Projected Flat m－th Root Finsler Metrics

ZHANG Shu－jie，ZU Dou－kou，LI Ben－ling＊
（ Faculty of Science，Ningbo University，Ningbo 315211，China ）

Abstract

Projected flat Finsler metrics on an open subset in R^{n} are the regular solution to Hilbert＇s Fourth Problem．We study locally projected flat m－th root Finsler metrics and its generalized metrics in this paper．We prove that they must be locally Minkowskian if they are irreducible．

Key words：Finsler metric；projected flat；m－th root metric；locally Minkowskian
CLC number：O186
Document code：A
Article ID：1001－5132（2011）03－0048－05

The famous Hilbert＇s Fourth Problem in the regular case is to study and characterize locally projectively flat Finsler metrics．On an open domain in R^{n} ，a Finsler metric is said to be projectively flat if its geodesics are straight lines．In the Riemannian case，by Beltrami＇s theorem，we know that a Riemannian metric with constant sectional curvature if and only if it is locally projectively flat．There also exist many non－Riemannian projectively flat Finsler metrics such as the famous Hilbert metric and Funk metric on a strongly convex domain．In［1］，the author characterized projectively flat （ α, β ）－metrics，where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ ．There are two special examples as following，

$$
\begin{align*}
& F=\frac{\sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-\langle x, y\rangle^{2}\right)}}{1-|x|^{2}}+\frac{\langle x, y\rangle}{1-|y|^{2}}, \tag{1}\\
& F=\frac{\left(\sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-\langle x, y\rangle^{2}\right)}+\langle x, y\rangle\right)^{2}}{\left.\left(1-|x|^{2}\right)^{2} \sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-\langle x, y\rangle^{2}\right.}\right)} . \tag{2}
\end{align*}
$$

The metric in（1）is the well－known Funk metric and the metric in（2）is constructed by Berwald $\mathrm{L}^{[2]}$ ．

In this paper，we will discuss the following
important two classes of Finsler metrics，

$$
\begin{align*}
& F=A^{1 / m}, \tag{3}\\
& F=\sqrt{A^{2 / m}+B}, \tag{4}
\end{align*}
$$

where $A=a_{i_{i}, \ldots, i_{m}}(x) y^{i} y^{i_{2}} \ldots y^{i_{m}}$ and $B=b_{i j}(x) y^{i} y^{j}$ ．The forms in（3）and（4）are called an m－th root metric and a generalized m－th root metric respectively．Obviously， they both are reversible Finsler metrics．The m－th root metrics in the form $F=\sqrt[m]{a_{i_{1} i_{2} . . i_{m}}(x) y^{i} y^{i_{2}} \ldots y^{i_{m}}}$ was studied by Matsumoto $\mathrm{M}^{[3]}$ ，Okubo $\mathrm{K}^{[4]}$ and Shimada $H^{[5]}$ ，etc ${ }^{[6-8]}$ ．Shen Z and Cheng X studied projectively flat with some special curvature ${ }^{[9-10]}$ ．In recent years， physicists are interested in fourth－root of metrics．Some geometers have obtained some results about projectively flat fourth－root Finsler metric Brinzei N has derived some equations to characterize projectively flat m－th root metrics．In［6］，Kim B and Park H studied the m－th root Finsler metrics admitting (α, β)－types．Thus these are very important to the properties of m－th root metrics for further research．

If at every point，there is a local coordinate domain and the metric $F=F(y)$ is independent of its position
x, then a Finsler metric $F=F(x, y)$ is said to be locally Minkowskian. In this case, all geodesics are linear lines $x^{i}(t)=t a^{i}+b^{i}$. But it is called locally projectively flat, if $x^{i}(t)=f(t) a^{i}+b^{i}$, at every point, there is a local coordinate domain in which the geodesics are straight lines. The main purpose of this paper is to study locally projectively flat m-th root metrics and its generalized metrics.

