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Abstract: Projected flat Finsler metrics on an open subset in R" are the regular solution to Hilbert’s

Fourth Problem. We study locally projected flat m-th root Finsler metrics and its generalized metrics in
this paper. We prove that they must be locally Minkowskian if they are irreducible.
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The famous Hilbert’s Fourth Problem in the regular
case is to study and characterize locally projectively flat
Finsler metrics. On an open domain in R", a Finsler
metric is said to be projectively flat if its geodesics are
straight lines. In the Riemannian case, by Beltrami’s
theorem, we know that a Riemannian metric with
constant sectional curvature if and only if it is locally
projectively flat. There also exist many non-Riemannian
projectively flat Finsler metrics such as the famous
Hilbert metric and Funk metric on a strongly convex
domain. In [1], the author characterized projectively flat
(a, B) -metrics, where a = /a; (x)y'y’ is a Riemannian
metric and S =b,(x)y'. There are two special examples
as following,

e MYFOxFYE-<xy>h) <xy>
1-IxP -yF

£ _ GIYF(xPIYF —<xy>H)+<xy>)?
@[ x P2y P =PIy P - <%y >%)

The metric in (1) is the well-known Funk metric

)

and the metric in (2) is constructed by Berwald L.
In this paper, we will discuss the following
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important two classes of Finsler metrics,
F=A", @)

F=vA"" 1B, @)
where A=a, ; (x)y'y"..y" and B=b;(x)y'y’. The
forms in (3) and (4) are called an m -th root metric and
a generalized m-th root metric respectively. Obviously,
they both are reversible Finsler metrics. The m-th root

metrics in the form F :ng/ailizmim(x)yiin...yim was
studied by Matsumoto ME!, Okubo K™ and Shimada
HB, etc!®®l, Shen Z and Cheng X studied projectively
flat with some special curvaturel®%. In recent years,
physicists are interested in fourth-root of metrics. Some
geometers have obtained some results about projectively
flat fourth-root Finsler metric Brinzei N has derived
some equations to characterize projectively flat m-th
root metrics. In [6], Kim B and Park H studied the
m -th root Finsler metrics admitting (e, £) -types. Thus
these are very important to the properties of m-th root
metrics for further research.

If at every point, there is a local coordinate domain
and the metric F = F(y) is independent of its position
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X, then a Finsler metric F =F(x,y) is said to be
locally Minkowskian. In this case, all geodesics are
linear lines x'(t)=ta'+b'. But it is called locally
projectively flat, if x'(t)= f(t)a' +b', at every point,
there is a local coordinate domain in which the
geodesics are straight lines. The main purpose of this
paper is to study locally projectively flat m-th root
metrics and its generalized metrics.

In this paper, we consider the condition m>4.
Obviously, by the definition of Finsler metric m must
be even. The case when m=4 has been studied by Li
B L and Shen Z M. In this paper we obtain the result in
general case.

We prove the following.

Theorem 1 Let F=A""(m>4) be an m-th
root metric on a manifold of dimension n>3. Assume
that A is irreducible. Then F is locally projectively
flat if and only if it is locally Minkowskian.

If A=gla,(x)y'y’ is the square of a Riemannian
metric of constant sectional curvature K =, then
F=AM =,/aii (x)y'y! is locally projectively flat. But it
is not locally Minkowskian when =0 . Thus the
assumption in Theorem 1 on A being irreducible can
not be removed.

As a general case of Theorem 1, we obtain the
following theorem.

Theorem 2 Let F=+vA?+B (m>4) be a
generalized m-th root metric on a manifold of dimension
n=3. Assume that A isirreducible and B=0. Then
F is locally projectively flat if and only if it is locally
Minkowskian.

If A=(a;(x)y'y’)™ is reducible such that
A”"+B=a;(x)y'y’ +b,(x)y'y’ is the square of a
Riemannian metric of constant sectional curvature

K =u,then F=+vAY"+B is locally projectively flat.

Butif =0, F isnotlocally Minkowskian. Therefore,
the condition that A is irreducible can not be dropped.

