section (for example, see 
(8.2) and Proposition 8.1). In this connection, we con-
sider the mapping  

( ult)[ ] ( )ox E x E           8.12) 

we denote the mapping (8.12) by f . So, ( )E
o
f    

and  
( ) ( ult)[ ]x E x x E     f    

Consider some simple properties. First, we note that f  
is injective: 1 2x E x E      

 1 2 1 2( ) ( ) ( )x x x x   f f         (8.13) 

Indeed, for 1x E  and 2x E  with the property 1( )xf  

2( )x f  by (3.9) we have that  1 2( )x x f  and, as a 
corollary,  2 1x x   so, 1 2x x    

Of course, f  is a bijection from E onto the set  

   1( ) ( ult)[ ] ( )oE E x x E P L       f   (8.14) 

If   and x E   then  ( ) ( )x x   f  As 
a corollary, we obtain that  

 1 ( )      f           (8.15) 

Remark 8.1. Of course, in (8.15), we use the repre-
sentation (8.12). Fix    Let  1 ( )x 

    f   
Then x E   and ( ) ( )x   f   By (5.3) ( )x f  
and, as a corollary, x   So,  

 1 ( )    f           (8.16) 

If x   then ( )x f  see (8.12). Therefore, by 
(5.3) ( ) ( )x  f   and, as a corollary, 1x  f   

( )   So,  1 ( )    f   Therefore (see (8.16))   
and  1 ( )  f   coincide.  

From (5.4) and (8.15), we obtain that  

1( ) ( )[ ]B B E     f        (8.17) 

Proposition 8.2.  ( ) [ ]o
oC E E     f T    

Proof. We use the construction dual with respect to 

(4.20). Let 
( )

[ ]
o

oF E    C T 
 Then, by (8.8)  F    

 ( )[ ]E    Therefore, for some  ( )[ ]P E F   

B

F B


 
F

 

As a result, we obtain that  
1 1( ) ( )

B

F B 



 
F

f f               (8.18) 

where  1( )B B    f F   see (8.17). By (2.6), (2.9), 
(8.11), and (8.18) we have the property:  

 1( ) ( [ ])EB B P     f F C  and 

1( ) [ ]EF






  f C          (8.19) 

Since the choice of F was arbitrary, from (8.19) we ob-
tain the required continuity property (see [16, (2.5.2)]). 

Corollary 8.1.  1
1

( )
( ) [ ]o

E
C E E E     

f
f f T  

Proof. Recall that 1( ) ( )x E x E   f f   In addition, by 
(8.14)  

 1( ) ( ) ( )oE x x E     f f     

Let 1 ( )
[ ]o

E
G E 

f
T  and [ ]o ET  realizes the equal-

ity 1( )G E f  By Proposition 8.2  
1( )    f               (8.20) 

In addition, 1 1( ) ( )G  f f  (indeed, G   ). Let x  
1( )  f  Then, x E   and ( )x f  But, ( )x f  

1( )Ef  too. Then, 1( ) ( )x E  f f  So, ( )x G  f  Th- 
erefore, 1( )x G

  f  Since the choice of x  was arbi-
trary, the inclusion  

1 1( ) ( )G  f f  

is established. So, 1 1( ) ( )G   f f  By (8.20) 1( )Gf  
   Since the choice of G was arbitrary, the inclusion  

 1
1

( )
( ) [ ]o

E
C E E E    

f
f f T  is established. 

Recall that 1(bi)[ ( )]E E f f  (see (4.21)).  

Proposition 8.3.  1
1

op ( )
( ) [ ]o

E
C E E E     

f
f f T   

Proof. Let G    Then  1( ) ( )G x x G  f f  and 
\ [ ]EF E G   C  By (8.11) F    In addition, by 

(5.3)  

 ( ) ( )oF L F                (8.21) 

Of course, by (5.4) ( ) ( )[ ]F E      Then  

 
( )

( ) \ ( ) ( )[ ]
o

o F E
    C  
   

As a corollary, ( ) \ ( ) [ ]o
o F E   T    Therefore,  

  1
1

( )
( ) ( ) \ ( ) [ ] .o

o E
E F E    

f
G f T    (8.22) 

Now, we compare 1( )Gf  and G  (8.22). Let 1 f  
( )G   Then, for some x G     
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( ) ( ult)[ ]x E x     f          (8.23) 

Of course, ( ult)[ ]G E x    By (3.9) ( ult)F E   
[ ]x  (indeed, ( ult)[ ]G F E x    ). By (8.23) F  
  and, as a corollary, ( )F   see (8.21). We ob- 
tain that  

( ) \ ( )o F                (8.24) 

Since 1 1( ) ( )G E f f  we have the inclusion 1( )E f  
Using (8.22) and (8.24), we obtain that G   The 
inclusion  

1( )G Gf              (8.25) 

is established. Choose arbitrary G   then, by (8. 
22), for some x E    the equality ( )x f  is valid. 
So,  

( ult)[ ]E x            (8.26) 

Moreover, ( ) \ ( )o F      So, ( )F   By 
(8.21) F    Since F    by (8.26) ( ult)F E   
[ ]x   From (3.9), the property x F   follows. Then, 

\x E F    Therefore, x G    as a corollary,   
1( ) ( )x G  f f  The inclusion 1( )G G f  is established. 

Using (8.25), we obtain that 1( )G G f  By (8.22)  

1
1

( )
( ) [ ]o

E
G E  

f
f T  

Since the choice of G was arbitrary, by Corollary 8.1 and 
(4.22) we have the inclusion  

 1
1

op ( )
( ) [ ]o

E
C E E E     

f
f f T  

By (4.24), (8.13), and Proposition 8.3 we obtain that  

1
1

( )
(Hom) ( ) [ ]o

E
E E E       f

f f T   (8.27) 

So, we construct the concrete homeomorphic inclusion 
of 1T -space in the compact 1T -space (in this connection, 
we recall that by Proposition 8.1  

 1( ) cl ( ) [ ]o
o E E   f T   

moreover, see (7.13)). So, we have the “usual” Wallman 
extension.  
 
9. Ultrafilters of Measurable Space 
 
In this section, we fix a nonempty set I  and an algebra 
  of subsets of I  So, in this section, ( )I   is a me- 
asurable space with an algebra of sets: (alg)[ ] I  Of 
course, we can to use constructions of Section 5; indeed, 
in particular, we have the inclusion (LAT) [ ]o I  see 
(2.10). As a corollary, by (2.4) [ ] I  So, we use the 
sets ( )   and ( )o

   of Section 5; we use proper-
ties of these sets also. We note the known representation 
(see [15]):  

 ( ) ( ) ( ) ( \ )o A A A        I         

(9.1) 

Now, we use (9.1) for investigation of TS (7.12) in the 
case     First, we note the obvious corollary of 
(9.1):  

  ( ) \ ( ) ( \ )o A A A      I         (9.2) 

Remark 9.1. Let A  is fixed. Choose arbitrary 


1 ( ) \ ( )o A      Then, by (7.14)  1A   By (9.1) 


1\ A I   where \ AI   by axioms of an algebra of 
sets. So, by (5.3) 

