## 基于 CAN 和 TMS320F2812 的永磁同步电机控制器的研究

## 梅义成, 俞建定<sup>\*</sup>

(宁波大学 信息科学与工程学院,浙江 宁波 315211)

摘要:基于永磁同步电机的矢量控制理论、CAN 总线和 TMS320F2812,从硬件和软件提出了一种伺服控制器的设计方案及实施方法,并自定义了电机控制的指令格式,给出了具体的实施过程.实验表明:在这种设计架构下的伺服控制器能取得较好的效果.

关键词: CAN; TMS320F2812; 矢量控制; 永磁同步电机

中图分类号: TM351 文献标识码: A

近年来,随着自动控制及加工制造业的发展, 对开放通用结构的伺服控制器呼声越来越高<sup>[1]</sup>,笔 者在此提出了一种基于CAN总线和TMS320F2812 的永磁同步电机(PMSM)伺服控制器的设计,该控 制器可运用于具有CAN总线接口的平台.

### 1 PMSM 及其控制理论

永磁同步电动机具有体积小、损耗低、效率高、 功率密度大等特点,但其控制难度较大;而 CAN 总线具有可靠、高速、实时等特性,非常适合于实 时控制等领域,并且随着高速控制芯片的出现及 先进算法不断被提出,为此类问题的解决提供了 越来越多的手段,其控制性能日臻完善,在伺服精 度要求高的场合得到广泛的运用.

20 世纪 70 年代, 德国 Blaschke 等人首先提出 了交流电动机的矢量控制(Transvector Contrl)理论, 奠定了交流电机控制理论的基础. 其基本思想是 通过坐标变换, 将空间相差 120°电角度、时间相差 120°相位的三相交流电, 转换为两相垂直旋转坐 标系 d/q 轴上的直流电, 旋转坐标系的角速度等 于三相交流电的角频率. 这样 1 台三相交流电机在 旋转坐标系上就等效为 1 台直流电机, 从而大大简 化了电机的控制. 在忽略铁芯磁饱和、涡流、磁滞 损耗和转子没有阻尼阻抗等情况下, 三相永磁同 步电机在 d/q旋转坐标系下的磁链方程为:

$$\begin{cases} \psi_d = L_d i_d + \psi_r, \\ \psi_q = L_q i_d, \end{cases}$$
(1)

其中, $\psi_q, \psi_d$ 为定子磁链; $\psi_r$ 为转子磁链; $L_d, L_q$ 为d/q轴电感分量; $i_d, i_q$ 为d/q轴电流分量.

定子线圈上的电压方程为:  

$$\begin{cases}
u_d = p\psi_d - \psi_q \omega + ri_d, \\
u_q = p\psi_q + \psi_d \omega + ri_q,
\end{cases}$$
(2)

其中,  $u_d, u_q$ 为d/q轴上定子电压分量;  $\omega$ 为转子 角速度; r为每相定子绕组电阻; p为微分算子.

电磁转矩方程为:

$$T_e = p_n (\psi_d i_a - \psi_a i_d), \tag{3}$$

其中,  $p_n$  为磁极对数;  $T_e$  为电磁转矩. 永磁同步电 机的控制方法主要有  $i_d = 0$  控制、最大转矩控制、 弱磁控制、  $\cos \varphi = 1$  控制、最大效率控制等; 其中  $i_d = 0$  控制简单易行, 对于面装式永磁同步电机具 有最大转矩电流比, 且控制性能优良. 当采用  $i_d = 0$  控制, 由(1)式和(3)式可得电磁转矩 $T_e$ 为:

$$T_e = p_n \psi_r i_q$$
, (4)  
由此可见, 在  $i_d = 0$  的情况下, 通过调节  $q$  轴电流  $i$  就可调节转矩或转速.

#### 2 系统硬件设计

硬件系统包括电源模块、光耦隔离及 IPM 逆 变模块、电流检测和位置检测模块、TMS320F2812 最小系统板. 其中, 电源模块向 IPM 提供 300 V 直

收稿日期: 2011-06-19. 宁波大学学报(理工版)网址: http://3xb.nbu.edu.cn

第一作者: 梅义成 (1971 - ), 男, 安徽郎溪人, 在读硕士研究生, 主要研究方向: 嵌入式系统. E-mail: yicheng\_mei@qq.com

<sup>\*</sup>通讯作者: 俞建定(1968 - ), 男, 浙江宁波人, 高级实验师, 主要研究方向: 嵌入式系统. E-mail: yujianding@nbu.edu.en

流及控制部分4路15V独立直流,向电流检测、位 置检测及系统板提供±12V、+5V直流.系统具体 硬件如图1所示.



