
Intelligent Information Management, 2010, 2, 262-277
doi:10.4236/iim.2010.23031 Published Online April 2010 (http://www. SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

A Collusion-Resistant Distributed Agent-Based
Signature Delegation (CDASD) Protocol for

E-Commerce Applications

Omaima Bamasak
Department of Computer Science, College of Computing and Information Technology, King Abdulaziz University,

Jeddah, Saudi Arabia
E-mail: obamasak@yahoo.co.uk, obamasek@kau.edu.sa

Received October 21, 2009; revised December 22, 2009; accepted February 5, 2010

Abstract

Mobile agent technology is promising for e-commerce and distributed computing applications due to its
properties of mobility and autonomy. One of the most security-sensitive tasks a mobile agent is expected to
perform is signing digital signatures on a remote untrustworthy service host that is beyond the control of the
agent host. This service host may treat the mobile agents unfairly, i.e. according to its’ own benefit rather
than to their time of arrival. In this research, we present a novel protocol, called Collusion-Resistant Distrib-
uted Agent-based Signature Delegation (CDASD) protocol, to allow an agent host to delegate its signing
power to an anonymous mobile agent in such a way that the mobile agent does not reveal any information
about its host’s identity and, at the same time, can be authenticated by the service host, hence, ensuring fair-
ness of service provision. The protocol introduces a verification server to verify the signature generated by
the mobile agent in such a way that even if colluding with the service host, both parties will not get more
information than what they already have. The protocol incorporates three methods: Agent Signature Key
Generation method, Agent Signature Generation method, Agent Signature Verification method. The most
notable feature of the protocol is that, in addition to allowing secure and anonymous signature delegation, it
enables tracking of malicious mobile agents when a service host is attacked. The security properties of the
proposed protocol are analyzed, and the protocol is compared with the most related work.

Keywords: Agent-Based Signature Delegation, Anonymous Digital Signature, Signature Fairness,

Collusion-Resistant Signature

1. Introduction

The widespread of the Internet and the powerful archi-
tecture of the World Wide Web (WWW) have trans-
formed the market standards and created many opportu-
nities for conducting business online (i.e. e-commerce).
Inline with the growth of e-commerce, there have been
rapid developments in the area of mobile agent, or soft-
ware entities that can autonomously perform a given task
in open, dynamic and heterogeneous environments. Inte-
grating mobile agents into e-commerce applications (e.g.
online shopping and auctioning) to automatically or
semi-automatically perform e-commerce tasks makes the
Internet reaches its full potential as an electronic market-
place. Users can set up mobile agents and dispatch them
to collect product information, process an order, join an

auction, pay for an order, deliver the goods, etc, instead
of performing the transaction manually.

As agent-based e-commerce technology becomes
more developed and standardized, we anticipate that
hundreds of mobile agents will be seamlessly embedded
in the WWW. Their autonomous nature and heterogene-
ous interactions among them dramatically reduce the cost
and time incurred in performing e-commerce transac-
tions. However, prior to fully enjoy the advantages
brought by the mobile agents, the risks and vulnerability
they may introduce are also inevitable. Various mobile
agents designed by different kind of programmers/
developers can work, interact, and also attack at anytime
from anywhere in the web, where the distance is close to
null and the transactions can be performed instantly. This
has made security an issue that must be considered and

O. BAMASAK

Copyright © 2010 SciRes. IIM

263

woven into any agent-based e-commerce environment.
One of the most security sensitive tasks a mobile agent

encounters in performing an e-commerce transaction is
to sign a digital signature on behalf of its owner (i.e.
agent host) autonomously on a service host. The service
host may not be trustworthy; for example, it may attempt
to steal the signature key and forge signatures for its own
benefit. On the other hand, service hosts, openly provid-
ing an execution environment for different kinds of mo-
bile agents, increases the possibility that they may be
attacked by malicious agents. In addition, the exposure
of the identities of agents and/or agent hosts may lead to
unfairness in service provision. For example, in an online
auction activity, a service host may favor a particular
mobile agent (if its identity is known) and grant it a
higher priority in service provision over other mobile
agents.

To overcome some of these security problems, a
Trusted Third Party (TTP) based approach has been
widely used in which a TTP is employed to assist the
execution and completion of a electronic transaction (e.g.
digital signature protocols) or to resolve any disputes
incurred during the transaction process [1-15]. During
the execution of a digital signature protocol, the TTP
could provide a protection for both the mobile agent and
the service host from attacks launched by its counterpart.
This is done by facilitating a fair exchange of the signa-
tures between the two signing parties and by preserving
the evidence of the transaction. As a mediator, the TTP
may have access to the signatures, the signed document,
or any related evidence. Therefore, any collusion be-
tween the TTP and one of the signing parties will result
in undesirable consequences in which the other party will
be left in a disadvantage position.

To prevent collusion, and to ensure fairness, in which
all the mobile agents are treated equally by the service
host [16], mobile agents should be anonymous during the
course of a transaction execution. Therefore, how to
achieve identity authentication and how to ensure that
the agents behaviors are accountable, while, at the same
time, preserving identity anonymity of mobile agent, are
an open research issue. The scope of the research pre-
sented in this paper is to address the above mentioned
issues by investigating and designing effective mecha-
nisms that provides a secure and fair mobile agent-based
signature delegation environment.

This research addresses this open issue by designing a
solution that splits the duties of the TTP, (e.g. partial
signature generation and signature verification as pre-
sented in [2]), to be undertaken by two separate entities
(TTP and Verification Server VS). The separation is de-
signed in such a way that even if the VS and the service
host collude, they will not get more information than
each party already have. The solution also incorporates
blind signature scheme proposed by Chaum [17] to
achieve agents’ identity anonymity, and hence, facilitate

the fairness property mentioned above.
The research presented in this paper is aimed at

achieving the following objectives:
1) To identify security requirements for collu-

sion-resistant and fair agent-based signature delegation.
2) To investigate and critically analyze related work in

the context of agent security and signature delegation.
3) To advance the state-of-the-art by designing a se-

cure, efficient and viable solution to collusion-resistant
and fair signature delegation in the agent environment.

4) To evaluate the security of the designed solution
using informal analysis.

5) To prototype the design and evaluate its perform-
ance.

This research has made the following advances to the
state-of-the-art. It has addressed the mobile agent-based
anonymous signature delegation issue by presenting a
novel Collusion-Resistant Distributed Agent-Based Sig-
nature Delegation (CDASD) protocol, which incorpo-
rates three methods as its building blocks, namely, Agent
Signature Key Generation method, Agent Signature
Generation method, Agent Signature Verification me-
thod. The protocol makes use of Chaum’s blind signature
scheme [17] to allow for a trusted third party (TTP) to
blindly certify the mobile agent signature key for mobile
agent’s anonymity. The mobile agent, while residing at
the service host, does not reveal any information about
its host’s identity, which deprive the service host from
favoring a mobile agent on the others, hence, ensuring
fairness of service provision. A mechanism is introduced
to track down malicious mobile agents and penalize their
hosts accordingly. The protocol also provides non-repu-
diation of signature generation and receipt so that neither
the mobile agent and its host nor the service host can
deny generating and receiving the signature, respectively.
The duties of the TTP, (e.g. partial signature generation
and signature verification as presented in [2]), is split to
be undertaken by two separate entities (TTP and Verifi-
cation Server VS). The separation is designed in such a
way that even if the VS and the service host collude, they
will not get more information than each party already has.
Security-sensitive messages exchanged between proto-
col’s parties are signed and encrypted to prevent unau-
thorized disclosure or tampering with the contents of
these messages.

The remaining of this paper is organized as follows:
Section 2 provides a literature review and critical analy-
sis of the existing work in the area of fair and secure mo-
bile agent signature delegation. Section 3 captures the
requirements for secure and efficient collusion-resistant
distributed agent-based signature delegation solution and
presents the novel cryptographic building blocks that are
used to construct the solution to be presented in the next
section. Section 4 presents the design of the collu-
sion-resistant distributed agent-based signature delega-
tion solution, i.e. CDASD protocol, by integrating the

O. BAMASAK

Copyright © 2010 SciRes. IIM

264

cryptographic primitives presented in Section 3. Section
5 provides an analysis of the CDASD protocol against
the security requirements listed in Section 3. In order to
demonstrate the efficiency of the protocol, a comparison
has been conducted with the most related protocol in
terms of the computational cost. Section 6 provides an
overall conclusions and recommendations for future
work.

2. Literature Review

As our work is about delegating signing power to mobile
agents and incorporating a TTP to assist in e-transaction
execution while preserving the fairness property by using
blind signature and anonymous agents, existing work in
these areas are reviewed and analyzed in this section.

2.1 Proxy Signatures

A proxy signature is a signature scheme in which an
original signer delegates his/her signing capability to a
proxy signer. When a receiver verifies a proxy signature,
he verifies the signature itself as well as the original
signer’s delegation. In our context, the original signer is
the agent owner, who delegates his signing capability to
the mobile agent for it to execute authentic operations in a
remote host on behalf of the agent owner.

