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Abstract: Based on the generalized symmetry group method and symbolic computation, both the Lie 

point groups and the non-Lie symmetry groups of a (3+1)-dimensional nonlinear evolution equation as 

well as the Maccari's system are firstly obtained. Furthermore, some exact solutions of the two equations 

are derived from some simple solutions by the symmetry groups.  
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As we know, it is important to investigate the exact 
explicit solutions of nonlinear partial differential 
equations (NLPDEs). Unfortunately, it is almost im- 
possible to find all the solutions of NLPDEs. Finding 
solutions of NLPDEs is an arduous task and only in 
certain special cases one can write down the solutions 
explicitly. Despite of this fact, in recent years some 
progress has been made and many effective methods for 
obtaining exact solutions of NLPDEs have been 
proposed, such as the inverse scattering method[1], 
Darboux transformation[2], the formal variable separation 
approach[3-6], the tanh method[7], the generalized pro- 
jective Riccati equation method[8-9], the sub-equation 
expansion method[10] and so on. 

In particularly, the group theory method is also an 
important method for studying solutions of NLPDEs. So 
far, many powerful methods to obtain symmetries, 
symmetry groups, symmetry reductions and group 
invariant solutions of NLPDEs have been developed by 

mathematicians and physicists[11-14]. But for some NLPDEs, 
the final expression obtained by the classical Lie point 
symmetry group may be quite complicated and difficult 
for real applications especially for physicists and non- 
mathematical scientists. Fortunately, Clarkson and 
Kruskal (CK) introduced a direct method to derive the 
symmetry reductions of nonlinear system without covering 
any group theory[15]. Some important developments 
about this method can be found in refs[16-18]. Recently, 
on the basis of the classical Lie group and CK method, 
Lou proposed a new direct method to obtain both the 
Lie symmetry group and non-Lie symmetry group[19]. 
Furth more, the final expressions of the exact finite 
transformation of the Lie groups are much simpler than 
those obtained via the standard approach for many 
NLPDEs[20-23]. Sometimes it is difficult for us to obtain 
the Lie symmetry group of NLPDEs by integrating the 
vector fields involving many arbitrary functions, so we 
turn to the symmetry group direct method. By the 
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symmetry group direct method, the problems of seeking 
for the full symmetry groups of given NLPDEs are 
changed into solving a set of overdetermined NLPDEs. 
Due to the nonlinearity of the overdetermined NLPDEs, 
it is usually difficult for us to obtain the solutions of 
them. However, once the full symmetry group of a given 
system is given, the related Lie point symmetries can be 
obtained simply by restricting the arbitrary functions or 
arbitrary constants in infinitesimal forms. At the same 
time, the related group of discrete transformations of the 
given system can also be derived from the full symmetry 
groups. Finally, using the obtained full symmetry groups 
and a known simple solution, one can obtain a type of 
group invariant solutions. 

The main idea of the symmetry direct method is to 
seek full symmetry groups of given PDEs in the form 

1 2 1 2 1 2( , , , ) ( , , , , ( , , , )),n n nu x x x W x x x U X X X=  
 (1) 

where 1 2( , , , ), 1,2, , .i i nX X x x x i n= =  
For a given PDE 

( , , , , , , 1,2, , ) 0,
i i ji x x xF x u u u i j n= =  (2) 

substituting (1) into (2) and demanding U satisfies the 
same PDE imposes conditions upon W, iX and their 
derivatives under the transformation 1 2{ , , , , }nu x x x →  

1 2{ , , , , }nU X X X that enable one to solve for W, iX . 
It’s interesting that for many real physical systems, it’s 
enough to seek the symmetry groups transformation in a 
simple form 

1 2 1 2( , , , ) ( , , , )n nu x x x x x xα= +   

1 2 1 2( , , , ) ( , , , ).n nx x x U X X Xβ  (3) 

In the paper, we devote to investigating the 
symmetry group method to the full symmetry groups for 
two NLPDEs: a (3+1)-dimensional nonlinear evolution 
equation (NEE) and Maccari’s system, which have 
widespread applications in physics, biology, electrical 
networks as well as applied science. In the following 
sections, firstly we obtain their relative symmetry 
groups, and then some general solutions of them are 
derived by the finite symmetry group transformation and 
two simple solutions. 