1 ( \ )A I  The inclusion  

 ( ) \ ( ) ( \ )o A A    I            (9.3) 

is established. Let 
2 ( \ )A I  Then, by (5.3) 

2 ( )o
   and 

2\ A I   By axioms of a filter  

   2( ) ( \ )A A A     I  

So, 
2A  and 

2 ( )A   As a corollary, 


2 ( ) \ ( )o A      So, the inclusion  

 ( \ ) ( ) \ ( )oA A  I    

is established. Using (9.3), we obtain the required coin-
cidence ( ) \ ( )o A    and ( \ )A I  

Returning to (9.2) in general case, we note the follow-
ing obvious  

Proposition 9.1.  
( )

( )[ ] ( )[ ]
o
   I C I 


    
Proof. Let ( )[ ]oB   I   Using (5.4), we choose oL  
  such that ( )o oB L    Then \ oL I   and by 
(9.2)  

( ) \ ( ) \ ( ) ( \ )o o o o oB L L     I       (9.4) 

From (5.4), we have the obvious inclusion ( \ )oL I  
( )[ ] I   By (9.4)  

( ) \ ( )[ ]o oB   I    

Therefore, we obtain the following property:  

 
( )

( ) \ ( ( ) \ )

( ) \ ( \ ) ( )[ ; ] .*
O

o o o o

o o

B B

L I

 





  I  

 
  

 

 C
 

The inclusion  
( )

( )[ ] ( )[ ]
o
  I C I 


   is esta- 
blished. Choose arbitrary  

 
( )

( )[ ]
o
  C I 


          (9.5) 

Using (2.8), we choose ( )[ ]oB  I   such that   
( ) \ o

o B    Let oL   be the set for which oB   
( )oL   see (5.4). Then, by (9.2)  

( ) \ ( ) ( \ )o o
o L L     I       (9.6) 

where \ oL  I   Since by (5.4) ( \ ) ( )oI L    
[ ] I   from (9.6), we obtain that  
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( )[ ]  I   

Since the choice of   (9.5) was arbitrary, the inclusion  

 
( )

( )[ ] ( )[ ]
o
   C I I  


   

is established. So, we obtain the required equality. 
From (6.4), (8.8), and Proposition 9.1, the simple (but 

useful) statement follows.  
Proposition 9.2. [ ] [ ]o  T I T I   

So, for measurable spaces with algebras of sets, the top- 
ological representations of Sections 6 and 7, 8 realize the 
same topology. By (6.5), (7.13), and Proposition 9.2 

[ ] ( top) [ ( )]o oc   T I          (9.7) 

So, we obtain a nonempty compactum. Recall that (see 
(7.11), Proposition 9.2)  

  
( )

( )[ ] [ ]
o


     I C T I 
   (9.8) 

is the family of all sets closed in the sense of topology 
(9.7). We note the following obvious property (see [15, 
ch.I])  

( )[ ] (alg)[ ( )]o
  I        (9.9) 

Remark 9.2. We recall (5.4). Let ( )[ ]  I   
Using (5.4), we choose   such that ( )      
Then, \ I   and by (9.2)  

( ) \ ( ) \ ( ) ( \ )o o
        I       (9.10) 

By (5.4) and (9.10) ( ) \ ( )[ ]o
   I    So, we 

establish that  

( ) \ ( )[ ] ( )[ ]o H H      I I      (9.11) 

From (2.10), (5.4), and (9.11), the property (9.9) follows.  

Proposition 9.3. 
( )

( )[ ] [ ] [ ]
o


      I T I C T I  
  

Proof. Recall that by statements of Section 2 and (9.8) 
the inclusion  

( )
( )[ ] [ ]

o


    I C T I 
           (9.12) 

From (6.4), the inclusion ( )[ ] [ ]E I T   follows 
too. So, by (9.12)  

( )
( )[ ] [ ] [ ]

o


      I T I C T I  
    (9.13) 

Let 
( )

[ ] [ ]
o


     T I C T I 
 Since   is open, 

then by (6.4) we obtain that, for some family  

 ( )[ ]P  IW           (9.14) 

the following equality is realized:  




W

W


  
W

                (9.15) 

If W  then by (9.15)  and, as a corollary,   

( )     where    So, by (5.4) we obtain the 
implication  

 ( ) ( )[ ]     IW         (9.16) 

Let  W  Then,  ( )[ ]P  IW   Since   is 
a closed subset of a compactum, we have the compactess 
property of ; then, by (9.14), for some Fin( ) W   




W

W


  


               (9.17) 

In particular,  Fin ( )[ ] . I    We note that ( )  
[ ]I   is closed with respect to finite unions (indeed, by 
(9.9) ( )[ ]I   is an algebra of sets). Therefore, by 
(9.17) ( )[ ]UF A I  in the case  W  So, 

 ( ) ( )[ ]     IW      (9.18) 

Using (9.16) and (9.18), we obtain that ( )[ ] I   
in any possible cases. Since the choice of   was arbitr- 
ary, the inclusion  

( )
[ ] [ ] ( )[ ]

o


     T I C T I I  
   (9.19) 

in established. From (9.13) and (9.18), the required state- 
ment follows. 

So, ( )[ ]I   is the family of all open-closed sets 
in the nonempty compactum  

   ( ) [ ] ( ) [ ]o
o o
     T I T I        (9.20) 

In connection with the above-mentioned property of 
nonempty compactum (9.20), we recall [15, ch. I]. With 
the employment of (9.1), the following obvious property 
is established: in our case of measurable space with an 
algebra of sets  

( ult)[ ] ( )ox x     I I        (9.21) 

Remark 9.3. For a completeness, we consider the sch- 
eme of the proof of (9.21). For this, we note that by (3.9) 
and the corresponding definition of Section 5  

( ult)[ ] ( ) [ ]x x       I I I      (9.22) 

In particular, by (9.22) ( ult)[ ] ( )x x     I I    
Fix x  I  and suppose that  

( ult)[ ]x    I   

of course, ( )
     In addition, ( )P I  Then, 

A    

( ) ( \ )x A x A    I         (9.23) 

Of course, by (3.9), for A , we have the following 
obvious implications:  

    ( ) ( ) ( \ ) ( \ )x A A & x A A         I I   

Then, by (9.23)  ( ) ( \ )A A    I   Since the choi- 
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ce of A  was arbitrary, by (9.1) ( )o


     So, 
(9.21) is established.  

Using (9.21), we introduce the mapping  

 ( ult)[ ] ( ult)[ ] ( )ox
x 


     I

I
I I     (9.24) 

Of course, in (9.24) we have analog of the mapping f  
(8.12). But, in the given case, we realize the immersion 
of points of the initial set in the ultrafilter space under 
other conditions. We will use the specific character of 
measurable space with an algebra of sets. Now, we note 
the obvious property: 

     
 1

\ ( ) ( )

( ult)[ ] (bi) ( ult)[ ] ( )

x y x A x A & y A        

       

I I

I I I I

  

 



 
(9.25) 

In (9.25), the statement of the premise has the following 
sense: algebra   is distinguishing for points of I .  