The concept of proxy signature was first introduced by
Mambo et al. [27]. They classified proxy signatures
based on delegation type as full delegation (giving the
original signer’s private key itself), partial delegation
(issuing a new key pair), and delegation by warrant (is-
suing a certificate stating the delegation information).
Since then, various methods of constructing proxy sig-
natures have been proposed [28-38]. As full delegation is
not secure for the agent-based signature delegation and
partial delegation is more efficient than delegation by
warrant, in this research, we will adopt a proxy signature
scheme with partial delegation due to its most relevant to
our work.

2.2 Trusted Third Party (TTP)

The benefits of using a TTP to assist electronic transac-
tions (e.g. signature signing) are two-fold [1-15]. Firstly,
the TTP can mediate during the execution of a signature
exchange protocol so as to achieve a number of security
properties such as fairness of transaction outcome and
non-repudiation without incurring too much computation
costs on the two signing parties. Secondly, it can act as a
witness for dispute resolution by preserving evidence of
the signing. Broadly speaking, there are two types of
TTPs. The first is an online TTP [7,9,14], which is heav-
ily involved in the signature signing process, collecting
signatures on a document from respective parties, veri-
fying the signatures, and forwards them to their respec-

tive counterparts. The on-line TTP also maintains evi-
dence of the transaction. With this on-line based TTP
approach, the TTP has access to all the transaction de-
tails and contents, and without the presence of the TTP,
signing is not possible. Furthermore, any compromise of
the TTP or colluding between the TTP and one of the
signing parties may lead to severe consequence to the
other party. So the TTP is potentially a performance and
security bottleneck.

To reduce the involvement of the TTP in the signature
signing process, and to minimize the trust on the TTP,
thus overcoming the above mentioned weaknesses, the
concept of offline TTP has been proposed [1,3,5,6,10,15].
In the offline TTP based approach, the TTP is only in-
voked when the signing parties themselves could not
reach to a successful completion of the signature signing.
In other words, only when a dispute arises, e.g. when one
of the parties can not obtain the expected item from the
other due to network failures or the other party’s misbe-
havior, the off-line TTP is invoked to recover the neces-
sary information (e.g. signatures) and to assist the ex-
change to come to a fair completion. The exemplar sig-
nature protocols using the off-line TTP-based approach
include Bao’ protocol [3] that employs the concept of
Certificate of Encrypted Message Being a Signature (CE
MBS) to convince people that an encrypted message
contains a party’s signature without revealing the signa-
ture. This CE MBS proof can be established by an inter-
active zero-knowledge proof or a non-interactive proof
[11]. This proof is considered as the evidence that can be
used to prove the existence of other party’s signature.
Although the evidence is not a formal type of signature,
it discloses significant information. Furthermore, the
work presented in [13] describes a method to prevent the
offline TTP from gaining the exchanged signatures and
the corresponding message to be signed when a dispute
occurs between the two parties. The protocol also pre-
vents a party from misusing evidence left during the ex-
change process. These properties are provided by using
two ideas: the secret divide method and the convertible
signature.

2.3 Anonymous Agent and Fairness

Another concern in mobile agent based e-commerce
environment is maintaining fairness of service provi-
sion principle, which is defined in [16] as “the equal
treatment of authenticated mobile agents by service
hosts”. If this fairness principle were followed, service
host, such as merchant hosts and auction hosts, would
process the requests from authenticated mobile agents
according to their time of arrival rather than according
to the service hosts’ own benefit. Otherwise, the fair-
ness principle is violated and the ideal environment of
e-commerce in which authorized participants are as-
sumed to be competing fairly against each other will no

O. BAMASAK

Copyright © 2010 SciRes. IIM

265

longer be ensured. The work in [16] proposed a mobile
agent environment in which the above notion of fair-
ness is preserved as well as offering a protection for
service hosts from being attacked by malicious un-
known mobile agents. In this work, the blind signature
concept proposed by Chaum [17] is utilized to provide
agent anonymity for fairness service. A tracking service
is also used to penalize the misbehaving mobile agent.
However, this approach requires that the mobile agent
gets a signed permission from a service host on the ser-
vices it offers prior to the actual migration for executing
its tasks. In addition of being considered as extra com-
munication overhead, this results in the service host’s
ability to link the mobile agent’s identity with its per-
mission and thus, violating the agent anonymity. This
approach also extensively use public/private keys for
encryption and digital signatures.

The work presented in [18] also provides mobile agent
anonymity framework. It uses agent identity encryption
to hide the identity of the agent and controls access to
services and resources by allocating privileges based on
partially blind signature. However, this scheme does not
provide a mean to track down and penalize a misbehav-
ing anonymous mobile agent.

3. The Design of Secure and Anonymous

Mobile Agent-Based Signature Delegation
Building Blocks

This section presents our novel cryptographic building
blocks that are used to construct our secure and efficient
collusion-resistant distributed agent-based signature
delegation solution, i.e. the CDASD protocol, to be pre-
sented in the next section. These cryptographic building
blocks are: Agent Signature Key Generation method,
Agent Signature Generation method, and Agent Signa-
ture Verification method. In detail, Subsection 3.1 speci-
fies the security requirements for fair signature genera-
tion process performed by a mobile agent in a service
host. Subsection 3.2 outlines design principles for the
cryptographic primitives and the assumptions on which
the design is based. Subsection 3.3 gives the notations
used in the description of the cryptographic building
block and the protocol and a brief description of
Chaum’s blind signature scheme. Subsection 3.4 presents
a detailed description of the proposed cryptographic
building blocks.

3.1. Requirements Specification

As this paper describes the design of a Collusion-
Resistant Distributed Agent-Based Signature Delegation
(CDASD) protocol, the following lists security and func-
tional requirements the CDASD protocol is aimed at
satisfying.

3.1.1. Security Requirements
S1) Verifiability of the signature: Validity of the signa-
ture generated by the mobile agent on a document M can
be verified using public parameters.

S2) Unforgeability of the signature: It is difficult for
any other entities than the agent’s owner and the agent
itself to generate a valid signature on the specified
document.

S3) Non-repudiation of signature origin: It is difficult
for an original signer (i.e. the agent host) to falsely deny
that it has delegated the signing power to the agent.

S4) Non-repudiation of signature receipt: It is difficult
for a signature recipient (i.e. the service host) to falsely
deny that it has received the signature, if this signature is
taken as the proof of a deal conducted by the mobile
agent and the recipient.

S5) Collusion-resistance: it should be difficult for the
VS and the service host, if collude together, to get any
advantage over a mobile agent and the agent host.

S6) Unlinkability: Deciding whether two different
valid signatures were computed by the same mobile
agent is computationally hard.

S7) Anonymity: The real identity of a mobile agent
should not be revealed to any party other than the agent
host itself.

S8) Fairness of service provision: The service host
should only process requests made from authenticated
mobile agents and on the first-come-first-serve basis.

S9) Agent Host and Mobile agent Accountability: Any
misbehavior by a mobile agent should be detectable and
its host will be accounted for.

3.1.2. Other Requirements
P1) Protocol efficiency: The computational and commu-
nication overheads introduced as the result of using the
distributed approach to the role of the TTP should be
kept as low as possible.

3.2. Design Principles

The design of our CDASD protocol is based upon the
following hypothesis, i.e. if the service provider, i.e.
TTP/verification service and service host, can not link a
request for the service to the identity of the service re-
questor (i.e. a mobile agent or agent host), then it would
be more difficult, or less likely, for the service provider
to collude with any of the service requestors to gain un-
fair advantages over other service requestors.

To realize the above mentioned hypothesis, a number
of design principles, i.e. measures, have been taken into
account in the protocol design. They are listed in the fol-
lowing:
 Measure 1. The mobile agent signature key is gen-

erated in such a way that it does not reveal any informa-
tion about the agent host or the mobile agent identities. It
is also one-time, i.e. a key is used to generated only one

O. BAMASAK

Copyright © 2010 SciRes. IIM

266

signature. This supports the unlinkability of signatures
property.
 Measure 2. The blind signature scheme proposed

by Chaum [17] is used in our protocol to allow for the
TTP to blindly certify the mobile agent signature key
without having knowledge neither of the key nor of the
mobile agent’s identity. Thus, supporting anonymity of
the mobile agent. However, the service host needs to
authenticate the arriving mobile agents so as to provide
them with the services they request. To solve this di-
lemma, i.e. making the mobile agent anonymous and, at
the same time, can be authenticated, the TTP (the party
that is trusted by all other parties of the protocol) certi-
fies, i.e. signs, the agent’s signature key. Thus, the ser-
vice host will use this signature as a mean to authenticate
the mobile agent.
 Measure 3. The signature generated by the mobile

agent can only be verified by the verification server
through the use of a commitment generated by the agent
host, rather than the agent host’s public key correspond-
ing to the signature key used to generate a conventional
signature. By doing so, we deliberately deprive the ser-
vice host from this signature verification capability in
order to achieve non-repudiation of service requests and
provisions.
 Measure 4. A penalty system is applied on a mis-

behaving mobile agent and its host. After each transac-
tion is completed, the service host assigns a feedback
flag to the transaction and sends it to the TTP. The values
given are dependent on the outcome of the transaction,
i.e. signature generation process, performed by the mo-
bile agent. For example, if the transaction outcome is
positive, the flag value will be ‘Success’; if the outcome
is negative due to the signature not passing the verifica-
tion process, then the flag value will be ‘Attack’; and if
the outcome is negative due to any other reasons, then
the flag value will be ‘Failure’. The TTP, upon receiving
the outcome value, updates the status of the correspond-
ing AH. That is, if the TTP receives ‘Attack’ as an out-
come flag, it will increment agent host’s associated
counter of malicious incidence. When this counter
reaches a certain threshold specified by the TTP, i.e. five
incidences, this agent host will be blacklisted and the
TTP will refuse to provide it with any service in the fu-
ture. This measure will deter the agent host from sending
mobile agents to service hosts for malicious purposes.