1 Transformation group and some 
solutions of a (3+1)-NEE 

So far as we know, a lot of research on the (3+1)- 
dimensional soliton equation 

13 (2  2 )  + 2( )  = 0xz t xxx x y x x y xw w w ww w w−− + − ∂  (4) 
has been conducted. In ref.[24], Eq. (4) was decomposed 
into systems of solvable ordinary differential equations 
with the help of the (1+1)-dimensional AKNS equations. 
The Abel-Jacobi coordinates are introduced to straighten 
out the associated flows, from which algebraic-geo- 
metrical solutions of the (3+1)-dimensional evolution 
equation are explicitly given in terms of the Riemann 
theta functions. In ref.[25] , an N-soliton solution for Eq. 
(4) and its Wronskian form were derived using the 
Hirota method and Wronskian technique. Wu[26] has 
given a bilinear Bäcklund transformation and some 
soliton solutions for Eq. (4) the Grammian determinant 
solution and the Pfaffianization of Eq. (4) was derived. 
However, the finite symmetry transformation group has 
not been revealed in previous articles. 

Now, we let 
.y xw u=  (5) 

Substituting Eq. (5) into Eq. (4), then Eq. (4) 
becomes: 

3 2(  2 )  + 2( )  = 0,xz t xxx x y x xw w w ww w u− + −  

.y xw u=  (6) 

In order to apply the standard infinitesimal procedure 
to find the infinitesimals of x, y, z, t, u, w and hence the 
symmetry group of Eqs. (6), we write Eqs. (6) as 

1( , , , , , ) 0,x y z t u wΔ =  2 ( , , , , , ) 0.x y z t u wΔ =  
We generally give the infinitesimal operator 

1 2 ,x y z t u wA B C Dν φ φ= ∂ + ∂ + ∂ + ∂ + ∂ + ∂  (7) 
where the coefficients A, B, C, D, 1φ , 2φ are functions of x, 
y, z, t, u, w. According to the general theory for 
symmetries of differential equations, to find these 
functions we prolong the vector to the fourth order 
derivatives and require that the fourth prolonged vector 
field annihilates 1Δ , 2Δ , on the solution manifold of Eqs. 
(6) respectively, this condition provides us with quite a 



 
110 宁波大学学报（理工版） 2011  

 

complicated system of determining equations for 
coefficients. With the help of symbolic computation 
system Maple, we can obtain the following results: 

1 2( / 3) ( , ),A C x F z t= +  

3 1 1( 2 / 3) ( ),B C C y F z= − +  

3 4 ,C C z C= +  

1 2 ,D C t C= +  
2

1 3 1
( , )( / 3) 3 / 2 ,F z tC C u
z

φ ∂
= − + +

∂
  

1 2
2 1

( ) ( , )
( 2 / 3) 3 / 2 .

dF z F z t
C w

dz t
φ

∂
= − + −

∂
 (8) 

To obtain the similarity reductions and some exact 
solution of the (3+1)-dimensional soliton equation, we 
have to solve the characteristic line equations 

1 2d dd d d d .x y z t
A B C D u w

ϕ ϕ
= = = = =  (9) 

However, it's difficult for us to give out the general 
solutions of Eq. (9). So we shall turn to the symmetry 
group direct method recently developed by Lou et al for 
the general symmetry groups of Eqs. (6). According to 
the symmetry group direct method developed by Lou et 
al, one can find that the symmetry transformation should 
have the following form: 

1 1 1( , , , ) ( , , , ),u U Wα β ξ η κ τ γ ξ η κ τ= + +  

2 2 2( , , , ) ( , , , ),w W Uα β ξ η κ τ γ ξ η κ τ= + +   (10) 
where 1 2 1 2 1 2, , , , , , , , ,α α β β γ γ ξ η κ τ are all functions of 
{ , , , }.x y z t  

Restricting ( , , , ) ,U Uξ η κ τ = ( , , , ) ,W Wξ η κ τ = they 
should satisfy the same form as Eqs. (6) but with new 
independent variables{ , , , }ξ η κ τ , 