In this paper, we consider the condition $m>4$. Obviously, by the definition of Finsler metric m must be even. The case when $m=4$ has been studied by Li B L and Shen Z M. In this paper we obtain the result in general case.

We prove the following.
Theorem 1 Let $F=A^{1 / m}(m>4)$ be an m-th root metric on a manifold of dimension $n \geqslant 3$. Assume that A is irreducible. Then F is locally projectively flat if and only if it is locally Minkowskian.

If $A=\sqrt[m]{a_{i j}(x) y^{i} y^{j}}$ is the square of a Riemannian metric of constant sectional curvature $K=\mu$, then $F=A^{1 / m}=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is locally projectively flat. But it is not locally Minkowskian when $\mu \neq 0$. Thus the assumption in Theorem 1 on A being irreducible can not be removed.

As a general case of Theorem 1, we obtain the following theorem.

Theorem 2 Let $F=\sqrt{A^{2 / m}+B} \quad(m>4)$ be a generalized m-th root metric on a manifold of dimension $n \geqslant 3$. Assume that A is irreducible and $B \neq 0$. Then F is locally projectively flat if and only if it is locally Minkowskian.

If $A=\left(a_{i j}(x) y^{i} y^{j}\right)^{m / 2}$ is reducible such that $A^{2 / m}+B=a_{i j}(x) y^{i} y^{j}+b_{i j}(x) y^{i} y^{j}$ is the square of a Riemannian metric of constant sectional curvature $K=\mu$, then $F=\sqrt{A^{2 / m}+B}$ is locally projectively flat. But if $\mu \neq 0, \quad F$ is not locally Minkowskian. Therefore, the condition that A is irreducible can not be dropped.

Li B L and Shen Z M have studied the case when $m=4$, they give an special example. Their example is projectively flat but not Minkowskian. In the example
the irreducible condition on $A-B^{2}$ can not be dropped. In this paper, we consider the case when $m>4$. We find that when $m>4, A$ should be irreducible. However, there is no special condition on $A-B^{2}$.

1 Preliminaries

In this section, we will introduce some basic knowledge about projective flat Finsler metric. Let $F=F(x, y)$ be a Finsler metric on an open subset $U \subset R^{n}$ and F is positive define, the matrix $g_{i j}=$ $g_{i j}(x, y)$ is positive define, where

$$
g_{i j}(x, y):=1 / 2\left[F^{2}\right]_{y^{\prime} y^{\prime}}(x, y)(y \neq 0) .
$$

The following equation

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}+2 G^{i}\left(x, \frac{\mathrm{~d} x}{\mathrm{~d} t}\right)=0
$$

is the geodesics of F, where
$G^{i}=(1 / 4) g^{i l}\left\{\left[F^{2}\right]_{x^{k} y^{\prime}} y^{k}-\left[F^{2}\right]_{x^{\prime}}\right\}$.
F is called a Berwald metric if $G^{i}=G^{i}(x, y)$ are quadratic in y. It is called a Landsberg metric if $F_{y^{\prime}}\left[G^{i}\right]_{y^{j} y^{k} y^{\prime}}=0$. Thus every Riemannian metric must be a Berwald metric and every Berwald metric must be a Landsberg metric.

The Riemann curvature $R_{y}=R_{k}^{i} \frac{\partial}{\partial x^{i}} \otimes \mathrm{~d} x^{k}: T_{x} M \rightarrow$ $T_{x} M$ is defined by $R_{y}(v)=\left.R_{k}^{i}(x, y) v^{k} \frac{\partial}{\partial x^{i}}\right|_{x}, \quad v=\left.v^{k} \frac{\partial}{\partial x^{k}}\right|_{x}$, where

$$
R_{k}^{i}=2 \frac{\partial G^{i}}{\partial x^{k}}-y^{j} \frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}}+2 G^{j} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}}-\frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}} .
$$