If ( )P    then by analogy with Section 4 we 
suppose that  

  
  

( ) ( )

( ) ( )o o

&

&

 

 

    

     

 

 

     

     
    (9.26) 

of course, ( ) ( )o
         and moreover the 

following property is valid: 

( ) ( )o
                     (9.27) 

Returning to (9.25), we note that  

 1( ult)[ ] ( ) ( )o
A

A P  



     I  


       (9.28) 

In (9.28), we can use   as constraints of asymptotic 
character. Of course, ( ) ( ) [ ] [ ]o

o o    F F I I   
(see Section 5). Then, by (3.3)  


 

( )[ ] ( )

[ ] ( )o

H P B

B H F 

     

    

I fi I

I  
 

 
      (9.29) 

By analogy with (9.29) we note that ( ) [ ]o
  I   

and ( )[ ] [ ] ( )F     I fi I      These properties pe- 
rmit realize an asymptotic analogs of solutions of the set 
(9.28). In this capacity, we can use elements of the sets 

( )     and ( )o
      where ( )P   is used 

as “asymptotic constraints”. Of course,   bounds our 
possibilities: we can use only subfamilies of .  

Proposition 9.4.  1( ) cl ( ult)[ ] ( ) [ ]o
    I I T I    

Proof. Fix ( )o
    Let A   Then  ( )A P I  

So, A    and A  I  Choose arbitrary a A   Th- 
en, by (9.24)  

1( ult)[ ] ( ult)[ ]( ) ( ult)[ ] ( )a a      I I I I   (9.30) 

By the choice of a  we have the inclusion  (A I  

ult)[ ]a   Since     we obtain that A   Then, 
by (9.30)  ( ult)[ ]A a   I   Since ( ult)[ ]a  I   

( )o
    by (5.3)  

( ult)[ ] ( )a A   I         (9.31) 

By (9.30) and (9.31) we obtain the following property  

 1( ) ( ult)[ ] ( )A    I I   

Since the choice of A  was arbitrary, we have (see 
(8.3)) the statement  

1( ) ( ult)[ ] ( )L L       I I       (9.32) 

Choose arbitrary 
[ ]

( )N  
T I

  Then, for some o   

[ ]
( )oN  

T I
  the inclusion o    is valid. Therefore, 

[ ]o  T I  and o   By (6.4), there exists   
  such that  

( ) o                (9.33) 

From (9.32), the property 1( ) ( ult)[ ] ( )     I I   
is valid. By (9.33) we obtain that  

1( ult)[ ] ( )  I I  

(indeed, ( )    ). Since the choice of   was 
arbitrary,  

1

[ ]
( ult)[ ] ( ) ( )S S N       

T I
I I  


   

Then,  1cl ( ult)[ ] ( ) [ ]   I I T I   So, the inclusion  

 1( ) cl ( ult)[ ] ( ) [ ]o
   I I T I    

is established. The opposite inclusion is obvious. 
We note that Proposition 9.4 is similar to Proposition 

8.1. But, in the given section, the condition  

 x x   I             (9.34) 

is supposed not; in Section 8 (in particular, in Propos- 
ition 8.1), the condition similar to (9.34) is essential. So, 
Proposition 9.4 has the independent meaning. 
 
10. Attraction Sets Under the Restriction in 

the Form of Algebra of Sets 
 
In the following, we fix a nonempty set E, a TS ( ) H  
where  H  and a mapping E h H  Elements e  
E  are considered as usual solutions and elements y  
H  play the role of some estimates. The natural variant 
of an obtaining of y  is realized in the form ( )y e h  
where e E   But, we admit the possibility of the limit 
realization of y  This is natural in questions of asympt- 
otic analysis. In the last case, it is natural to use “asymp- 
totic constraints” in the form of a nonempty subfamilies 
of ( )P E   Then, we obtain constructions of Section 4 
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under X E Y   H  and f  h  But, we admit yet 
one possibility: along with “usual” AS, we use the sets  



1

( )[ ]

( ) [ ]

(alg)[ ] ( )

y

y

E P








    

    

   

H

h

 







  

 

        (10.1) 

Of course, we use remarks of the conclusion of the pre-
vious section. 

Proposition 10.1. If (alg)[ ]E  and ( )P   
then  



1

( )[ ] ( )

[ ]

oy

y


        



H

h

   


 (10.2) 

Proof. We use reasoning analogous to the proof of Pro- 
position 4.2. We denote by   the set on the right side 
of (10.2). Since ( ) ( )o

       (see Section 9), 
by (10.1)  

( )[ ]                (10.3) 

Let ( )[ ]oy        Then, by (10.1) oy H  and, 
for some ( )      

1[ ] oy


h               (10.4) 

Recall that [ ]o E  (see Section 9). Therefore, by 
(4.1) 1[ ] [ ]o h H  Then, (10.4) denotes that  

1( ) ( ) [ ]oN y     H fi h         (10.5) 

(see (3.5)). In addition, by the choice of   we have the 
inclusion     see (9.26). By (9.27), for some U  

( )o
     the inclusion  U  is valid. Then,  

1 1[ ] [ ] h h U  

As a corollary, by(3.3) and (10.5)  
1 1( ) ( ) [ ] ( ) [ ]oN y           H fi h H fi h U  

where 1[ ] [ ]oh HU  (see Section 9). Then, by (3.5)  

1[ ] oy


h U             (10.6) 

By definition of   we obtain that oy   Since the 
choice of oy  was arbitrary, the inclusion  

( )[ ]                 (10.7) 

is established. Using (10.3) and (10.7), we obtain the 
required equality  

( )[ ]               (10.8) 

From the definition of   and (10.8), we obtain (10.2).  
Recall that ( ) (alg)[ ]P E E  and therefore  

   ( ) ( ) ( ) ( )P E P P P E      H    

By definitions of Section 3, (6.6), and (9.26) we obtain 
that  

    [ ] ( ) ( )
o

oF E P E P P E     u    (10.9) 

From Propositions 4.2 and 10.1, we have (see (10.9)) the 
property:  

   
( )[ ]

( ) ( ) ( )

E

P E P P E



 

   

     

as H h

   

So, our new construction is coordinated with AS of Se- 
ction 4. Moreover, under (alg)[ ]E   we can con-
sider AS ( )[ ]E    as H h  for ( )P    

Proposition 10.2. If (alg)[ ]E  and ( )P   
then  

( )[ ] ( )[ ]A E        as H h    (10.10) 

Proof. We use (6.8). Choose ( )[ ]y        Then, 
y H  and, for some ( )o


      the convergence  

1[ ] y


 h               (10.11) 

is valid. Then, ( )o


    and     see (9.26). By 
(6.8) for some  [ ]F E  u  the equality 

      
is valid. Then,     As a corollary,  [ ]

o
F E   u  

Now, we return to (10.11). In addition, [ ]o E    
Therefore, 1[ ] [ ]o h H  and by (3.3)  

1( ) [ ] [ ]F    H fi h H  

From (3.5) and (10.11), we have the obvious inclusion  
1( ) ( ) [ ]N y      H fi h         (10.12) 

In addition, [ ]o E   and 1[ ] [ ]o
  h H  see (4. 