Li B L and Shen Z M have studied the case when
m=4, they give an special example. Their example is
projectively flat but not Minkowskian. In the example

the irreducible condition on A—B? can not be dropped.
In this paper, we consider the case when m>4. We
find that when m>4, A should be irreducible.

However, there is no special condition on A—B?.
1 Preliminaries

In this section, we will introduce some basic
knowledge about projective flat Finsler metric. Let
F=F(x,y) be a Finsler metric on an open subset
UcR" and Fis positive define, the matrix g; =
g; (x,y) s positive define, where

9, (%, y) =1/2[F’]  (x,y) (y#0).

The following equation

d’x’

dt?
is the geodesics of F, where

G' =/ 99 {[F*], ¥ -[F*L}.

F is called a Berwald metric if G'=G'(x,y)

L,dx
+2G'(x,—) =0,
(dt)

are quadratic in y . It is called a Landsberg metric if
Fyi [G‘]yjykyl =0. Thus every Riemannian metric must be
a Berwald metric and every Berwald metric must be a
Landsberg metric.

The Riemann curvature R = Rl‘(%@mxk TM—
X
T M is defined by R, (v) = R (6 yWV* 2|, v=vf -2 |
" / I e oxk<
where
. ,0G  , 0°G' , 0°G'  0G' oG/
R =2—-y P Ak Avl Ak "
2 ox’oy oy'oy* oy’ oy

For each tangent plane TIcTMand yeP, the
flag curvature of (I1,y) is defined by
g (X YR yuty’
F(X, Y)Z gij (X7 Y)UIUJ _[gij (X: y)yluj]2 l
where u eIl suchthat IT=span{y,u}, A Finsler metric

K(I1,y) =

whose flag curvature K(IT,y)=K(X,y) is independent
of tangent planes IT containing yeT,M is said to be
of scalar flag curvature. If it is a Riemannian metric, the
flag curvature K(IT,y)=K(IT) is independent of ye
T,M . Therefore it is of scalar flag curvature K=K(x,y)
if and only if is of isotropic sectional curvature K =
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K(x) . There are two famous theorems we will be used only if

in this paper. MA(A) —A) =(m —1)A0Ayk . @)
Theorem 3™ Let F be a Landsberg metric of Proof By a direct computation, we have

scalar flag curvature on a manifold of dimension n=>3. AﬂmAxk

If the flag curvature K =0, then it is Riemannian. Fo = mA
Theorem 4" Every Berwald metric with K=0 ATAA, ATA L ATAA,

is locally Minkowskian. As we know, a Finsler metric T T AL + mA  mAZ

F=F(x,y) on an open subset UcR"
projectively flat if and only if

Foy =F.. ®)
which is found by Hamel G in [13]. In this case, P=

is locally

Fx.y' /(2F) and the metric is of scalar flag curvature
shown by

P?-P,y'
T ©

Then, locally projectively flat Finsler metrics are

K =

of scalar flag curvature.

For using Theorem 3 and Theorem 4 in the
following proof, let’s consider the special case that
G'=Py', where P=P(x)y' isa local 1-form and the
dimension n=3. Let

U={xeM|K(x,y)=0 forsome yeT,M }.

Assume that U =@ . If K =0, by Theorem 3, we
get F is Riemannian on U . By continuity, we con-
clude that U =M, thatistosay, F is Riemannian on
the whole manifold. Since F is a Berwald metric, by
Theorem 4, we easily get it must be locally Minkowskian
if K=0 on M. The case of n=2 was solved by
Berwald L.

2 Projectively flat m-th root metrics

In this section, we will discuss projectively flat

m-th root metrics F = AY™ on an open subset U — R".

For simplicity, we let

oA
=AY, A, =—,
% Yo A ox
. O*A I
lek .:W’ Ax'yky — AJk .
Lemmal Let F=A"" be an m-th root metric

on an open subset U < R". It is projectively flat if and

Then by the equation F,, y' - F.=0,we have
AA LA, AMAL L AYTA A, AUMA
A Xy Xy )y X _
m?A? mA mA? mA
Simplify the above equation, yields
(A, —A . YH)A (M-DAA,
m m
Then we obtain (7).
Proof of Theorem 1 Assume that F is pro-

0.

jectively flat. Because of A is irreducible and
deg(Ayk) =m-1 is less than deg(A), by (7), we have
A, is divisible by A, that is, there is a 1-form 7

such that

A, =2mpA. (8)
Thus the spray coefficients G' = Py' are given by
_A
omA

We can obtain that G' =#zy' are quadratic in y .
Then F isa Berwald metric.