For each tangent plane $\Pi \subset T_{x} M$ and $y \in P$, the flag curvature of (Π, y) is defined by

$$
K(\Pi, y):=\frac{g_{i l}(x, y) R_{k}^{i}(x, y) u^{k} u^{l}}{F(x, y)^{2} g_{i j}(x, y) u^{i} u^{j}-\left[g_{i j}(x, y) y^{i} u^{j}\right]^{2}},
$$

where $u \in \Pi$ such that $\Pi=\operatorname{span}\{y, u\}$, A Finsler metric whose flag curvature $K(\Pi, y)=K(x, y)$ is independent of tangent planes Π containing $y \in T_{x} M$ is said to be of scalar flag curvature. If it is a Riemannian metric, the flag curvature $K(\Pi, y)=K(\Pi)$ is independent of $y \in$ $T_{x} M$. Therefore it is of scalar flag curvature $K=K(x, y)$ if and only if is of isotropic sectional curvature $K=$
$K(x)$ ．There are two famous theorems we will be used in this paper．

Theorem $3^{[11]}$ Let F be a Landsberg metric of scalar flag curvature on a manifold of dimension $n \geqslant 3$ ． If the flag curvature $K \neq 0$ ，then it is Riemannian．

Theorem $4^{[12]} \quad$ Every Berwald metric with $K=0$ is locally Minkowskian．As we know，a Finsler metric $F=F(x, y)$ on an open subset $U \subset R^{n}$ is locally projectively flat if and only if

$$
\begin{equation*}
F_{x^{\prime} y^{\prime}} y^{l}=F_{x^{k}}, \tag{5}
\end{equation*}
$$

which is found by Hamel G in［13］．In this case，$P=$ $F_{x^{\prime}} y^{l} /(2 F)$ and the metric is of scalar flag curvature shown by

$$
\begin{equation*}
K=\frac{P^{2}-P_{x^{\prime}} y^{l}}{F^{2}} \tag{6}
\end{equation*}
$$

Then，locally projectively flat Finsler metrics are of scalar flag curvature．

For using Theorem 3 and Theorem 4 in the following proof，let＇s consider the special case that $G^{i}=P y^{i}$ ，where $P=P_{i}(x) y^{i}$ is a local 1－form and the dimension $n \geqslant 3$ ．Let
$U:=\left\{x \in M \mid K(x, y) \neq 0\right.$ for some $\left.y \in T_{x} M\right\}$.
Assume that $U \neq \varnothing$ ．If $K \neq 0$ ，by Theorem 3，we get F is Riemannian on U ．By continuity，we con－ clude that $U=M$ ，that is to say，F is Riemannian on the whole manifold．Since F is a Berwald metric，by Theorem 4，we easily get it must be locally Minkowskian if $K=0$ on M ．The case of $n=2$ was solved by Berwald L．

2 Projectively flat \boldsymbol{m}－th root metrics

In this section，we will discuss projectively flat m－th root metrics $F=A^{1 / m}$ on an open subset $U \subset R^{n}$ ． For simplicity，we let

$$
\begin{aligned}
& A_{0}:=A_{x^{\prime}} y^{l}, A_{x^{k}}:=\frac{\partial A}{\partial x^{k}}, \\
& A_{x^{\prime} y^{k}}:=\frac{\partial^{2} A}{\partial x^{l} \partial y^{k}}, \quad A_{x^{\prime} y^{k}} y^{l}:=A_{0 k}
\end{aligned}
$$

Lemma 1 Let $F=A^{1 / m}$ be an m－th root metric on an open subset $U \subset R^{n}$ ．It is projectively flat if and
only if

$$
\begin{equation*}
m A\left(A_{0 k}-A_{x^{k}}\right)=(m-1) A_{0} A_{y^{k}} . \tag{7}
\end{equation*}
$$