1). Since 
     the inclusion 1 1[ ] [ ] h h   is 

valid. As a corollary, by (3.3)  
1 1( ) [ ] ( ) [ ]         H fi h H fi h   

Using (10.12), we obtain the basic inclusion  
1( ) ( ) [ ]N y


     H fi h        (10.13) 

From (3.5) and (10.13), we obtain the following conver-
gence  

1[ ] y


h               (10.14) 

So,  [ ]
o

F E  u  has the property (10.14). Then, by 
Proposition 4.2  

( )[ ]y E       as H h  

Since the choice of y  was arbitrary, the required inclu- 
sion (10.10) is established. 

So, by (10.1) and (10.2) some “partial” AS are defin- 
ed. Of course, the case for which (10.10) is converted in 
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a equality is very interesting. For investigation of this 
case, we consider auxiliary constructions. In the follow-
ing, in this section, we fix (alg)[ ]E   So, ( )E  is 
a measurable space with an algebra of sets. In this case, 
we can supplement the property (6.8). Namely,  

( ) [ ]o F E    u          (10.15) 

Remark 10.1. We omit the sufficiently simple proof 
(10.15). Now, we are restricted to brief remarks. Namely, 
by ultrafilter  [ ]F E u  we can realize a finitely addi-
tive (0,1)-measure   on the family ( )P E  supposing 
that ( ) 1L   under L  and ( ) 0    under   

( ) \P E   In connection with such possibility, we use 
[9,(7.6.17)] (moreover, see [9,(7.6.7)]). The natural nar-
rowing v of   on our algebra   is finitely additive 
(0,1)-measure on   (of course, ( )   ). Therefo- 
re, for some ( )o

    by [9,(7.6.17)]   is defined 
by the rule  

    ( ) 1 ( ) 0 \A A & A A            (10.16) 

On the other hand, the family    realizes   by the 
obvious rule:  

     ( ) 1 ( ) 0 \ ( )A A & A A               

(10.17) 

From (10.16) and (10.17), the required equality   
   follows. Then, by the choice of   we have the 

inclusion ( )o
       

Using (6.8) and (10.15), we obtain that  

 ( ) [ ]o F E     u         (10.18) 

By (10.18) we establish the natural connection of  [ ]F Eu  
and ( )o

    Now, we consider some other auxiliary pr- 
operties.  

If [ ]o H  and z H  then we have the follow-
ing equivalence  

 ( ) ( ) ( )[ ]oz N z


    H fi    (10.19) 

Of course, we can use instead of   the corresponding 
image of a filter base in E  Indeed, by (4.1) and (10.19) 

[ ]o E z   H    

 1 1( [ ] ) ( ) ( ) [ ]oz N z


       h H fi h  (10.20) 

Moreover, in connection with (10.20), we note that 
[ ]o E z   H    

 1 1( [ ] ) ( ) ( )[ ]oz N z E



       h h fi  (10.21) 

Remark 10.2. Consider the proof of (10.21). Fix   
[ ]o E  and z H  Let 1[ ] z


h   Then, by (10.20)  

1( ) ( ) [ ]oN z     H fi h   

Therefore, for any ( )oG N z  , there exists B   
such that 1( )B G  h  As a corollary,  

 1 1 1( ) ( )B B G 
    h h h  

Then, 1( ) ( )[ ]G E
   h fi   Since the choice of G  

was arbitrary,  
1 ( ) ( )[ ]oN z E
      h fi   

So,    1 1[ ] ( ) ( )[ ]oz N z E



       h h fi   Let  

1 ( ) ( )[ ]oN z E
      h fi       (10.22) 

Choose arbitrary neighborhood ( )oG N z
    Then, by 

(10.22) 1( ) ( )[ ]G E    h fi   Therefore, for some B  
   the inclusion 1( )B G   h  is valid. In addition, 

1 1( ) [ ]B h h   and  

 1 1 1( ) ( )B G G     h h h  

Then, 1( ) [ ]G     H fi h   Therefore, ( ) (oN z  H  
1) [ ]  fi h   and by (10.20) 1[ ] z


h   So,  

   1 1( ) ( )[ ] [ ]oN z E z



       h fi h   

The proof of (10.21) is completed.  
We note that, in (10.21), we can use instead of   ar-

bitrary filter of ( )E   In this connection, we recall 
that by constructions of Section 5, for any ( )    
we obtain (in particular) that [ ]o E  and  

( )[ ] ( )[ ]E E F      fi fi      (10.23) 

Then, from (10.21) and (10.23), we have the following 
property: ( ) z   H     

 1 1( [ ] ) ( ) ( ) [ ]oz N z


       h H fi h  (10.24) 

Of course, (10.24) is the particular case of (10.21); in 
(10.23), we have the useful addition. We note that 

[ ] ( bas)[ ]o z Z z       H H     

 ( ) ( )[ ]z Z


    H fi      10.25) 

Remark 10.3. Fix [ ]oB z   H H  and (Z z   
bas)[ ]   Consider the proof of (10.25). By (3.4) and 
(3.5) we have the following implication  

 ( ) ( )[ ]z Z


    H fi      (10.26) 

Let ( )[ ]Z   H fi   Choose arbitrary ( )S N z   Th- 
en, by (2.18), for some Z Z   the inclusion Z S  is 
valid. Since  ( )[ ]Z   H fi   by filter axioms (see 3.1)) 

( )[ ]S   H fi   So, the inclusion ( ) ( )[ ]N z  H fi   
is established. By (3.5) we have the convergence 

z


  So,  
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 ( )[ ] ( )Z z


   H fi    

Now, with the employment of (10.26), we obtain (10.25).  
We note the following obvious corollary of (10.25) (in 

this connection, we recall (10.21)): [ ]o E z   H    

  



1

1

[ ] ( bas)[ ]

[ ] ( )[ ]

z Z z

Z E






    

  

h

h fi




   (10.27) 

Remark 10.4. Consider the proof of (10.27). We fix 
[ ]o E  and z H  Since ( ) ( bas)[ ]oN z z    (see 

(3.4) and definitions of Section 3), by (10.21)  

  



1

1

[ ] ( bas)[ ]

[ ] ( )[ ]

z Z z

Z E






    

  

h

h fi




    (10.28) 

Let the corollary of (10.28) is valid. Fix ( bas)[ ]z  Z  
with the property  

1[ ] ( )[ ]E   h fiZ           (10.29) 

Let ( )oN z   Then, by (3.4), for some   Z  the 
inclusion    is valid, where 1 1( ) [ ]  h h Z  By 
(10.29) 1( ) ( )[ ]E  h fi   and 1 1( ) ( )  h h   Fr- 
om (3.1) and (3.3), the inclusion 1( ) ( )[ ]E  h fi   
follows. Since the choice of   was arbitrary, the inclu-
sion  

1 ( ) ( )[ ]oN z E
     h fi   

is established. By (10.21) 1[ ] z


h   So, we obtain 
that  

 1 1( bas)[ ] [ ] ( )[ ]) ( [ ] )Z z Z E z


        h fi h   

Using the last implication and (10.28), we obtain the 
required property (10.27).  

Using (10.15), we obtain the obvious corollary of 
(10.27):  [ ]E zF   u H    

  



1

1

[ ] ( bas)[ ]

[ ] ( )[ ]

z Z z

Z E






     

   

h

h fi

 

 
  (10.30) 

Remark 10.5. Consider the proof of (10.30), fixing 
 [ ]EF u  and z H  Then, by (10.15) o

    
( )  In particular (see Section 9), [ ]o E     
Now, (10.30) follows from (10.27).  