Assume that n>=3. By Theorem 3, if the scalar
flag curvature K =0 , then F is Riemannian. Thus
A is a perfect square of a Riemannian metric. This
contradicts our assumption, so K=0. That is, Fis a
Berwald metric with K=0 . It just satisfies the
condition of Theorem 4, F is locally Minkowskian.
The converse is obvious. If Fis locally Minkowskian,
by the definition of Minkowskian, F is independent of
its position x, then the equation (5) is satisfied. Thus
F is projectively flat.

3 Generalized m-th root metrics
In this section, we consider the generalized m-th

root metric
F=vA?"+B, 9)
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where A=a, ; (x)y'y..y" and B=b;(x)y'y’. We
denote A, asabove and let

OB

B, :=B,y', B, =—-,

0 =5V 5, ox¥
o°B

The following lemma is obvious.
Lemma 2 Let m>4. Assume the following
equation holds.
YA +=/A" + P(A) =0,
where ® and = are polynomials in y. P(A) is a
polynomial in A, where A=a, ,y'y“..y" . Then
®=E=P(A)=0.
Lemma 3

Let F=+VA™+B (m>4) be a

generalized m-th root metric on an open subset U — R".

Assume that A=a, , (x)y'y“..y" is irreducible and
B=0. A generalized m-th root metric F=+vA”"+B
is projectively flat on an open subset in R" then F is
a Berwald metric.
Proof By a direct computation, we get
2A""A, +MAB,,
“ T omA(AT™ 4 B)T2

Foe A
T4 mA Y

2/m a1 AA7" Ayk AX' 2A°" AX' y¢
(A" +B) ™ +=( T+ -
2 m-A mA

2A2/m

X yk 2/m -1/2
—mAZ + Bxlyk (AT +B) ™ .
Then by the equation (5), we obtain
oUA? +=A* + P(A) =0, (10)
where
— 2 _ 2 _ _
©=—(1/2)m*(B, — By )A’~(m-2)AA,B
(L/2)M(AB,, —2A,B+B,A, +2A,B)A,
Ez—m(AXk —Aok)A—(m—l)ADAyk, (11)
P(A)=(1/4)m*A*(-2B, B+BB , +2B,B).
Because m>4 , then VA" is a irrational
expression. By Lemma 2, we have
0=0, (12)
=0, (13)

[1]

P(A)=0.

By (13), we have mA(A)k—AXk)z(m—l)AOAyk,
since A s irreducible and deg(Ayk)zm—l, then A,
is divisible by A, that is, there is a 1-form 7 such
that

A, =2mnA. (14)
Substituting (14) into (11) and (13), yields
Ao = A +2mnA, —2nA, . (15)

Plugging (14) and (15) into (12), we get
") 2)m2A(2nByk -ByB,) =
mA, (2nB—-(1/2)B,) . (16)
Obviously, the right side of (16) is divisible by A .
By the assumption A is irreducible, deg(Ayk) and
deg(27B —(1/2)B,) are both less than deg(A), so we
have
B, =47B. 17
By (14) and (17), we get the spray coefficients
G'=Py' with
o_F y' _2A""A +mAB, _
2F  4mA(A”" +B)
4mp AN +4mnAB
4mA(A”™ +B)
Then F isa Berwald metric.

Proof of Theorem 2 By Lemma 3, we get if F
is projectively flat then F is a Berwald metric. When
m>4, by Theorem 3, if the scalar flag curvature
K =0, every Berwald metric must be Riemaniann. But
the case of B=0 and A is a perfect square of a
Riemaniann contradicts our assumption. Therefore
K =0, that is to say F is a Berwald metric with the
scalar flag zero, then it is locally

Minkowskian by Theorem 4. The sufficiency is obvious.

curvature
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