Proof By a direct computation，we have
$F_{x^{k}}=\frac{A^{1 / m} A_{x^{k}}}{m A}$ ，
$F_{x^{\prime} y^{k}}=\frac{A^{1 / m} A_{y^{k}} A_{x^{\prime}}}{m^{2} A^{2}}+\frac{A^{1 / m} A_{x^{\prime} y^{k}}}{m A}-\frac{A^{1 / m} A_{x^{\prime}} A_{y^{k}}}{m A^{2}}$ ．
Then by the equation $F_{x^{\prime} y^{k}} y^{l}-F_{x^{k}}=0$ ，we have

$$
\left(\frac{A^{1 / m} A_{y^{k}} A_{x^{\prime}}}{m^{2} A^{2}}+\frac{A^{1 / m} A_{x^{\prime} y^{k}}}{m A}-\frac{A^{1 / m} A_{x^{\prime}} A_{y^{k}}}{m A^{2}}\right) y^{l}-\frac{A^{1 / m} A_{x^{k}}}{m A}=0 .
$$

Simplify the above equation，yields

$$
\frac{\left(A_{x^{k}}-A_{x^{\prime} y^{k}} y^{l}\right) A}{m}+\frac{(m-1) A_{0} A_{y^{k}}}{m^{2}}=0 .
$$

Then we obtain（7）．
Proof of Theorem 1 Assume that F is pro－ jectively flat．Because of A is irreducible and $\operatorname{deg}\left(A_{y^{k}}\right)=m-1$ is less than $\operatorname{deg}(A)$ ，by（7），we have A_{0} is divisible by A ，that is，there is a 1 －form η such that

$$
\begin{equation*}
A_{0}=2 m \eta A . \tag{8}
\end{equation*}
$$

Thus the spray coefficients $G^{i}=P y^{i}$ are given by $P=\frac{A_{0}}{2 m A}=\eta$ ．
We can obtain that $G^{i}=\eta y^{i}$ are quadratic in y ． Then F is a Berwald metric．

Assume that $n \geqslant 3$ ．By Theorem 3，if the scalar flag curvature $K \neq 0$ ，then F is Riemannian．Thus A is a perfect square of a Riemannian metric．This contradicts our assumption，so $K=0$ ．That is，F is a Berwald metric with $K=0$ ．It just satisfies the condition of Theorem 4，F is locally Minkowskian． The converse is obvious．If F is locally Minkowskian， by the definition of Minkowskian，F is independent of its position x ，then the equation（5）is satisfied．Thus F is projectively flat．

3 Generalized m－th root metrics

In this section，we consider the generalized m－th root metric

$$
\begin{equation*}
F=\sqrt{A^{2 / m}+B} \tag{9}
\end{equation*}
$$

where $A=a_{i i_{1} \ldots . i_{m}}(x) y^{i} y^{i_{i}} \ldots y^{i_{m}}$ and $B=b_{i j}(x) y^{i} y^{j}$. We denote A_{0} as above and let

$$
\begin{aligned}
& B_{0}:=B_{x^{\prime}} y^{l}, B_{x^{k}}:=\frac{\partial B}{\partial x^{k}}, \\
& B_{x^{\prime} y^{k}}:=\frac{\partial^{2} B}{\partial x^{l} y^{k}}, B_{x^{\prime} y^{k}} y^{l}=B_{0 k} .
\end{aligned}
$$

The following lemma is obvious.
Lemma 2 Let $m>4$. Assume the following equation holds.

$$
\Theta \sqrt[m]{A^{2}}+\Xi \sqrt[m]{A^{4}}+P(A)=0
$$

where Θ and Ξ are polynomials in $y . P(A)$ is a polynomial in A, where $A=a_{i_{i} i_{2}, \ldots i_{m}} y^{i} y^{i_{2}} \ldots y^{i_{m}}$. Then $\Theta=\Xi=P(A)=0$.