3.3. Preliminaries

In this section, we outline the notion used in the protocol
description and the assumptions on which the protocol is
designed. This is followed by outlining Chaum’s blind
signature scheme as it is incorporated in the generation
and certification of a mobile agent’s signature key to
facilitate agent anonymity.

3.3.1. Notation
 H(x) is a one-way collision-free hash function that

takes a variable sized input (x) and produces a fixed-size
output (digest). It should have the following properties:
(1) for any x, it is easy to compute H(x); (2) given x, it is
hard to find x’ (≠x) such that H(x) = H(x’); and (3) given
H(x), it is hard to compute x. SHA-1 [20] is an example
of such a one-way hash function.
 Sign({dI, n}, M) denotes a signature of party I on an

item M (e.g. a hash value of a document) using the RSA
signature scheme [19] with a private key {dI, n} of I.
RSA is based on two large prime numbers (p and q),
which are multiplied together to get the public modulus
n. Party I calculates f(n) = (p-1) (q-1) and chooses eI to
be relatively prime to f(n) and less than f(n). Party I then
determines dI such that dI×eI = 1 mod f(n) and dI < f(n).
The public key is {eI, n} and the private key is {dI, n}.
The signature of party I on message M with its private

key is expressed as Sign({dI, n}, M) = () modIdH M n .

 Verify({eI, n}, SI, M) denotes the result of the veri-
fication of party I’s RSA signature SI = Sign({dI, n}, M)
on M with I’s public key {eI, n}. To verify the signature,
the receiver first computes the hash value of M’ received,

H(M’), and then calculates mod ()I I Ie e d
IT S n H M .

mod ()n H M It then compares H(M’) with T and, if

the two values are equal, the signature is considered
valid, which is expresses as Verify({eI, n}, SI, M) = true,
otherwise, Verify({eI, n}, SI, M) = false.
 E({eI, n}, M) denotes an encryption of item M using

the RSA encryption scheme [19] with the public key {eI,
n} of party I.
 D({dI, n}, M) denotes a decryption of item M using

the RSA encryption scheme [19] with the private key {dI,
n} of party I.

 A E B: m denotes that party A sends a message
m to party B via an external channel such as a telecom-
munication network.

 A I B: m denotes that party A sends a message
m to party B via an internal message passing mechanism.
This case applies when both A and B resides at the same
host.
 IDI, I {AH, SH, MA, TTP, VS}, denotes party I’s

unique identity, where AH denotes Agent Host, SH ser-
vice host, MA mobile agent, VS verification server.
3.3.2. Assumptions
 Every party or host I {AH, SH, TTP, VS} partici-
pating in the protocol execution has a pair of RSA public
and private keys {eI, n} and {dI, n}, as defined in Sub-
section 3.3.1. The public key {eI, n} is certified in the
form of a digital certificate Cert(I) signed by a certifica-
tion authority (CA), which is trusted by all parties.
 Parties AH and SH have each TTP’s and VS’s public

key certificate Cert(I). The TTP and VS also have the

O. BAMASAK

Copyright © 2010 SciRes. IIM

267

public key certificates of each other and of the parties
participating in the protocol, i.e. AH and SH. These cer-
tificates will play a role in authentication and secure
communications between these parties.
 Parties AH and SH may not have mutual trust. That

is, either of them may misbehave in order to gain some
advantages over the other party. For example, party SH
may try to use MA’s signature key to sign more that one
deal for which AH (i.e. the user) will be held responsible.
TTP and VS are introduced in the protocol to assist MA’s
signature verification and to store transaction evidence
for dispute resolution. It is assumed that TTP and VS will
not misbehave or collude with each other or with any
other party.
 Req represents the service required by AH which

MA is delegated to perform on service host SH. For ex-
ample, Req typically includes service name, validity pe-
riod and transaction-specific information (e.g. good type,
price, etc).
 Party AH (Agent Host) delegates his mobile agent

MA to perform some tasks and sign a document M on a
service (remote) host SH. Typically, M is the service
(e.g. offer) presented by SH that conforms to Req.

SH is assumed to provide mechanism to protect the
mobile agents it hosts from being eavesdropped on their
contents and execution flows by other agents hosted also
by SH. SH can use existing solutions, e.g. tam-
per-resistant hardware [22] and time limited blackbox
security [23], to provide such mechanisms.

3.3.3. Blind Signatures for Untraceable Payments
Chaum proposed a blind signature scheme [17] for un-
traceable payments based on the RSA public-key cryp-
tographic system [19]. The signature scheme allows a
person to get a message signed by another party without
revealing any information about the message to the sign-
ing party. The scheme works as follows. Assume that
Alice has a message M on which she wishes to have
Bob’s signature, and Alice does not want Bob to learn
anything about M during the signing process. Let {(e, n)
(d, n)} be Bob’s public and private keys, respectively.
The scheme defines the following steps to generate a
blind signature on M:

1) Alice generates a random number r such that gcd (r,
n) = 1, produces a message digest H(M) for message M
using a hash function H(), and sends x = re ×H(M) (mod
n) to Bob. The value of H(M) is “blinded” by the random
value r, hence Bob can derive no useful information
from it.

2) Bob signs x using his private key and return the
signed value t = xd (mod n) to Alice.

3) Since xd = (re × H(M))d = r × H(M)d (mod n), Alice
can obtain Bob’s signature S on M by “unblinding” the
value t by computing S = t r-1 (mod n).

3.4. The CDASD Protocol Building Blocks

The Collusion-Resistant Distributed Mobile Agent-Bas-
ed Signature Delegation (CDASD) protocol is built upon
three novel cryptographic methods: the Agent Signature
Key Generation Method, the Agent Signature Generation
Method, and the Agent Signature Verification Method.
The protocol is initiated by the user (represented by an
AH) who executes, in cooperation with the TTP, the
Agent Signature Key Generation Method, to generate a
certified mobile agent signature key SMA using agent’s
anonymous ID (Anony-IDMA) and Chaum’s blind signa-
ture scheme. Using the Agent Signature Generation
Method and the signature key, SMA, the mobile agent
generates a signature on an offer made by a service host,
SH. Once the signature is generated, (only) the Verifica-
tion Server, SV, can verify the correctness of the signa-
ture by using the Agent Signature Verification Method.
These three methods are described in detail below.

3.4.1. Agent Signature Key Generation Method
The Agent Signature Key Generation Method is executed
by the AH with the assistance of the TTP to generate its
signature key SMA. In addition, as mentioned in Subsec-
tion 3.2 (Design principles), we have devised an idea of
using a commitment generated by the signature key gen-
erator AH (instead of using its public key) for the agent
signature verification, The following gives the details as
how the signature key SMA and the commitment CommMA
are generated by AH. The commitment CommMA will be
used by the signature verifier (VS) to verify the signature
to assure that SignMA(Doc) has indeed been generated by
using the correct signature key SMA, the signature is gen-
erated only once using the signature key SMA, and that the
signed document meets the user’s requirements Req. For
an AH to generate an agent signature key and the corre-
sponding commitment, it performs the following calcula-
tions.

1) The agent host, AH, first generates an anonymous
identity (Anony-IDMA) for the mobile agent MA.

2) AH then generates a random number r, uses r to
blind the hash value of the agent’s anonymous identity
and sends it to the TTP after being encrypted with TTP’s
public key (as Chaum’s blind signature algorithm). That
is,

() TTPe
MAZ H Anony ID r

3) TTP, upon the recipient of the request from AH,
blindly signs Z, and sends it back to AH.