Condition 10.1. 1( bas)[ ] [ ]z Z z Z       H h  
  
Remark 10.6. It is possible to consider Condition 10.1 

as a weakened variant of the measurability of h  The 
usual measurability of h  is not natural since   is 
only algebra of sets. 

Until the end of the present section, we suppose that 

Condition 10.1 is valid.  
Proposition 10.3. If Condition 10.1 is fulfilled, then 

( )[ ] ( )[ ] ( )A E P          as H h      
Proof. Let Condition 10.1 be fulfilled. Fix ( )P   
and ( )[ ]z E      as H h  Then, zH  and, for some 

 [ ]
o

F E u   
1[ ] z


h                (10.31) 

(see Proposition 4.2). Then, by (10.21) and (10.31) we 
have the inclusion 1 ( )oN z

     h   since ( )[ ]E  fi   
   by (3.1). As a corollary,  

 1 ( )N z
 h   

(indeed, for ( )H N z   we can choose ( )oG N z  su- 
ch that G H   therefore, by (2.1) 1( )G  h   

1 1( ) ( )G H  h h  and by (3.1) 1( )H h  ). By Con-
dition 10.1 there exists  ( bas)[ ]Z z    such that 

1[ ]Z  h   In addition,  

  1 1[ ] ( )Z N z
   h h          (10.32) 

therefore, 1[ ]Z   h    where by (10.15)    
( )o

    We recall that [ ]o E    (see Section 
9) and  

1[ ] ( )[ ]Z E      h fi     (10.33) 

Of course, by (4.1) 1[ ] [ ]o  h H   In addition, by 
(10.33)  

1( bas)[ ] [ ] ( )[ ]Z z Z E        h fi    

By (10.27) 1[ ] z


 h    Recall that     Since 
( )P   we obtain that       Therefore (see 

(9.26)),  

1( ) [ ]o z
     h      

By Proposition 10.1 ( )[ ]z        Since the cho- 
ice of z  was arbitrary, we have the inclusion  

( )[ ] ( )[ ]E          as H h     (10.34) 

Using (10.34) and Proposition 10.2, we obtain the equal-
ity  

( )[ ] ( )[ ]E E        as H h   

So, we can use (see Proposition 10.1 and Condition 
10.1) ultrafilters of the space ( )E  as nonsequential 
approximate solutions in the case, when a nonempty 
subfamily of   is used as the constraint of asymptotic 
character. This property is very useful in the cases of 
spaces ( )E  for which the set ( )o

   is realized 
effectively. In addition, for a semialgebra [ ]E  
with the property ( )o

Ea   (see Section 2), we con-
sider the passage  

( ) ( )o o
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as an unessential transformation (see [9,§7.6] and [16,§ 
2.4]; here it is appropriate to use the natural connection 
of ultrafilters and finitely additive (0,1)-measures). Then, 
after unessential transformations, the examples of [9,§ 
7.6] can be used in our scheme sufficiently constructive- 
ly.  
 
11. Ultrasolutions 
 
First, we recall some statements of [17]. In addition, we 
fix a nonempty set E and a TS ( ) H  where  H  
We consider the nonempty set  [ ]F E u  Suppose that 

E h H  Then, we suppose that  

   1( LIM) ] [ ] [ ].z z EF


       uh H h   (11.1) 

So, we introduce the limit sets corresponding to ultrafilt- 
ers of E  By analogy with Proposition 5.4 of [17] the 
following statement is established.  

Proposition 11.1. If ( top)[ ]c   H  then ( h  

  1LIM)[ ] cl( ( ) ) [ ]P E EF      uh     
Proof. Fix  [ ]EF u  Then 1[ ] [ ]oh H  and by 
(4.2)  

1( )[ [ ]] [ ]F   uH fi h H        (11.2) 

(recall that ( )[ ] )E   fi    Since ( )H  is a com-
pact TS, there exists yH  such that y


  see [9, 

ch. I]. Then, by (3.6) ( )N y    or  

1( ) ( ) [ ]N y     H fi h         (11.3) 

(see (11.2)). By (3.5) and (11.3) 1[ ] y


h   Then, by 
(11.1) ( LIM)[ ]y    h   So,  

( LIM)[ ]   h         (11.4) 

Let ( LIM)[ ]z    h   Then zH  and 1[ ]

h   

z By (3.5) and (11.2) ( )N z    In addition, by 
(11.2) 1[ ] h    Then, by (3.1)  

1( ) [ ]A B A N z B       h    

By (2.1) we obtain that  

 1( ) ( )U H U H N z       h     

Since U  and 1 1( ) ( )U Eh h  for U    we have 
the property:  

1( ) ( )E H H N z     h   

So,  1cl ( )z E   h  The inclusion  

 1( LIM)[ ] cl ( )E    h h  

is established. Using (11.4), we obtain that ( LIM)h  
 1[ ] cl( ( ) )P E    h  

We note the following obvious property too: if 


1(top) [ ] [ ]o F y      H H H  and 2y  H  then  

 1 2 1 2( ) ( ) ( )y & y y y
 

      (11.5) 

Remark 11.1. Let the premise of (11.5) be fulfilled. 
Then, by (3.6)  

   1 2( ) ( )N y & N y         (11.6) 

Then, 1 2y y   Indeed, suppose the contrary: 1 2y y   
Then, by (6.1), for some 1 1( )H N y  and 2H N  

2( )y   the equality 1 2H H   is valid. But, by 
(11.6) 1H   and 2H    Then, by (3.1) 1 2H H  
   The obtained contradiction means that 1 2y y  is 
impossible. So, 1 2y y   

Proposition 11.2. If ( top) [ ]oc   H  and   
ˆ [ ]EF u  then  

 ( LIM)[ ]z z       H h   

Proof. The corresponding proof is the obvious combina-
tion of (11.1), (11.5), and Proposition 11.1. Indeed, by 
Proposition 11.1 ( LIM)[ ]   h   and ( LIM)h  
[ ]  H  Let ( LIM)[ ]y    h   Then, yH  
and  

1[ ] y


h                 (11.7) 

Let ( LIM)[ ]z    h   Then, zH  and  

1[ ] z


h                  (11.8) 

For 1( ) [ ]    H fi h  F̂ u [ ]H , by (11.7) and (11.8)  

   ( ) ( )N y & N z      

So, by (3.6) y

  and z


  From (11.5) the 

equality y z  is valid. Then,  z y   The inclusion  

 ( LIM)[ ] y  h            (11.9) 

is established. But, by the choice of y  we have the 
inclusion   ( LIM)[ ]y    h   Using (11.9), we ob-
tain that  

 ( LIM)[ ] y   h   

The uniqueness of y  is obvious. 
From Proposition 11.2 the natural corollary follows: if 

( top) [ ]oc   H  then  
  



[ ] ( LIM)[ ] ( )

[ ]

F Eg g

F E

     

  

u

u

H h  


 (11.10) 

In the following, we postulate that  

( top) [ ]oc   H           (11.11) 