Lemma 3 Let $F=\sqrt{A^{2 / m}+B}(m>4)$ be a generalized m-th root metric on an open subset $U \subset R^{n}$. Assume that $A=a_{i_{1}, \ldots i_{m}}(x) y^{i} y^{i_{2}} \ldots y^{i_{m}}$ is irreducible and $B \neq 0$. A generalized m-th root metric $F=\sqrt{A^{2 / m}+B}$ is projectively flat on an open subset in R^{n} then F is a Berwald metric.

Proof By a direct computation, we get

$$
\begin{aligned}
F_{x^{k}}= & \frac{2 A^{2 / m} A_{x^{k}}+m A B_{x^{k}}}{2 m A\left(A^{2 / m}+B\right)^{1 / 2}}, \\
F_{x^{\prime} y^{k}}= & -\frac{1}{4}\left(\frac{2 A^{2 / m} A_{x^{\prime}}}{m A}+B_{x^{\prime}}\right)\left(\frac{2 A^{2 / m} A_{y^{k}}}{m A}+B_{y^{k}}\right) . \\
& \left(A^{2 / m}+B\right)^{-3 / 2}+\frac{1}{2}\left(\frac{4 A^{2 / m} A_{y^{k}} A_{x^{\prime}}}{m^{2} A^{2}}+\frac{2 A^{2 / m} A_{x^{\prime} y^{k}}}{m A}-\right. \\
& \left.\frac{2 A^{2 / m} A_{x^{\prime}} A_{y^{k}}}{m A^{2}}+B_{x^{\prime} y^{k}}\right)\left(A^{2 / m}+B\right)^{-1 / 2} .
\end{aligned}
$$

Then by the equation (5), we obtain

$$
\begin{equation*}
\Theta \sqrt[m]{A^{2}}+\Xi \sqrt[m]{A^{4}}+P(A)=0 \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \Theta=-(1 / 2) m^{2}\left(B_{x^{k}}-B_{0 k}\right) A^{2}-(m-2) A_{0} A_{y^{k}} B- \\
&(1 / 2) m\left(A_{0} B_{y^{k}}-2 A_{0 k} B+B_{0} A_{y^{k}}+2 A_{x^{k}} B\right) A, \\
& \Xi=- m\left(A_{x^{k}}-A_{0 k}\right) A-(m-1) A_{0} A_{y^{k}}, \tag{11}\\
& P(A)=(1 / 4) m^{2} A^{2}\left(-2 B_{0 k} B+B_{0} B_{y^{k}}+2 B_{x^{k}} B\right) .
\end{align*}
$$

Because $m>4$, then $\sqrt[m]{A^{4}}$ is a irrational expression. By Lemma 2, we have

$$
\begin{align*}
& \Theta=0, \tag{12}\\
& \Xi=0, \tag{13}
\end{align*}
$$

$$
P(A)=0 .
$$

By (13), we have $m A\left(A_{0 k}-A_{x^{k}}\right)=(m-1) A_{0} A_{y^{k}}$, since A is irreducible and $\operatorname{deg}\left(A_{y^{k}}\right)=m-1$, then A_{0} is divisible by A, that is, there is a 1 -form η such that

$$
\begin{equation*}
A_{0}=2 m \eta A . \tag{14}
\end{equation*}
$$

Substituting (14) into (11) and (13), yields

$$
\begin{equation*}
A_{0 k}=A_{x^{k}}+2 m \eta A_{y^{k}}-2 \eta A_{y^{k}} . \tag{15}
\end{equation*}
$$

Plugging (14) and (15) into (12), we get

$$
\begin{gather*}
(1 / 2) m^{2} A\left(2 \eta B_{y^{k}}-B_{0 k} B_{x^{k}}\right)= \\
m A_{y^{k}}\left(2 \eta B-(1 / 2) B_{0}\right) . \tag{16}
\end{gather*}
$$