()

()

TTP TTP TTP TTP

TTP

d d e d
MA

d
MA

T Z H Anony ID r

H Anony ID r

Here, TTP has signed Z without knowing its contents.
4) AH unblinds T to reveal MA’s signature key SMA:

O. BAMASAK

Copyright © 2010 SciRes. IIM

268

/ (()) /

()

TTP

TTP

d
MA MA

d
MA

S T r H Anony ID r r

H Anony ID

SMA is the signature key to be used by MA to sign
documents on SH on behalf of AH. It can be seen that
SMA represents TTP’s signature on MA’s anonymous
identity.

5) AH also constructs a commitment CommMA con-
taining four items: hashed MA’s anonymous ID
H(Anony-IDMA), Bond (to be described in Subsection 4.1),
Req, and the key’s validity period (lifetime), signed with
AH’s private key (i.e. Sign({dAH, n}, H(Anony-IDMA),
Req, Lifetime) = ((), Re ,MAH H Anony ID q lifeti -

) modAHdme n). When AH dispatches MA, it sends

CommMA to VS for signature verification purpose.

3.4.2. Agent Signature Generation Method
MA, residing at SH, generates a signature on document

Doc using SMA, i.e. () modH Doc
MAD S n , where SignMA

(Doc) = (Doc, D) is MA’s signature on Doc.

3.4.3. Agent Signature Verification Method
The signature is verified by a Verification Server (VS)
using the method described below.

1) When SH wants to verify the signature
SignMA(Doc) generated by MA, it sends Doc signed with
its private key (i.e. Sign({dSH, n}, Doc) =

() modSHdH Doc n) together with MA’s signature on Doc

(i.e. SignMA(Doc) = (Doc, D)) to VS.
2) Upon the receipt of the these items, i.e. (Sign({dSH,

n}, Doc) || SignMA(Doc)), where || denotes concatenation,
VS performs the following computations:

a)
()

()

mod mod

() mod

TTP TTPTTP e d H Doce
MA

H Doc
MA

T D n S n

H Anony ID n

b) Computes the hash of Doc received in
SignMA(Doc), (i.e. H(Doc)), uses this freshly computed
hash value together with the hash value of the MA’s
anonymous ID received earlier from AH (i.e. H(Anony-
IDMA)) to compute Y = H(Anony-IDMA)H(Doc) mod n.

c) Check if T = Y; if positive, then the signature
SignMA(Doc) is valid.

4. The Collusion-Resistant Distributed

Agent-Based Signature Delegation
(CDASD) Protocol

This section presents the design of the CDASD protocol
by integrating the cryptographic primitives presented in
Section 3. In detail, Subsection 4.1 gives an overview of
the protocol’s environment. Subsection 4.2 presents a

detailed description of the CDASD protocol’s steps.

4.1. Protocol Overview

The protocol consists of five types of players, Agent
Hosts (AH), Mobile Agents (MA), Service Hosts (SH), a
Trusted Third Party (TTP), and a Verification Server
(VS), as shown in Figure 1. The roles played by each of
the players are detailed below.

1) An Agent Host (AH) performs the following three
tasks. Firstly, it captures and records the user’s shopping
requirements, generates an anonymous ID for the mobile
agent (Anony-IDMA), and blinds it before sends it to the
TTP for signature signing (i.e. for certification). Sec-
ondly, AH generates a Bond for the mobile agent, which
is the hash value of the concatenation of a random num-
ber and Anony-IDMA, that is, H(rand||Anony-IDMA). This
Bond maps to one and only one mobile agent ID (IDMA).
Once being sent to the TTP, the Bond will act as the
MA’s pseudonym and will be used to track down and
penalize a misbehaving MA. The third task is to initi-
atethe mobile agent and dispatch it to the SH that will pr-
service the AH requests. To accomplish the above tasks,
the AH has to record the user’s shopping requirements,
ovide the the certified signature key, the blinding factor,
the Bond and the lifetime, which is the validity period of
the certified signature key. Table 1 shows ‘Transaction
Information’ containing the above mentioned items.

2) A Mobile Agent (MA) is delegated by an AH to ac-
complish certain tasks on his behalf. This includes
searching SHs for the service required by AH, signing a
suitable offer with the certified signature key (SMA), and

 TTP (7-2) VS

 (1) (2) (3) (5) (6)

 AH SH

(1) MA signature key request.
(2) MA signature key delivery
(3) Verification-aiding items
(4) MA dispatch
(5) MA signature verification request
(6) MA signature verification response.
(7-1) MA return
(7-2) Transaction outcome

(4)

(7-1)

MA

Figure 1. The outline of the CDASD Protocol.

O. BAMASAK

Copyright © 2010 SciRes. IIM

269

returning back to AH.
3) A Service Host (SH) provides various services, for

example, data retrieving, providing product information,
selling goods, etc.

4) The Trusted Third Party (TTP) is responsible for
‘blindly’ certifying a MA’s signature key. TTP does not
have any knowledge of the signature key, thus preserving
the anonymity of the mobile agent and preventing collu-
sion between the TTP and the SH (further details can be
found in Subsection 5.2). In addition, TTP’s signature on
the key gives SH confidence that the key has come from
a trusted source although the entity carrying and repre-
senting the key (MA) is anonymous. TTP is also respon-
sible for identifying a misbehaving MA and then penal-
izing the corresponding AH. For doing so, TTP maintains
two tables: the AH-MA Relation table and the AH Trust
table. The AH-MA Relation table records AH’s identity,
MA’s certified signature key, the key validity period, the
Bond, and the Status. The Status field records the execu-
tion result of the protocol, e.g. ‘Success’, ‘Failure’, or
‘Malicious Attack’ on the visiting SHs. The AH Trust
table records the count of each AH’s malicious behavior.
In other words, it records how many mobile agents com-
ing from the same AH behave maliciously. As the TTP
records each MA’s behavior in the Status field of the
AH-MA Relation table, the TTP can count how many
MAs with the same AH acts maliciously and then record
the count result in the respective field in the AH Trust
table. The TTP decides an AH to be blacklisted, and
hence refuse to provide any service to it, when the count
reaches to a certain threshold (E.g. 5 attempts). Figure 2
shows AH-MA Relation table and AH Trust table.

5) The Verification Server (VS) is responsible for veri-
fying a signature signed by a MA using its certified sig-
nature key (SMA) with an aid of a commitment CommMA
that is sent earlier by AH. The VS maintains a table
named “Verification Information” containing the data
necessary for signature verification process together with

the verification outcome: the hashed MA’s anonymous
ID (H(Anony-IDMA)), the Bond value, the user shopping
requirements Req, the validity period of the usage of the
certified signature key SMA (Lifetime), the signature to be
verified SignMA(Doc), SH’s signed request Sign({dSH, n},
Doc), and the verification result (Pass/Fail). The table is
depicted in Table 2 below.

4.2. Protocol Description

This section describes the protocol designed using the
methods presented in Section 3. The protocol consists of
three phases: Certified Signature Key Acquisition, Ser-
vice Request & Signature Generation, and Signature
Verification.

Phase 1: Certified Signature Key Acquisition
In this phase, the AH initiates a protocol run by capturing
the user’s shopping requirements, generates a signature
key for the mobile agent MA and gets it certified anony-
mously by the TTP. The detailed description of Phase 1
is depicted as follows:
Step 1: The AH captures the user’ shopping requirements
Req. AH then executes steps 1 and 2 of the Signature
Key Generation method (Subsection 3.4.1) to generate an
anonymous agent ID (Anony-IDMA) and blind it with the
randomly generated number r. It then encrypts the result,

() TTPe
MAZ H Anony ID r , with TTP’s public key.

AH also generates a Bond for a mobile agent, which is
the hash value of the concatenation of a random number
with Anony-IDMA, that is H(rand||Anony-IDMA). The AH
then initiates a certified signature key request (Cert-Key)
message that contains AH’s identity, Z, Bond, the signa-
ture key validity period Liftime, and Req. The message is
then signed with AH’s private key, encrypted with TTP’s
public key, and sent to the TTP:

T1: AH E TTP: E ({eTTP, n}, (Sign({dAH, n},
Cert-Key))

Where, Cert-Key = {IDAH, Z, Bond, Lifetime, Req}.

Table 1. Transaction Information table maintained by AH.

IDMA Anony-IDMA Blinding factor (r)
Requirement

(Req)
Certified signature key

(SMA)
Bond Lifetime

Table 2. Verification Information Table Maintained by VS.

H(Anony-IDMA) Bond Req Lifetime SignMA(Doc) Sign({dSH, n}, Doc) Verification Result

 AH-MA Relation Table

IDAH Blinded certified signature key (T) Validity Period Bond Status

 AH Trust Table

IDAH No.of Malicious Attempts Blacklisted

Figure 2. AH-MA Relation Table and AH Trust Table Maintained by TTP.

O. BAMASAK

Copyright © 2010 SciRes. IIM

270

Step 2: For the signature verification purpose, AH
executes step 5 of Agent Signature Key Generation
method (Subsection 3.4.1), i.e. generates a commitment
CommMA = Sign({dAH, n}, H(Anony-IDMA), Bond, Req,
Lifetime), encrypts it with VS’s public key for confiden-
tiality, and sends it to VS.