#### 2.1 TMS320F2812 及最小系统板设计

TMS320F2812 是美国德州仪器生产的 32 位定 点 DSP 芯片, 具有卓越性能:运算能力强大; 主频 高达 150 MHz; 有 2 个事件管理器(EVA、EVB)及 QEP 适合电机控制的模块; 外围中断丰富; 总线接 口齐全, 有 I<sup>2</sup>C、SPI、CAN、SCI 等; 具有 16 个 12 位 A/D 转换通道.

该芯片包含电机控制所需的模块齐全,采用 该芯片能大大简化电路设计,因此系统板设计采 用最小系统设计即可满足需求,最小系统板包括 TMS320F2812、3.3 V和 1.8 V电源转换芯片、30 MHz 晶振、系统仿真的 JTAG 接口,512 K×16 外 扩FLASH芯片 SST39VF800等,还有 CAN 总线接 口芯片 SN65HVD230 以及一些少量电容电阻器件.

### 2.2 电机驱动逆变器设计

为提高电路的可靠性、简化电路设计, 缩短项 目开发周期, 目前普遍选择智能功率模块(IPM)作 为电机功率逆变器件. IPM 不仅将功率开关器件和 驱动电路集成在一起, 而且还内藏有欠电压、过流 和过热等故障检测电路,并可将故障检测信号输 出到控制单元,功能非常完善.本次设计采用三菱 第五代 IPM 模块 PM50CL1B060. PM50CL1B060 输入最大电流 50 A,最高电压 600 V,推荐使用条 件如下:逆变电压不超过 400 V,工作电流不超过 20 A,控制部分四路独立供电电压(15±1.5)V,PWM 载波频率不高于 20 kHz,死区时间不低于 2 µs<sup>[2]</sup>.

由 DSP2812 送来的 PWM 需要光耦进行隔离. IPM 载波频率较高,普通光耦不能满足要求,因此 需要高速光耦,这里选用 6N137. 根据 F2812 的 I/O 口输入输出电流要求及 PM50CL1B060 输入逻辑电 平的要求,设计了驱动电路,相关原理如图 2 所示, 而图 2 仅为 6 路 PWM 中的其中 1 路.



## 2.3 **电流检测模块**

在矢量变换中, 定子电流检测的精度和实时 性是整个矢量控制系统精度的关键. 根据三相交 流电流在时域的关系 $i_a + i_b + i_c = 0$ , 只需测量 $i_a, i_b$ , 通过 $i_c = -i_a - i_b$ 得出 $i_c$ . 在伺服控制和变频器中通 常用霍尔电流传感器(LEM)来测量电流. 本次设计 采用 LA100P, LA100P 具有频带宽、精度高、线性 度好的特性, 测量带宽 0 Hz~200 kHz, 测量精度> 0.70%, 线性度>0.15%, 动态性能响应时间<1 µs, 跟踪速度>200 A·µs<sup>-1</sup>, 变比 1:2 000 <sup>[3]</sup>, 在供电电压



. . . . .

±12 V 时,  $R_M$  取 0~50 Ω. 由于其输出为正负电流, 而 TMS320F2812 电流检测端输入要求 0~3 V, 因此 要求进行转换、转换原理如图 3 所示<sup>[4]</sup>.

取  $R_2 = R_4 = R_5 = R$ ,可得出 $U_{ADCINI} = (I_M R_M / R_1 + 5 / R_P)R$ ,当 $I_M = 0$ 时,调节 $R_P$ ,使其静态工作点保持在 1.5 V,即 $U_{ADCINI} = 1.5$  V.