Then (see (11.10) and (11.11)), we suppose that  
 [ ][ ] EF

oH   uH             (11.12) 

is defined by the following rule: if  [ ]U F E u  then 



A. G. CHENTSOV 
 

Copyright © 2010 SciRes.                                                                                  IIM 

546 

[ ]( )oH  H  has the property:  

 ( LIM)[ ] [ ]( )oH    h        (11.13) 

We note that by (11.13) and Proposition 11.1  

  1[ ]( ) cl ( ) [ ]oH E F E     uh     (11.14) 

So, by (11.12) and (11.14)   1[ ] [ ] cl ( )oH F E E  u h  
   In this connection, we note the following typical si- 

tuation: under condition (11.11), 1( )E h H  and 1( )Eh  
( comp)[ ]  H  Of course, by (11.11)  

 1cl ( ) ( comp)[ ]E     h H  

Indeed, any closed set in a compact TS is compact too. 
Recall that  

 
 [ ]1[ ] cl ( )
F E

oH E   
u

h          (11.15) 

Returning to (11.1) and (11.13) we note that  

1[ ] [ ]( ) [ ]oH EF


    uh         (11.16) 

With the employment of (3.9), we introduce the natural 
immersion of E in  [ ]EF u  supposing that  

  ( ult)[ ] ( ult)[ ] [ ]E

x E
E E x EF
     u  (11.17) 

In connection with (11.17), we note the following obvi-
ous equality: 

[ ] ( ult)[ ]oH E   h       (11.18) 

Remark 11.2. Consider the proof of (11.18). Fix 
x E   By (3.9) we obtain that  

1( ) ( ) ( ult)[ ]x S S E x    h h      (11.19) 

So, by (2.1) and (11.19) we obtain the following prop-
erty: 

 1( ) ( ult)[ ]x T T E x    h h     (11.20) 

In addition, by (3.5), (3.9), and (11.16)  

 
 1

( [ ] ( ult)[ ])

( ) ( )[ ]

oN H E x

E ult x

   

     fi h
 

So,   [ ] ( ult)[ ]oN H E x     1 ( ult)[ ]T E x  h  
T   . Then, by (11.20) ( ) [ ]ox N H  h   
 ( ult)[ ] .E x  Using the separability of   (11.11), 
we obtain the equality chain  

 
 

( ) [ ] ( ult)[ ]

[ ] ( ult)[ ] ( )

o

o

x H E x

H E x





 

   

h

    
 

Since the choice of x  was arbitrary, we obtain that 
(11.18) is fulfilled. 

Proposition 11.3. If  [ ]EF u  then the following 
equality is valid:  

   1cl ( ) [ ]( )o
A

A H 


   h


  

Proof. Let [ ]( )ou H    Then uH  and by (11.16)  

1[ ] u


h   

Then, by (3.5) 1( ) ( ) [ ]N u     H fi h   Therefore, for 
any ( )T N u   there exists U   such that 1( )Uh  

T  (see (3.3) and (4.1)).  
Let A    Then, 1( ) ( )A P  h H  If ( )S N u   

then, for some SU    the inclusion 1( )SU Sh  is 
valid; moreover, SA U     and  

1 1 1 1( ) ( ) ( ) ( )S SA U A U A S       h h h h  (11.21) 

where 1( )SA U   h  So, 1( )A S   h  Since 
the choice of S  was arbitrary, we obtain that  

1( ) ( )A H H N u      h   

Therefore,  1cl ( )u A   h  Since the choice of A  
was arbitrary too, we have the inclusion cl

A

u


 


 
 1( )A  h  Therefore,  

   1cl ( )
A

u A 


   h


 

Choose arbitrary  1cl ( )
A

q A 


   h


 Then qH  and  

 1( ) ( )W A A W N q       h     (11.22) 

Then, for ( )W N q   we obtain the property W T  
1[ ]T    h   Using (3.3), we have the following 

statement:  
1( ) [ ]W M M         H fi h   

Therefore,  1( ) [ ] set [ ]W     H fi h H  (see Section 
5), where  

1( ) [ ] [ ]F    uH fi h H            (11.23) 

(we use (4.2)). In addition, using (6.6), (11.23), and sta- 
tements of Section 5, we obtain that  

 
 

1

1

1

( ) [ ] set [ ]

( ) [ ] set [ ] ( )

( ) [ ]

P

   

     

    

H fi h H

H fi h H H

H fi h







 

Therefore, 1( ) [ ]W     H fi h   Since the choice of 
W  was arbitrary, we obtain that  

1( ) ( ) [ ]N q     H fi h   

So, by (3.5) 1[ ] q


h   Then, we have the following 
properties:  

 1 1[ ] [ ]u & q
    

 
h h   
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By (11.5) u q   Then  q u   Since the choice of 
q  was arbitrary, we obtain that  

   1cl ( )
A

A u


   h


 

The opposite inclusion was established previously. Ther- 
efore,  u  and the intersection of all sets  1cl ( )A  h  
A   coincide.  

From (4.15) and Proposition 11.3 we obtain that  

  ( )[ ] [ ]( ) [ ]oE H EF        uas H h      (11.24) 

So, ultrafilters of E  realize very perfect constraints of 
asymptotic character. 
 
12. Ultrafilters of Measurable Space with 

Algebra of Sets 
 
In this section, we fix a nonempty set E, TS ( )  H H  
  and E h H  Moreover, we fix (alg)[ ]E   Fin- 
ally, we suppose that Condition 10.1 is fullfiled. Then, 
we have the statement of Proposition 3 and other state-
ments of Section 10. We suppose that (11.11) is valid 
also. So, we have the mapping (11.12). In addition, we 
have the natural uniqueness of the filter limit: (11.5) is 
fulfilled. Now, we supplement (11.5). Namely, o   

1 2[ ] y y   H H H    

 1 2 1 2( ) ( ) ( )y & y y y
 

        (12.1) 

Remark 12.1. For the proof of (12.1), we fix o  

1[ ] y  H H  and 2y  H  Let the premise statement of 
(12.1) is valid:   converges to 1y  and 2y . Then, for 

( )[ ] [ ]   uH fi H  F  (see (3.3)), the inclusions  

   1 2( ) ( )N y & N y     

are fulfilled. Therefore, by (3.6) the following two prop-
erties are valid:  

1 2( ) ( )y & y
 

    

By (11.5) 1 2y y   So, (12.1) is established.  
We recall (10.23) and (10.24): if ( )    then   

[ ]o E  and 1[ ] [ ]oh H  (see (4.1)). We use (10. 
15).  