T2: AH E VS: E ({eVS, n}, CommMA)
Step 3: Once the encrypted and signed Cert-Key mes-

sage from AH in T1 is received, the TTP first decrypt the
message using its private key, i.e. D({dTTP, n},
(Sign({dAH, n}, Cert-Key)), and then performs the fol-
lowing verification:

Verification TTP-1:
a. Check the correctness of AH’s signature on Cert-

Key using AH’s public key as described in Subsection
3.3.1:Verify({eAH, n}, Sign({dAH, n}, Cert-Key)

b. Check, if IDAH exists in the AH Trust table, that it is
not ‘blacklisted’.

If the outcome of any steps of Verification TTP-1 is
negative, TTP terminates the protocol run and sends an
error message to AH stating the reason for protocol ter-
mination. If Verification TTP-1 (a) is positive and IDAH
does not exist in both AH-MA Relation and AH Trust
tables (i.e. first request), the TTP creates a new record for
IDAH in both tables and stores the contents of Cert-Key
message in the AH-MA Relation table. If Verification
TTP-1 (a) is positive and IDAH exists in both AH-MA
Relation and AH Trust tables, TTP updates table
AH-MA Relation with the contents of the new Cert-Key
message. In both the latter cases, TTP certifies the sig-
nature key Z by blindly signing Z with its private key,
encrypts it with AH’s public key, and performs transac-
tion T3. That is,

Step 4: AH, upon the receipt of message T3, decrypts
its contents using its private key, i.e. D({dAH, n}, E({eAH,
n}, (Sign{dTTP, n}, Req, Bond, Lifetime), T), and then
performs the following tasks:

a) Check the correctness of TTP’s signature on Req
using TTP’s public key as described in Subsection 3.3.1:
Verify({eTTP, n}, Sign({dTTP, n}, Req).

b) Unblinds T to reveal MA’s signature key SMA, i.e.

/ (()) /

()

TTP

TTP

d
MA MA

d
MA

S T r H Anony ID r r

H Anony ID

SMA is the signature key to be used by MA to sign
documents on SH on behalf of AH. SMA is also TTP’s
signature on MA’s anonymous identity. SMA reveals nei-
ther AH’s nor MA’s identities, thus, preserving the ano-
nymity of MA and its source (AH) and hence supports the
fairness property.

Phase 2: Service Request & Signature Generation
Prior to a service requisition, a user would need to

know what services are provided by which SHs. It is as-
sumed in this protocol that there is a public directory (e.g.

yellow pages) server responsible for the discovery of
services provided by SHs. Therefore, users (or their re-
spective AHs) can discover which SHs performs what
services via the directory service.

So at this phase, the AH sets up a mobile agent MA
and dispatches it to the corresponding SH(s) where the
MA will generate a signature on the document represent-
ing the required service. This process can be described in
three steps as follows:

Step 5: The user creates a mobile agent MA on his AH
and supplies it with the following four items: (1) the
itinerary (i.e. identities or IP address(s) of the SH(s) to be
visited); (2) Req signed by the TTP, received in T3; (3)
the certified signature key SMA, and (4) the Bond. AH
then dispatches MA in to the network to migrate to the
the SHs, and to ask the SHs for services that meet Req.
The AH records mobile agent’s true identity IDMA,
anonymous identity Anony-IDMA, blinding factor r, user
requirements Req, certified signature key SMA, Bond, and
Lifetime in the related fields in the Transaction Informa-
tion table.

T4: :EAH SH MA
Step 6: Upon the receipt of T4, SH provides MA with

an execution environment to execute its task. MA starts
its execution by sending the following message to SH:

T5:
:

({ , }, Re , , ,)

I

TTP MA

MA SH

Sign d n q S Bond Lifetime

Upon receipt of T5, SH performs the following verifi-
cation:

Verification SH-1:
a) Check the correctness of TTP’s signature on T5 us-

ing TTP’s public key as described in Subsection 3.3.1:
Verify({eTTP, n}, Sign({dTTP, n}, Req, SMA, Bond, Life-
time).

b) Check the user requirements specified in Req to as-
sess if SH is able to provide the service (i.e. an offer) that
conforms to Req.

c) Check if the arrival time of T5 is within the validity
period Lifetime.

The purpose of Verification SH-1 is to authenticate the
mobile agent MA and to ensure accountability. For ex-
ample, if AH claims that the Offer (see T6 next) does not
conform to the requirements specified in Req after the
transaction is completed, SH can produce the signed Req
to resolve the dispute. If the outcome of any part of Veri-
fication SH-1 is negative, SH would terminate the proto-
col run and send an error message to MA. Otherwise, if
all parts of Verification SH-1 are positive, SH signs the
Offer using its private key and give it to the authenticated
MA, i.e.

T6:
({ , },)

:

I SHSign d n Offer
SH MA

Error Message

O. BAMASAK

Copyright © 2010 SciRes. IIM

271

Step 7: MA in this stage will either have received an
error message or the signed Offer. If the error message is
received, MA will migrate to the next SH in its itinerary
to continue its search for a suitable offer. Otherwise, MA
performs the following verification:

Verification MA-1:
a) Check the correctness of SH’s signature on Offer

using SH’s public key as described in Subsection 3.3.1:
Verify({eSH, n}, Sign({dSH, n}, Offer).

b) Confirm that Offer’s details comply with the re-
quirements specified in Req.

A negative outcome of Verification MA-1 means that
SH’s service (Offer) is not acceptable. As a result, MA
will stop the protocol execution and move to the next SH
in its itinerary. If the outcome of Verification MA-1 is
positive, MA will execute the Agent Signature Genera-
tion Method (described in Subsection 3.4.2) to sign the
Offer, i.e., MA generates a signature on document Doc =
(Req, Offer) using SMA by first computing D

() modH Doc
MAS n . The MA’s signature SignMA(Doc) = (Doc,

D). MA sends its signature to SH.

T7: : ()I
MAMA SH Sign Doc

It can be noticed from the above steps that SH cannot
link any MA to its AH using the information carried by
MA. The MA is authenticated by TTP’s signature on its
information. Therefore, only authorized (i.e. authenti-
cated) MA could be served by SH, and this service provi-
sioning is undertaken without exposing MA’s identity
thus achieving fairness in service provisioning.

Phase 3: Signature Verification
In this phase, SH verifies the signature of MA on the

document Doc with the help of the Verification Host VS.
This phase consists of the following steps:

Step 8: Upon receipt of Doc signed with SMA in T7,
SH forwards this signature to VS together with Doc
signed with its private key. This is because SH cannot
verify MA’s signature as it does not have the corre-
sponding information needed for the verification. We
deliberately deprive SH from this signature verification
capability in order to achieve non-repudiation of service
requests and provisions.

T8: : ({ , },), ()E
SH MASH VS Sign d n Doc Sign Doc

Step 9: When VS receives T8, it will perform Verifi-
cation VS-1:

Verification VS-1:
a) Check the correctness of SH’s signature on Doc us-

ing SH’s public key as described in Subsection 3.3.1:
Verify({eSH, n}, Sign({dSH, n}, Doc)).

b) Check the correctness of MA’s signature on Doc us-
ing TTP’s public key and the H(Anony-IDMA) received in
commitment CommMA, as described in Agent Signature
Verification Method (Subsection 3.4.3, step 2).

c) Confirm that Doc signed with SH’s private key is

identical to Doc signed with MA’s certified signature key
SMA.

d) Fetch Bond value in the Verification Information
table (received earlier (in CommMA) in T2) that match the
one received in T8, then check that the Verification Re-
sult field is empty and that the corresponding Req in the
table conforms to that in both Docs mentioned above.

e) Check if the arrival time of T8 is within the validity
period Lifetime received in CommMA.

The purpose of Verification VS-1 is to twofold. Firstly,
to authenticate MA’s signature SignMA(Doc). That is, to
ensure that the signature has been generated using the
appropriate key (certified by the TTP). Secondly, to en-
sure non-repudiation. That is, SH cannot later falsely
deny having received Doc from MA thus refusing to pro-
vide the required service, and MA cannot later falsely
deny that it has being served by SH. Finally, to ensure
the request freshness, i.e. the key is used only once to
generate one signature.

If the outcome of any step of Verification VS-1 is
negative, VS terminates the protocol run, put a “Fail” flag
in the Verification Result field of the Verification Infor-
mation table, and sends an error message to SH stating
the reason for the protocol termination. If Verification
VS-1 is all positive, VS stores the items Sign({dSH, n},
Doc), SignMA(Doc), and a “Pass” flag in the Verification
Result field. To acknowledge the successful signature
verification, VS sends SignMA(Doc) back to SH signed
with its private key, i.e.