Obviously, the right side of (16) is divisible by A. By the assumption A is irreducible, $\operatorname{deg}\left(A_{y^{k}}\right)$ and $\operatorname{deg}\left(2 \eta B-(1 / 2) B_{0}\right)$ are both less than $\operatorname{deg}(A)$, so we have

$$
\begin{equation*}
B_{0}=4 \eta B \tag{17}
\end{equation*}
$$

By (14) and (17), we get the spray coefficients $G^{i}=P y^{i}$ with

$$
\begin{aligned}
P= & \frac{F_{x^{\prime}} y^{l}}{2 F}=\frac{2 A^{2 / m} A_{0}+m A B_{0}}{4 m A\left(A^{2 / m}+B\right)}= \\
& \frac{4 m \eta A A^{2 / m}+4 m \eta A B}{4 m A\left(A^{2 / m}+B\right)}=\eta
\end{aligned}
$$

Then F is a Berwald metric.
Proof of Theorem 2 By Lemma 3, we get if F is projectively flat then F is a Berwald metric. When $m>4$, by Theorem 3, if the scalar flag curvature $K \neq 0$, every Berwald metric must be Riemaniann. But the case of $B=0$ and A is a perfect square of a Riemaniann contradicts our assumption. Therefore $K=0$, that is to say F is a Berwald metric with the scalar flag curvature zero, then it is locally Minkowskian by Theorem 4. The sufficiency is obvious.

References:

[1] Shen Z M. On projectively flat (α, β) -metrics[J]. Canadian Mathematical Bulletin, 2009, 52:132-144.
[2] Berwald L. Uber die n-dimensionalen geometrien konstanter Krummung, in denen die Geraden die durzesten sind[J]. Math Z, 1929, 30:449-469.
[3] Matsumoto M. Theory of Finsler spaces with m-th root
metric［J］．Publ Math Debrecen，1996，49：135－155．
［4］Matsumoto M，Okubo K．Theory of Finsler spaces with m－th root metric：Connections and main scalars［J］．Tensor （N．S），1995，56：93－104．
［5］Shimada H．On Finsler space with the metric $L=\left(a_{i_{1} i_{2} \ldots i_{m}} y^{i} y^{i_{2}} \ldots y^{i_{m}}\right)^{1 / m}[\mathrm{~J}]$ ．Tensor（N．S），1979，33：365－ 372.
［6］Kim B，Park H．The m－th root Finsler metrics admitting （ α, β ）－types［J］．Bull Korean Math Soc，2004，41：45－52．
［7］Li B L，Shen Z M．On a class of projectively flat Finsler metrics with constant flag curvature［J］．Int J Math，2007， 18（7）：749－760．
［8］Yu Y Y，You Y．On Einstein m－th root metrics［J］． Differential Geometry and its Applications，2010，28：290－
294.
［9］Shen Z M．Projectively flat Finsler metrics of constant flag curvature［J］．Trans Amer Math Soc，2003，355（4）： 1713－1728．
［10］Cheng X Y，Shen Z M．Projectively flat Finsler metrics with almost isotrpic S－curvature［J］．Acta Mathematica Scientia，2006，26：307－313．
［11］Numata S．On Landsberg spaces of scalar curvature［J］．J Korea Math Soc，1975，12：97－100．
［12］Berwald L．Parallelubertragung in allgemeinen Raumen ［J］．Atti Congr Intern Mat Bologna，1928，4：263－270．
［13］Hamel G．Uber die Geometrieen in denen die Geraden die KUrzesten sind［J］．Math Ann，1903，57：231－264．

具有 m 次根的射影平坦芬斯勒度量

张淑洁，祖豆蔻，李本伶＊

（宁波大学 理学院，浙江 宁波 315211）
摘要：在 R^{n} 上的开子集射影平坦芬斯勒度量是希尔伯特第四问题的正则情况。作者研究了 m 次根的芬斯勒度量以及广义的 m 次根的芬斯勒度量，证明了在不可约的条件下这种度量是局部闵科夫斯基的。
关键词：芬斯勒度量；射影平坦；m 次根度量；局部闵科夫斯基