Proposition 12.1. 1[ ] [ ]( ) [ ]oH F E


    uh       
Proof. Let [ ]F E  and [ ]( )oz H    Then z  
H  and by Condition 10.1, for some ( bas)[ ]Z z   , the 
inclusion 1[ ]Z h   is fulfilled. In addition, by (11. 
16) 1[ ] z


h   Since [ ]o E  and ( )E  fi  

[ ]  then  
1 ( )oN z
     h               (12.2) 

From (12.2) the inclusion  1 ( )N z
 h   follows 

(namely, for any  1 ( )S N z
 h  there exists 1T h  

( )oN z    such that T S   then, T   by (12.2) and 
S   by axioms of a filter). In addition, ( )Z N z   
Then,  

 1 1[ ] ( )Z N z
  h h   

and (by the choice of )Z  1[ ] ( )Z E    h fi   
[ ]    Since ( bas)[ ]Z z     by (10.27)  

1[ ] z


 h    

By definition of 1[ ] [ ]( )oz H


 h     
Proposition 12.2. 1( ) [ ]o z z

     H h      
Proof. Fix ( )o

    Using (10.18), we choose 
 [ ]F E u  such that  

                   (12.3) 

Then, by (11.12) [ ]( )oH  H  and by (12.3) and 
Proposition 12.1  

1[ ] [ ]( )oH


 h            (12.4) 

In addition, [ ]o E  and 1[ ] [ ]o h H  Therefore, 
by (12.1) and (12.4) y H   

   1[ ] [ ]( )oy y H


  h    

From Proposition 12.2, the obvious corollary follows; 
namely ( )og


  H    

1[ ] ( ) ( )og
   h       

Now, we suppose that the mapping  

[ ] ( )A o   HH             (12.5) 

is defined by the following rule: if ( )o
    then  

1[ ] [ ]( )A


 h  H              (12.6) 

From (10.15) and (12.5), the obvious property follows; 
namely, [ ]( ) [ ]A F E     uH   H   

Proposition 12. 3. [ ]( ) [ ]( )A oH        H  
 [ ]F E u  
Proof. Fix   uF E  Then, by (11.12) [ ]( )oH   H  
By (10.15) we obtain that ( )o

      In particu-
lar, [ ]o E    and by (4.1) 1[ ] [ ]o  h H   
From Proposition 12.1, we have the following conver-
gence  

1[ ] [ ]( )oH


 h             (12.7) 

Using Proposition 12.2, (12.1), (12.6), and (12.7), we ob- 
tain that [ ]( ) [ ]( )A oH     H  

Proposition 12.4. If ( )o
   and U    then 

 1[ ]( ) cl ( )A U   hH   

Proof. Using (10.18), we choose  [ ]EF u  such that 
      Then, by Proposition 11.3 we have the in-

clusion  
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 1[ ]( ) cl ( )oH U  h            (12.8) 

(we use the obvious inclusion U   realized by the 
choice of U ). By Proposition 12.3  

[ ]( ) [ ]( ) [ ]( )A A oH        H H  

From (12.8), the inclusion  1[ ]( ) cl ( )A U  hH  fol-
lows. 

We note that (see [11,12,13]) by (11.11) the space (H  
)  is regular: if x H  then  

( bas)[ ] ( )x       HCX X     (12.9) 

Proposition 12.5. The mapping (12.5) is continuous:  

 [ ] ( ) [ ]A oC E      T HH   (12.10) 

Proof. Fix ( )o
    Then, by (12.5) [ ]( )Az  H  

 H  In addition, by (12.6)  

1[ ] z


h                 (12.11) 

Of course, [ ]o E  and 1[ ] [ ]oh H  (see (4.1)). 
As a corollary, by (3.3)  

1( ) [ ] [ ]F     H fi h H       (12.12) 

From (3.5), (12.11), and (12.12), we obtain the following 
inclusion:  

( )N z                 (12.13) 

From (2.1), (3.3), and (12.13), we obtain that  

 1( ) ( )S N z U U S      h    (12.14) 

Fix ( )N z N  Using (12.9), we choose ( bas)Z z   
[ ]  such that ( )Z  HC  Then, by (3.4), for some 

Z F  the inclusion  

F N                 (12.15) 

is valid. Therefore, ( ) HF C  Of course, ( )N z F  
Therefore, by (12.14), for some U    

1( )  h U F               (12.16) 

In addition, ( ) ( )[ ]E  U   (see (5.4)). By (6.4) 
( ) [ ]E  U T   In addition, by (5.3) ( ) U  

Therefore,  

[ ]
( ) ( )o

E
N   

T
U


           (12.17) 

Choose arbitrary ultrafilter ( ) U  Then, o
   

( )  and  U   see (5.3). By Proposition 12.4  

 1[ ]( ) cl ( )A    h UH        (12.18) 

By the closedness of F  and (12.16)  1cl ( )   h U F  
So, from (12.18), we have the inclusion  

[ ]( )A   FH  

Using (12.15), we obtain that [ ]( )A   NH  Since the 
choice of   was arbitrary, the inclusion  

 1[ ] ( )  U N H            (12.19) 

is established. Since the choice of N  was arbitrary too, 
from (12.17), we obtain that  

 
1

[ ]

[ ]( )

( ) [ ] ( )

A

E

S N

T N T S

 



 

    
T







H

H
 

So, the mapping [ ]H  is continuous at the point U . 
Since the choice of U  was arbitrary, the required in-
clusion (12.10) is established (see [16], (2.5.4)). 

In connection with Proposition 12.5, we recall Propo-
sition 9.2 and known statement about the possibility of 
an extension of continuous functions defined on the ini-
tial space; in this connection, see, for example, Theorem 
3.6.21 of monograph [13]. For this approach, construc-
tions of Section 8 are essential. Of course, under corre-
sponding conditions, we can use the natural connection 
with the Wallman extension (see (8.27) and Proposition 
9.2). 

In this case, Proposition 12.5 can be “replaced” (in 
some sense) by statements similar to the above-mentio- 
ned Theorem 3.6.21 of [13] (of course, this approach re- 
quires a correction, since we consider ultrafilters of the 
measurable space). But, we use the “more straight” way 
with point of view of asymptotic analysis: we construct 
the required continuous mapping by the limit passage 
(see Proposition 12.5). We recall (9.24). Then, by (9.24) 
and (12.5) the mapping  

  
[ ] ( ult)[ ]

[ ] ( )[ ]
A

E
A x E

E

E ult x







   


H





H

H
  (12.20) 

is defined; moreover, E h H  
Proposition 12.6. The equality [ ] ( ult)A  h H  

[ ]E  is valid.  
Proof. Fix x E   Then by (11.17) ( ult)[ ]E x F  u  

[ ]E   In addition, by (11.18) the obvious equality fol-

lows:  

 ( ) [ ] ( ult)[ ]ox H E x  h        (12.21) 

Moreover, by (9.24) we obtain that  

( ult)[ ]( ) ( ult)[ ] ( )oE x E x          (12.22) 

Then, by Proposition 12.3 and (12.22) we have the eq- 
uality chain  

   [ ] ( ult)[ ]( ) [ ] ( ult)[ ] ( )A oE x H E x x     hH  

So,    ( [ ] ult[ ] ( ) [ ] ( )[ ]( )A E x ult E x     H H  

( )x h . Since the choice of x  was arbitrary, Ah H  

[ ] ( ult)[ ]E     

Since (9.7) is valid, from Propositions 12.5 and 12.6, 
we have the important corollary connected with Proposi-
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tion 5.2.1 of [9]: 

( ( ) [ ] ( ult)[ ] [ ])o AE E     T  H     (12.23) 

is a compactificator, for which (in the considered case)  


 

1( )[ ] [ ] ( )[ ( ) [ ]

( ult)[ ] ]) ( )

A oE E E

E P P E

   



       

   

as H h as T

 





H
(12.24) 

in (12.24) we use Proposition 3.1 and Corollary 3.1 of 
[18]. In addition,  ( ) ( )P P P E    Therefore, by 
(12. 24)  




1( )[ ] [ ] ( )[ ( ) [ ]

( ult)[ ] ] ( )

A oE E E

E P

   



       

   

as H h as T

 



 

H
(12.25) 

In (12.25), we have the important particular case. We co- 
nsider this case in the following section. 
 