#### 2.4 光电码盘及磁极辅助定位接口电路

在初始阶段,伺服控制器需要知道磁极初始 位置;在工作过程中,需要准确知道磁极在任一时 刻的位置.对于大多数永磁同步伺服电机,一般都 装有磁极辅助定位霍尔器件和精确定位的增量式 光电码盘.磁极辅助定位输出差分信号的接口分 别为 U+U-、V+V-、W+W-;磁极精确定位的光电 码盘输出差分信号接口分别为 A+A-、B+B-、Z+Z-. 为了与 TMS320F2812 引脚电平匹配,需要将双端 差分信号转换为单端输出信号送到 DSP 的 I/O 口 和 QEP 模块.此类转换芯片有很多,如 DS3486、 AM26LS32 等.

#### 3 **系统软件设计**

程序设计分为主程序、中断程序和电机控制指 令处理等,程序流程如图 4 所示.



图 4 主程序和中断程序流程图

3.1 主程序设计

主程序中完成对系统、外围中断、CAN 总线

的初始化,设置 EVA 的 T1 下溢中断和光电码盘起 始位置捕获中断,并对正交编码(QEP)、PID、 CLARK、PARK、I\_PARK 和 SVPWM 模块初始化, 然后进入死循环,在死循环中通过查询方式对 CAN 总线收发数据进行处理,并根据电机控制指 令对电机控制数据实时刷新.

#### 3.2 **中断程序设计**

矢量变换在 1 个 PWM 周期中完成, 实时性要 求高, 因此放在 EVA 的 T1 下溢中断中处理<sup>[5]</sup>. 具 体过程是通过 LEM 霍尔电流传感器模块, 检测驱 动电机的三相电流, 经过坐标变换, 三相变两相 (CLARK 变换), 两相变旋转直流  $i_d / i_q$  (PARK 变换), 通过算法模块(PI)和设定的  $I_{dref}$ 、 $I_{qref}$ 进行比较, 输 出调节量, 再经旋转直流变两相静止(I\_PARK)变 换, 得出两相静止电压  $U_{alfa}$ 、 $U_{belta}$ , 输出到空间矢 量脉宽调制模块(SVPWM), 得出控制脉冲宽度的  $T_a$ ,  $T_b$ ,  $T_c$ , 然后将  $T_a$ ,  $T_b$ ,  $T_c$ 写入到 TMS320F2812 的 PWM 模块, 经过 IPM 功率驱动模块, 最终得出 驱动电机的三相交流电流. 系统矢量控制框图如 图 5 所示.

另一个中断是响应码盘初始位置信号捕获, 用来定位磁极每转的起始位置.

#### 4 基于 CAN 总线的电机控制代码实现方案

一个复杂的控制系统一般是由多电机组成的, 要保持多电机协调一致工作,可靠、高速、实时的 网络成为关键.控制器局域网络(Controller Area Network, CAN)是由研发和生产汽车电子产品著称 的德国 BOSCH 公司开发的. CAN 总线有如下显著 特点:多主工作、抗干扰能力强、实时性高、组网 简单以及数据传输基于数据块编码(邮箱方式).由 于 CAN 总线的上述特点,其综合性能远胜于现在 常用的 RS232 和 485 通讯,已经广泛应用于汽车、 工业控制、机器人等领域.

TMS320F2812 集成了 CAN 总线模块, 使得较 为复杂的 CAN 总线使用大为简化, 按照其规定对 相关的寄存器进行设定, 即可完成数据传输, 几乎 不用详细了解 CAN 总线协议, 使用十分方便.

电机控制指令格式的设计及实现: CAN 每次 最多传送 8 bit 数据,本次设计中定义了这 8 bit 作 为电机控制指令,具体安排取头 2 bit 作为电机控



图 5 PMSM 矢量控制

制代码,后6bit作为控制参数,用来操作控制器完 成相应的动作. 邮箱 16 设定为接收, 采用中断来 接收电机控制指令,存于指令队列,在主程序死循 环中依次取出指令进行处理;邮箱 1 设定为发送, 根据上位机要求,判断是否发送数据,如发送,则 将数据写入到邮箱 1, 然后启动发送(TransSignal= 1为发送信号).原理如图6所示.



Uint16 MotoCodeBuff;

MotoCodeBuff=CanRecv[i].MDH.word.