T9:
({ , }, ())

:

E VS MASign d n Sign Doc
VS SH

Error Message

Step 10: SH, upon the receipt of the signed Doc from
VS, performs the following verification:

Verification SH-2:
Verify VS’s signature on SignMA(Doc) using VS’s pub-

lic key as described in Subsection 3.3.1: Verify({eVS, n},
Sign({dVS, n}, SignMA(Doc)).

If this verification outcome is positive, SH will store a
copy of T9 (i.e. MA’s signature approved by VS’s signa-
ture) and sends a copy to MA declaring that this transac-
tion is successful. Otherwise, SH sends an error message
stating that the transaction has failed.

T10-1:
({ , }, ())

:

I VS MASign d n Sign Doc
SH MA

Error Message

In the case where a transaction with a SH has failed,
MA may either continue its journey by migrating to next
SH in its itinerary or return back to its AH.

As a response to T9, SH sends to the TTP a signed and
encrypted message containing the corresponding MA’s
Bond and one of the following transaction outcome
flags:

a) ‘Success’-if T9 contains the signed Doc (Sign({dVS,
n}, SignMA(Doc)).

O. BAMASAK

Copyright © 2010 SciRes. IIM

272

b) ‘Attack’-if T9 contains an error message as a result
of not passing Verification VS-1 step (b), this means that
MA did not generate a correct signature, thus indicating a
malicious intention. This acknowledgment is also sent if
any attack is launched by MA against SH.

c) ‘Failure’-if the error message is for any other rea-
son.

T10-2:
: ({ , }, ({ , },

, ())

E
TTP SHSH TTP E e n Sign d n

Bond Success or Attack or Failure

Step 11: Upon the receipt of message T10-2, the TTP
decrypts the message, i.e. D({dTTP, n}, E({eTTP, n},
Sign({dSH, n}, Bond, (Success, Attack, or Failure)), then
updates AH-MA Relation table with the received infor-
mation. That is, it will fetch Bond value and records
“Success”, “Attack”, or “Failure” in the corresponding
Status field. If ‘Attack’ is recorded in the Status field,
TTP will increment the value in the corresponding
‘Number of Malicious Attempts’ field of AH Trust table.
If this value reaches a certain threshold specified by the
TTP (e.g. five attempts), then AH may classify this MA
as ‘Blacklisted’.

The CDASD protocol is formally presented in Figure
3. A summary of the methods/algorithms performed by
each party in the protocol with their inputs and outputs is
given in Table 3.

5. The Evaluation of CDASD Protocol

This section presents an analysis of the protocol against
the security requirements listed in Subsection 3.1. In

order to demonstrate the efficiency of the protocol, a
comparison has been conducted with the most related
protocol in terms of the computational cost.

5.1. Comparison with Related Work

To highlight the merits of our CDASD protocol, the effi-
ciency, reliability and accountability of our protocol is
compared with that of the most related protocol proposed
in [16], hereafter referred to as Lin’s protocol. The rea-
son for choosing this protocol is that it is designed to
perform similar task to ours. That is, an agent host dele-
gates a mobile agent to perform a task on or get a service
from a (remote) service host on behalf of the agent host.
The mobile agent is made anonymous, i.e. does not re-
veal any information about its or its host’s identities, to
ensure fairness of service provision. The service host
reports a malicious mobile agent to a third party author-
ity who is able to track down the corresponding agen-
thost and penalize it accordingly. The differences be-
tween our protocol and Lin’s is that our protocol is de-
signed for a mobile agent to sign documents autono-
mously on behalf of its owner with necessary security
algorithms and measures, whereas Lin’s protocol does
not specify the type of service, i.e. task, the agent will-
perform. In addition, Lin’s protocol requires that the
agent host obtains a certified permission from the service
host to provide the service it needs prior to dispatching
the agent to ensure fairness of service provision. In our
protocol, there is no pre-transaction communication be

AH

MA SH

TTP Service Host Environment

T1: (E({eTTP, n}, Sign({dAH, n}, Cert-Key))

T5: Sign({dTTP, n}, Req, SMA,,
Bond, Lifetime)

8

T2: E({eVS, n}, CommMA= Sign({dAH, n}, H(Anony-IDMA), Req, Bond,
L f)

T3:E({eAH, n}, (Sign{dTTP, n}, Cert-Key), T)

T4: MA (Itinerary, SMA, Req, Bond,

T6: (Sign({dSH, n}, Offer)

T7: (SignMA, Doc)

T8: (Sign({dSH, n}, Doc, SignMA(Doc))

T9: (Sign({dVS, n},, SignMA(Doc))

T10-1: (Sign({dVS, n},,

T10-2: E({eTTP, n}, (Sign({dSH, n}, Bond, Success, Failure, or Attack))

MA(Sign({dVS, n},, SignMA(Doc))

Figure 3. Collusion-Resistance Distributed Agent-Based Signature Delegation (CDASD) Protocol.

O. BAMASAK

Copyright © 2010 SciRes. IIM

273

Table 3. Summary of the methods/algorithms performed by each party with their inputs and outputs.

Party Methods/Algorithm Input Output
Signature Key Generation method – 1&2 Anony-IDMA, r, eTTP Z

AH
Chaum’s Blind Signature method - Unblinding T SMA

TTP Chaum’s Blind Signature method - Blinding Z, dTTP T
MA Agent Signature Generation method Doc = (Offer, Req), SMA SignMA(Doc)

VS Agent Signature Verification method-2
(Sign({dSH, n}, Doc),

SignMA(Doc), H(Anony-IDMA),
eTTP

Trure/False

tween the agent host and the service host, the Table 4
shows the computational overhead measured in terms of
the total number of encryption, decryption, signing sig-
natures, and verifying signatures operations performed at
each protocol phase. In order to compare the two proto-
cols in terms of these operations, a measuring unit is
needed to perform the comparison quantitatively. This
unit is chosen to be the exponentiation operation as it is
considered the most resource-consuming operation. As-
suming that RSA cryptosystem is used by both protocols,
each of the above mentioned operations includes one
exponentiation operation.

From Table 4, it can be seen that the CDASD protocol
enjoys a saving of approximately 52% in the number of
exponentiation operations (considered as the most re-
source-consuming operations), comparing with Lin’s
protocol. This savings are mainly due to the fact that in
Lin’s protocol, all the messages exchanged between the
protocol’s parties are signed and encrypted. Whereas, in
our protocol, only the messages that contain secu-
rity-sensitive information are signed and encrypted. For
example, message T1 sent from AH to the TTP is en
crypted because it contains the blinded signature key and
a transaction related information to protect it from being
eavesdropped and misused by an outsider attacker.

In addition to the computational savings, the CDASD
protocol provides extra service that Lin’s protocol does
not. These services are:
 The ability of the mobile agent to generate digital

signature autonomously and anonymously on behalf of

its owner. This service is very important in facilitating
e-commerce application. The CDASD protocol ensures
the security requirements for this service, i.e. verifiability
and unforegability of the signature together with
non-repudiation of signature origin and receipt (as ex-
plained in the next section).
 Collusion-resistant property in which the VS and the

service host, if collude together, should find it difficult to
get any advantage over a mobile agent and the agent host
(as explained in the next section).

5.2. Security Analysis

In this section, we analyze the security properties of the
CDASD protocol demonstrating that it satisfies all the
security requirements stated in Subsection 3.1.1.

S1) Verifiability of the Signature:
VS is able to verify the validity of mobile agent’s sig-

nature SignMA(Doc) using the information included in
commitment CommMA, which is generated and sent by
AH. It is worth noting that VS is able to verify
SignMA(Doc) without accessing MA’s anonymous iden-
tity Anony_IDMA. This feature supports the anonymity
property of MA and, in turn, the fairness of service pro-
vision (next).

S2) Unforgeability of the Signature:
Since the mobile agent signature key SMA is derived from
the agent anonymous ID (Anony-IDMA) that is only
known to AH and is a one-time, it would be difficult for
another party to forge the signature key without know-

Table 4. Computation Overhead.