13. Ultrafilters as Generalized Solutions 
 
We suppose that ( )E    H h  and   satisfy to the co- 
nditions of Section 12. We postulate (11.11). Finally, we 
postulate Condition 10.1. Therefore, we can use con-
structions of the previous section. In particular, (12.25) is 
fulfilled (the more general property (12.24) is fulfilled 
too). In connection with (12.25), the obtaining of more 
simple representations of AS  

( ) ( ) [ ] ( ult)[ ] ( )oE E E P          as T    

(13.1) 

is important. For this goal, we use the natural construc-
tion of Theorem 8.1 in [17]. Namely, we have the follo- 
wing  

Proposition 13. 1. If ( )P   then ( ) oE  as   
( ) [ ] ( ult)[ ] ( )oE E       T    

Proof. Let ( ) ( ) [ ] ( ult)[ ]oE E E         as T    
Then, by the corresponding definition of Section 4 (see 
(4.3)) ( )o

   and, for some net ( )D f   in the 
set E, 

 

 
[ ]

( ass)[ ]

( ( ult)[ ] )
E

E D f &

& D E f


    

   
T

 




     (13.2) 

Fix A  Then, by (13.2)  ( ass)[ ]A E D f      Us- 
ing (3.7), we choose 1d D  such that D    

 1( ) ( )d f A            (13.3) 

Of course,  ( )A P E   And what is more, A   In-
deed, let us assume the contrary:  

 \A                (13.4) 

Recall that     Therefore, A   By (9.1) and 
(13.4) we have the inclusion \E A   Then, by (5.4) 

( \ ) ( )[ ]E A E      In particular (see (6.4)),  

( \ ) [ ]E A E  T               (13.5) 

Moreover, by (5.3) ( \ )E A   Using (13.5), we 
obtain that  


[ ]

( \ ) ( )o

E
E A N   

T
           (13.6) 

where 
[ ] [ ]

( ) ( )o

E E
N N  

T T 
   From (13.6) and the 

second statement of (13.2) we have the following prop-
erty: there exists 2d D  such that D    

   2( ) ( ult)[ ] ( ) ( \ )d E f E A       (13.7) 

By axioms of DS there exists 3d D  for which 1d   

3d  and 2 3d d   By (13.3) 
3( )f d A   Moreover, by 

(13.7)  

  
3( ult)[ ] ( ) ( \ )E f d E A     

By (9.24)    3 3( ult)[ ] ( ) ( ult) ( )E f d E f d       
Therefore,  

  
3( ult) ( ) ( \ )E f d E A     

From (5.3), the inclusion   3\ ( ult) ( )E A E f d    
follows; in particular,   3\ ( ult) ( )E A E f d    By 
(3.9) 

3( ) \f d E A   So,  

   3 3( ) ( ) \f d A & f d E A    

We have the obvious contradiction. This contradiction 
means that (13.4) is impossible. So, A   Since the 
choice of A  was arbitrary, the inclusion     is 
established. Then (see (9.26)), ( )o

     So, we 
obtain the inclusion  

( ) ( ) [ ] ( ult)[ ] ( )o oE E E           as T    (13.8) 

Choose arbitrary ( )o
     Then, by (9.26)   

( )o
   and     By Proposition 9.4 and [9,(3.3.7)], 

for some net ( )g    in the set E , the convergence  
[ ]

( ( ult)[ ] )
E

E g


   
T

          (13.9) 

is fulfilled. Now, we use axiom of choice. Fix   
Then, by the choice of   the inclusion   is ful-
filled. Of course, by (5.4)  

( ) ( )[ ; ];E             (13.10) 

in addition, by (5.3)    . Since by (6.4) and 
(13.10)    *T E     we have the inclusion  

* [ ]
( ) ( )O

T E
N  


             (13.11) 

From (13.9) and (13.11), we have the property: for some 
d   we obtain that   . 

         ult .d E g       (13.12) 
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From (9.24) and (13.12), we have the following property: 
    

        ult .d E g          (13.13) 

By (5.3) and (13.13) we obtain that, for    with the 
property d   the inclusion    ultE g       
  is valid and, as a corollary, by (3.9)  g    So, 

 P E  and  

    1 2 1 2 2d d d d g d           

Then, by (3.7)   ass ; ;E g     Since the choice 
of   was arbitrary, the inclusion  

  ass ; ;E g              (13.14) 

is established. So, by (13.9) and (13.14) we obtain that 
the net  ; ; g   in the set E has the following proper-
ties:  

   

   
 *

ass ; ; &

& , , ult
T E

E g

E g

  

 
   

 




 

 

 
 

By definition of Section 4 (see (4.3))   ;E as  
      * *; ; ult ;o T E E     So, the inclusion  

          * * *; ; ; ult ;o oE T E E        as  

is established. Using (13.8), we have the required equal-
ity  

          * * *; ; ; ult ;o oE T E E        as  

From (12.25) and Proposition 13.1, we have the fol-
lowing  

Theorem 13.1. If '( )P   then, AS in ( )H  
with constraints of the asymptotic character defined by 
  is realized by the rule  

       1 *; ; ; ; .oE h   H  Has  

We note that, in Theorem 13.1, the set  *
o   

plays the role of the set of admissible generalized solu- 
tions.  
 
14. Some Remarks 
 
In our investigation, one approach to the representation 
of AS and approximate solutions is considered. This very 
general approach requires the employment of constructi- 
ons of nonsequential asymptotic analysis. This is conn- 
ected both with the necessity of validity of “asymptotic 
constraints” and with the general type of the convergence 
in TS. We fix a nonempty set of usual solutions (the sol- 
ution space), the estimate space, and an operator from the 

solution space into the estimate space. In the estimate 
space, a topology is given. Then, under very different co- 
nstraints, we can realize in this space both usual attaina- 
ble elements and AE. But, if usual attainable elements 
are defined comparatively simply (in the logical relat- 
ion), then AE are constructed very difficult. For last goal, 
extensions of the initial space are used. In addition, the 
corresponding spaces of GE are constructed. Ultrafilters 
of the initial space can be used as GE. But, the realizabil- 
ity problems arise: free ultrafilters are “invisible”. In add- 
ition, free ultrafilters realize limit attainable elements wh- 
ich nonrealizable in the usual sense. In this connection, 
we propose to use ultrafilters of (nonstandard) measur-
able space; we keep in mind spaces with an algebra of 
sets. But, it is possible to consider the more general con-
structions with the employment of ultrafilters. In our in- 
vestigation, ultrafilters of lattices of sets are used. On this 
basis, the interesting connection with the Wallman ex-
tension in general topology arises. 

It is possible that the proposed approach motivated by 
problems of asymptotic analysis can be useful in other 
constructions of contemporary mathematics. 
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