HI\_WORD;

```
switch(MotoCodeBuff)// 获取控制代码,
```

转向相应的操作{

case 0x0:// 电机控制指令0 .....执行相应的控制操作 break: case 0x1:// 电机控制指令1 .....执行相应的控制操作 break; case 0x2:// 电机控制指令2 .....执行相应的控制操作 break; . . . . . .

# } if(TransSignal==1)// 定义TransSignal发送

信号,为1数据发送,邮箱1设置为发送

ł ECanaRegs.CANTRS.all = 0x0000002;//

发送数据

}

while(ECanaRegs.CANTA.all !=

```
0x0000002);// 等待发送成功
```

ECanaRegs.CANTA.all=0x00000002;// 清 CanaRegs.CANTA.bit.TA0位

TransSignal=0;

2

interrupt void ECAN0INTA ISR(void) // CAN 中断入口 ł

j=j%50; //指令队列长度50, j 为指令读入队

#### 列计数

CanRecv[j].MDL.all=ECanaMboxes.MBOX16. MDL.all;//读取指令低4字节

CanRecv[j].MDH.all=ECanaMboxes.MBOX16 .MDH.all;//读取指令高4字节

j++;

. . . . . .

}

CanRecv[i]为定义的消息接收队列结构体,利用该结构体,可以对接收的消息以 8 位、16 位或 32 位方式处理.

#### 5 **实验结论**

电机采用华大 110-ST-M02030 型号, 额定功率 0.6 kW, 额定电压 220 V, 额定转速 3 000 r·min<sup>-1</sup>, 转子惯量 0.33×10<sup>-3</sup> Kg·m<sup>2</sup>, 磁极对数 4, 电流环、 速度环和位置环采用 PI 调节. 空载条件下进行速 度实验: 速度设定 1 000 r·min<sup>-1</sup>, 爬升最大值时间 0.3 s, 存在 16%的超调, 当速度波动在 2%范围内, 用时 1.7 s, 表明硬件设计可行. 在速度环采用先进 的算法, 可减小超调, 缩短锁定时间, 达到更好的 控制效果. 以上参数设定和读出都是通过 CAN 总 线在 PC 机上 CAN 总线调试软 Embeded Debug 2.0 环境下完成.

## 6 小结

设计中考虑到伺服的高性能要求,硬件设计 采用先进的控制芯片 TMS320F2812、三菱第五代 IPM 模块; 电机控制基于矢量控制控制理论,采用  $i_d = 0$ 控制方案; 鉴于通讯网络在开放伺服系统中 的重要性,采用可靠性和实时性很高 CAN 总线作 为通讯网络,并探究了基于 CAN 总线传输的代码 控制电机的方式.

#### 参考文献:

- [1] 林勇强,王勇,冯屹朝.开放式运动控制技术现状与发 展趋势[J].信息技术,2010(5):184-186.
- [2] Mitsubishi. Intelligent Power Modules PM50CL1B060 [EB/OL]. [2009-05-20]. http://www.mitsubishielectric. com/semiconductors/content/product/powermod/powmod /intelligentpmod/l1/pm50cl1b060\_e.pdf.
- [3] LEM. Current transducer LA 100-P[EB/OL]. [2009-06-12]. http://www.lem.com/docs/products/la%20100-p%20e. pdf.
- [4] 辜小兵. 基于 DSP 的交流伺服驱动器的设计与实现[D].北京: 冶金自动化研究设计院, 2007.
- [5] Texas Instruments Inc. PMSM3\_4[EB/OL]. [2005-12-06]. http://focus.ti.com/docs/toolsw/folders/print/sprc179.html.

## PMSM Servo System Based on CAN Bus and TMS320F2812

MEI Yi-cheng, YU Jian-ding\*

(Faculty of Information Science and Technology, Ningbo University, Ningbo 315211, China)

**Abstract:** Permanent Magnet Synchronous Motor (PMSM) is characterized by its robust performance. However, it is difficult to control due to its non-linear, strong coupling and other factors. Controller Area Network (CAN) features in stability, high-speed and real-time, so it is suitable for real time control. This article provides hardware and software solution for PMSM servo system based on transvector control, in which the CAN bus and TMS320F2812. A new motor control code are defined, and the implementation scheme is also given. Experiment results show that the servo controller meets the desired technical requirements. **Key words:** CAN; TMS320F2812; vector control; PMSM

(责任编辑 章践立)

第4期