 Encryption Decryption Signature
Verification of

signatures

Lin’s protocol
Phase 1: service registration

and inquiry
5 4 5 5

Phase 2 : applying for ser-

vices’ permissions
2 2 2 2

Phase 3: requiring SH’s ser-

vices
7 7 2 2

Total 14 13 9 9

CDASD proto-
col

Phase 1: certified signature
key acquisition

4 2 3 2

Phase 2: service request &

signature generation
0 0 2 2

 Phase 3: signature verification 1 1 2 3

Total 5 3 7 7

O. BAMASAK

Copyright © 2010 SciRes. IIM

274

ledge of Anony_IDMA. However, there are two scenarios
where the signature might be forged:
 VS receives the hash of Anony_IDMA, i.e. H(Anony-

IDMA) in CommMA sent by AH. VS might try to use this
hash to compute SMA. For doing so, VS needs also to
know the private key of the TTP, i.e. eTTP, which only
TTP has knowledge of. Therefore, it is difficult for VS to
re-generate SMA and forge MA’s signature.
 In TTP: the TTP certifies the signature key by cal-

culating () TTPd
MAT H Anony ID r . For the TTP to

obtain the signature key () TTPd
MA MAS H Anony ID

from T, it has to know the blinding factor r, which only
AH has knowledge of. It is also difficult for the TTP to
obtain SMA from T due to the difficulty of factoring large
primes, i.e. factoring T to get SMA and r

S3) Non-Repudiation of Signature Origin:
This security property is achieved in our protocol by

the following measures:
 The verification Verification VS-1 performed by

the VS ensures that the signature SignMA(Doc) is gener-
ated by using a signature key that is generated by AH.
This is because VS uses H(Anony-IDMA) received in
CommMA, which is signed by AH. Therefore, AH cannot
deny the fact that it has generated the signature key.
 If AH denies signing Doc after a successful com-

pletion of the transaction, i.e. AH has received
the signed document certified by VS (Sign{dVS, n},
SignMA(Doc)), SH can then send a complain to the TTP.
The complain contains the certified signature (Sign{dVS,
n}, SignMA(Doc)) together with the Bond value. The TTP
wll then fetch Bond value in AH-MA Relation table and
ob- tain the corresponding AH’s identity (IDAH). TTP will
then sign both IDAH and Bond and send it to SH as a
proof of holding AH responsible for generating the sig-
nature.

S4) Non-Repudiation of Signature Receipt:
This requirement is achieved through the use of the

certified signature (Sign{dVS, n}, SignMA(Doc)) signed by
the VS and sent to AH through MA in T10-1. As SH
cannot verify the mobile agent signature, SH has to send
a signature verification request to VS in T8, which
proves that SH has actually received MA’s signature on
Doc if the verification Verification VS-1 outcome is

positive and VS’s signature on SignMA(Doc) is produced.
Therefore, SH cannot deny later that it has received MA’s
(representing AH) signature on Doc.

S5) Collusion-Resistance:
In order to check if the CDASD protocol satisfies this

requirement, we first have to look at the data items both
VS and SH have or know, shown in Table 5.

From Table 5, it can be seen that the piece of data
owned by VS and of an interest to SH is H(Anony-IDMA).
SH might use this information to guess MA’s or AH’s
identities, hence, violate the anonymity properties and, in
turn, the fairness of service provision property. This at-
tack is thwarted in our protocol as follows. As mobile
agent’s anonymous identity (Anony-IDMA) is randomly
generated and hashed, it does not reveal any information
about either MA’s or AH’s identities. Furthermore,
Anony-IDMA is freshly generated for each transaction, i.e.
one-time only, which means SH will find it difficult to
use this information to link together two different trans-
actions performed by the same agent in a hope of guess-
ing MA’s identity. Therefore, it is difficult for the VS and
the SH, if collude together, to get any advantage over the
MA and the AH.

S6) Unlinkability:
By looking at the contents of the signature (SignMA(Doc) =

(()() modTTPd H Doc
MAH Anony ID n , Doc), generated by

MA using the signature key SMA, it can be seen that the
signature does not have any information that can be used
to link it with other signature generated by the same mo-
bile agent MA (in a different transaction) or the same
agent host AH. This is because the mobile agent signa-
ture key SMA is computed using a freshly generated mo-
bile agent anonymous identity (Anony-IDMA). This key is
one-time only, hence, is used to generate one signature
on the document for one transaction. This unlinkability
feature supports the anonymity property to be discussed
next.

S7) Anonymity:
In addition to the anonymity provided by the unlink-

ability of different signatures to the same MA or AH,
anonymity is also provided through the contents of the
mobile agent itself. That is, the data the mobile agent
carries while roaming the network, i.e. (Itinerary, SMA,

Table 5. Data items owned/known by VS and SH.

 VS SH

Knows/Have

 Contents of Verification Information table: (H(Anony-IDMA,
Req, Lifetime, SignMA(Doc), Sign({dSH, n}, Doc), Verifica-
tion Result)

 CommMA = Sign({dAH, n}, H(Anony-IDMA), Req)

)(),},,({ DocSignDocndSign MASH

 TTP’s and SH’s public keys
 Sign({dVS, n}, SignMA(Doc)

 MA’s contents: (SMA, itinerary, Bond, Req)
 TTP’s public key
 SignMA(Doc) = (Doc, D)

 Sign({dSH, n}, Doc) = nDocH SHd mod)(

 Sign({dSH, n}, Doc) = nDocH SHd mod)(

 Sign({dSH, n}, Offer).
 Sign({dVS, n}, SignMA(Doc)

O. BAMASAK

Copyright © 2010 SciRes. IIM

275

Bond, Lifetime) neither reveals MA’s nor AH’s identities.
Therefore, it will be difficult for SHs visited by the agent
to obtain any information that leads to the agent’s source.
One may argue that if the agent does not carry any in-
formation regarding it’s, or its source’s, identity, then
how can SHs authenticate this agent? The agent is au-
thenticated through the TTP’s signature on its contents,
which is sent to SH in T5. Verification SH-1, performed
by SH, verifies TTP’s signature on the agent’s contents,
hence, authenticate the agent by the trust SH hold for the
TTP. This trust stems from the fact that the TTP only
certifies agents of whom their owners are trustworthy, i.e.
not blacklisted.

S8) Fairness of Service Provision:
Due to the unlinkability and anonymity properties, the

SH will not have a mean to distinguish between the au-
thenticated mobile agents as to which to provide its ser-
vice first. Therefore, the SH will serve all the agents on
the first-come-first-served basis, hence, fairness of ser-
vice provision is satisfied.

S9) Agent Host Accountability:
As the mobile agent in our protocol is anonymous, i.e.

untraceable, one may question about the ability of SHs, if
attacked by malicious agents, to get hold of them. In our
protocol, the TTP, in collaboration with the SH, is able to
detect and penalize, i.e. blacklist, an agent host when its
agent acts maliciously. In details, an AH generates a
Bond for each MA and pass it to the MA before being
dispatched to perform its task. This Bond is sent to the
TTP to record it with other related information in
AH-MA Relation table. When the MA enquires about a
service in SH, it submits its Bond value to that SH. If an
MA attacks an SH, the SH will send an ‘Attack’ flag to-
gether with the Bond value as an outcome of the transac-
tion in message T10-2 to the TTP. The TTP compares the
Bond with the value in the Bond field of the AH-MA
Relation table to fetch the identity of the AH who sent
this MA and penalize accordingly.

6. Conclusions and Future Work

6.1. Conclusions

This research has addressed the mobile agent-based
anonymous signature delegation issue by critically ana-
lyzing related works and highlighting their shortcomings.
We then presented a novel Collusion-Resistant Distrib-
uted Agent-Based Signature Delegation (CDASD) pro-
tocol, which incorporates three methods as its building
blocks, namely, Agent Signature Key Generation method,
Agent Signature Generation method, Agent Signature
Verification method. The protocol enjoys the following
features. Firstly, it makes use of Chaum’s blind signature
scheme to allow for a trusted third party (TTP) to blindly
certify the mobile agent signature key for mobile agent’s

anonymity. The mobile agent, while residing at the ser-
vice host, does not reveal any information about its
host’s identity, which deprive the service host from fa-
voring a mobile agent on the others, hence, ensuring
fairness of service provision. Secondly, the protocol pre-
sents a mechanism to track down malicious mobile
agents and penalize their hosts accordingly. Thirdly, the
protocol provides non-repudiation of signature genera-
tion and receipt so that neither the mobile agent and its
host nor the service host can deny generating and re-
ceiving the signature, respectively. The protocol intro-
duces a verification server to verify the signature gener-
ated by the mobile agent in such a way that even if col-
luding with the service host, both parties will not get
more information than what they already have. Secu-
rity-sensitive messages exchanged between protocol’s
parties are signed and encrypted to prevent unauthorized
disclosure or tampering with the contents of these mes-
sages. The protocol analysis shows that, in addition of
fulfilling the security requirements specified in Subsec-
tion 3.1.1, it is more efficient in comparison with the
related work. Our protocol can be applied to many ap-
plications, e.g., e-/m-commerce, grid computing, and
ubiquitous computing due to the properties of mobile
agents.

6.2. Future Work

We have the following recommendations for future
work:
 Formal verifications of the security properties of the

protocol using a verification tool, i.e. the Alternating
Temporal Logic and the model checker MOCHA
[24,25].
 Implementation of the protocol using Grasshopper

mobile agent framework [26] and Java libraries and
evaluation of the implemented protocol’s performance.

 Our solutions have only addressed the problem of
securing mobile agent-based e-commerce transactions.
As we mentioned earlier, mobile agents can also be used
in Grid computing environment. The security issues in
the context and solutions to problems in the Grid Secu-
rity Infrastructure are venues for further research.
 Mobile agents have an important role to play in fa-

cilitating m-commerce applications where customers, i.e.
agent owners, use resource-limited devices such as PDAs,
pocket PCs and mobile phones to perform m-commerce
transactions. Care has already been taken in the design of
our protocol to minimize the computational costs. Fur-
ther research into how to integrate our protocol with the
existing wireless technologies, e.g. UMTS, is needed for
the mobile agent-based m-commerce applications to
achieve their full potential.

O. BAMASAK

Copyright © 2010 SciRes. IIM

276

7. Acknowledgment

This research was supported by King Abdulaziz Univer-
sity, Jeddah, Saudi Arabia, under Grant 427/515.

8. References

[1] A. Asokan, V. Shoup and M. Waidner, “Optimistic Fair

Exchange of Digital Signatures,” IEEE Journal on Selected
Areas in Communication, Vol. 18, 2000, pp. 591-610.

[2] O. Bamasak, “Delegating Signing Power to Mobile
Agents: Algorithms and Protocol Design,” PhD Thesis,
School of Computer Science, the University of Manches-
ter, UK, 2006.

[3] F. Bao, R. H. Deng and W. Mao, “Efficient and Practical
Fair Exchange Protocols with Off-Line TTP,” Proceed-
ings of the IEEE Symposium on Security and Privacy,
1998, pp. 77-85.

[4] M. Blum, “How to Exchange (Secret) Keys,” ACM
Transactions on Computer Systems, Vol. 1, No. 2, 1983,
pp. 175-193.

[5] C. Boyd and E. Foo, “Off-Line Fair Payment Protocols
Using Convertible Signature,” Advances in Cryptology
-Proceedings of Asiacrypt’98, Lecture Notes in Computer
Science 1514, 1998, pp. 271- 285.

[6] L. Chen, “Efficient Fair Exchange with Verifiable Confirma-
tion of Signatures,” Advances in Cryptology-Proceedings of
Asiacrypt’98, Lecture Notes in Computer Science 1514,
1998, pp. 286-299.

[7] R. H. Deng, L. Gong, A. A. Lazar and W. Wang, “Prac-
tical Protocol for Certified Electronic Mail,” Journal of
Network and System Management, Vol. 4, No. 3, 1996,
pp. 279-297.

[8] S. Even, O. Golreich and A. Lempel, “Randomized Pro-
tocol for Signing Contracts,” Communications of the
ACM, Vol. 28, No. 6, 1985, pp. 637-647.

[9] M. K. Franklin and M. K. Reiter, “Verifiable Signature
Sharing,” Advances in Cryptology-Proceedings of
Eurocrypt’95, Lecture Notes in Computer Science 921,
1995, pp. 50-63.

[10] J. A. Garay, M. Jakobsson and P. MacKenzie, “Abuse-
Free Optimistic Contract Signing,” Advances in Cryptol-
ogy-Proceedings of Crypto’99, Lecture Notes in Com-
puter Science 1666, 1999, pp. 449-466.

[11] M. Jakobsson, K. Sako and R. Impagliazzo, “Designated
Verifier Proofs and their Applications,” Advances in
Cryptology-Proceedings of Eurocrypt’96, Lecture Notes
in Computer Science 1070, 1996.

[12] T. Okamoto and K. Ohta, “How to Simultaneously Ex-
change Secrets by General Assumptions,” Proceedings of
the 2nd ACM Conference on Computer and Communica-
tions Security, 1994, pp. 184-192.

[13] C. Wang and C. Yin, “Practical Implementations of a
Non-disclosure Fair Contract Signing Protocol,” IEICE
Transactions on Fundamentals of Electronics, Commu-
nications and Computer Science, Vol. E89-A, No. 1,

2006, pp. 297-309.

[14] J. Zhou and D. Gollmann, “A Fair Non-Repudiation Pro-
tocol,” Proceedings of 1996 IEEE Symposium on Security
and Privacy, 1996, pp. 55-61.

[15] J. Zhou and D. Gollmann, “An Efficient Non-Repudia-
tion Protocol,” Proceedings of 1997 IEEE Computer Se-
curity Foundations Workshop (CSFW 10), 1997, pp.
126-132.

[16] M. Lin, C. Chang and Y. Chen, “A Fair and Secure Mo-
bile Agent Environment Based on Blind Signature and
Proxy Host,” Computers & Security, Vol. 23, 2004, pp.
199-212.

[17] D. Chaum, “Blind Signatures for Untraceable Payments,”
Proceedings of CRYPTO’82, 1983, pp. 199-203.

[18] J. Kim, G. Kim and Y. Eom, “Design of the Mobile
Agent Anonymity Framework in Ubiquitous Computing
Environments,” IEICE Transactions on Information and
Systems, Vol. E89-D, No. 12, 2006, pp. 2990-2993.

[19] R. L. Rivest, A. Shamir and L. M. Adleman, “A Method
for Obtaining Digital Signatures and Public Key Crypto-
systems,” Communication of Association for Computing
Machinery, Vol. 21, No. 2, 1978, pp. 120-126.

[20] National Institute of Standard and Technology (NIST),
Secure Hash Standard, Federal Information Processing
Standards Publication (FIPS 180-1).

[21] M. Fowler, “UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language,” 3rd Edition, The Ad-
dison-Wesley Professional, 2003.

[22] U. Wilhelm, “Cryptographically Protected Objects,”
Technical Report, Ecole Polytechnique Federale de
Lausanne, Switzerland, 1997.

[23] F. Hohl, “Time Limited Blackbox Security: Protecting
Mobile Agents from malicious Hosts,” Mobile Agents
and Security, Lecture Notes in Computer Science, Vol.
1419, 1998, pp. 92-113.

[24] S. Kremer and J. Raskin, “A Game-Based Verification of
Non-Repudiation and Fair Exchange Protocols,” Pro-
ceedings of the 12th International Conference on Con-
currency Theory, Lecture Notes in Computer Science,
Vol. 2154, 2001, pp. 551-566.

[25] S. Kremer and J. Raskin, “Game Analysis of Abuse-Free
Contract Signing,” Proceedings of the 15th IEEE Com-
puter Security Foundations Workshop, 2002, pp. 206-220.

[26] “Grasshopper Mobile Agent Platform.” http://www.grass-
hopper.de

[27] M. Mambo, K. Usuda, and E. Okamoto, “Proxy Signa-
tures for Delegating Signing Operation,” Proceedings of
the 3rd ACM Conference on Computers and Communica-
tions Security, 1996, pp. 48-57.

[28] N. Borselius, C. Mitchell and A. Wilson, “A Pragmatic
Alternative to Undetachable Signatures,” ACM SIGOPS
Operating Systems Review, Vol. 36, No. 2, 2002, pp. 6-11.

[29] A. Romao and M. Silva, “Secure Mobile Agent Digital
Signatures with Proxy Certificates,” E-Commerce Agents,
Marketplace Solutions, Security Issues, and Supply and
demand, Lecture Notes in Computer Science, Vol. 2033,

O. BAMASAK

Copyright © 2010 SciRes. IIM

277

2001, pp. 206-220.

[30] B. Lee, H. Kim, J. Baek and K. Kim, “Secure Mobile
Agent Using Strong Non-designated Proxy Signature,”
Proceedings of the 6th Australian Conference on Infor-
mation Security and Privacy, Lecture Notes in Computer
Science, Vol. 2119, 2001, pp. 474-486.

[31] S. Kim, S. Park and D. Won, “Proxy Signatures, Revis-
ited,” Proceedings of the International Conference on
Information and Communications Security, Lecture Notes
in Computer Science, Vol. 1334, 1997, pp. 223-232.

[32] K. Zhang, “Threshold Proxy Signature Schemes,” Pro-
ceedings of Information Security Workshop, Lecture Notes
in Computer Science, Vol. 1396, 1997, pp. 282-290.

[33] H. Kim, J. Baek, B. Lee and K. Kim, “Secret Computa-
tion with Secrets for Mobile Agent Using One-Time
Proxy Signature,” Proceedings of the 2001 Symposium on
Cryptography and Information Security, 2001, pp. 845-850.

[34] K. Shum and V. Wei, “A Strong Proxy Signature Scheme

With Proxy Signer Privacy Protection,” Proceedings
of the 11th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises, 2002, pp. 55-56.

[35] J. Herranz and G. Saez, “Fully Distributed Proxy Signa-
ture Schemes,” Cryptology ePrint Archive, 2002. http://
eprint.iacr.org/2002/051

[36] H. Wang and J. Pieprzyk, “Efficient One-Time Proxy
Signatures,” Proceedings of ASIACRYPT, Lecture Notes
in Computer Science, Vol. 2894, 2003, pp. 507-522.

[37] Y. Yong, C. Xu, X. Huang and Y. Mu, “An Efficient
Anonymous Proxy Signature Scheme with Provable
Security,” Computer Standards & Interfaces, Vol. 31, No.
2, 2009, pp. 348-353.

[38] Z. Shao, “Provably Secure Proxy-Protected Signature
Schemes Based on RSA,” Computers and Electrical En-
gineering, Vol. 35, No. 3, 2009, pp. 497-505.