3 (2 2 ) 2( ) 0,W W W WW W Uξκ τ ξξξ ξ η ξ ξ− + − + =  

.W Uη ξ=  (11) 
Substituting Eqs. (10) into Eqs. (6), and elimina- 

ting Uξξξη  and Wη  by using Eqs. (11), from that, the 
remained determining equations of the functions 

, , , , ,ξ η τ κ α β  can be got by vanishing the coefficients 
of U and its derivatives, then we find out the general 
solution of the determining equations by tedious 
calculations. The result reads: 

1/3 2/3
1 1 3 1 1, ( / ) ,C x C C yξ δ ξ η δ η= + = +  

3 4 1 2 1 2, , 0C z C C t Cκ τ γ γ= + = + = = . (12) 

2 2/32 2
1

1 1 2 1 11/3 1/3
1 1 3

2
2 2/33

1 2 11/3
1

3 3, ,
2 2

, ,

z t z
C

C C C

C C
C

δδ δα ξ α ξ η

δβ β δ

= − = −

= =
 

where 1 1( , )z tξ ξ= , 1 1( )zη η= , the subscripts denote 
derivatives of z and t respectively, 1C , 2C , 3C , 4C  are 
all arbitrary constant while the constant δ possess 
discrete values determined by 

1, (1 3) / 2,( 1).i iδ = − ± = −  (13) 
From the above results, one can get the following 

theorem for Eqs. (6). 
Theorem 1  If U=U(x, y, t, z), W=W(x, y, t, z) is a 

solution of Eqs. (6), then so is 
22

3
11/3 1/3

1 1

3 ( , , , ),
2 z

Cu U
C C

δδ ξ ξ η κ τ′ = − +  

2 2/32
2 2/31

1 1 11/3
1 3

3 ( , , , ),
2t z

Cw C W
C C

δδ ξ η δ ξ η κ τ′ = − +  (14) 

where , , ,ξ η κ τ are given by Eqs. (12). 
Remark 1  From Theorem 1, it is easy to see that 

the symmetry group SG of the (3+1)-dimensional soliton 
equation is divided into three sectors which can be 
considered as a product of the discrete SD group and the 
usual Lie point symmetry group S which is related to 
transformations{ , } { , }u w u w′ ′→  with 1δ = . That means 

1 2, { , , },S S SG D S D I R R= ⊗ =  (15) 
where I is the identity transformation, 1,R 2R are as 
follows: 

2 2
1 1 1 1 1{ , , , , , } { , , , , , },R x y z t u w x y z t u wδ δ δ δ= →  

1 (1 3) / 2,iδ = − +  
2 2

2 2 2 2 2{ , , , , , } { , , , , , },R x y z t u w x y z t u wδ δ δ δ= →  

2 (1 3) / 2.iδ = − −  (16) 
To find some types of exact solutions in high 

dimensions is one of the most important and difficult 
work. In this section, we just write down some exact 
solutions with help of the group transformation theorem 
and travelling solution for the (3+1)-dimensional soliton 
equation. 

By considering the wave transformations ( )u U χ= , 
( )w W χ= , x qy nz ptχ = + + + , we change Eqs. (6) into 

the form 
(4) 2(3 2 ) 2 2n pq W qW qW qWW′′ ′ ′′− − + + +  
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2 2 0,UW W U′′ ′ ′+ =  
.U qW′ ′=  (17) 

According to the subequation expansion method, 
we use the following series expansion as solutions of 
Eqs. (17): 

1/2

0 0

, ( ), ( ) ( 1),
n n

i j
i j

i j
W a cϕ ϕ ϕ χ ϕ ε ϕ ε

= =

′= = = = ±∑ ∑   
(18) 

Balancing the highest derivative terms with non- 
linear terms in Eqs. (18) gives: 2r n= + . 

Therefore, we may choose 2n = , 4r = , and then 
substitute Eqs. (18) into Eqs. (17), we obtain a system of 
algebraic equations with Maple. Then we can then 
obtain all the possible solutions eliminating ε  from the 
above system and solving the system. For simplification, 
we just list one traveling wave solution as following:  

2
2 2

1 2
2

sec ( / 2 )1 3 3
4 4 2 2 tanh( / 2 )

c h cn pW c
q c

χ

χ ε
= − + ± +

+
 

4
2 2

1 12
2

sec ( / 2 )3 , ,
4 [tanh( / 2 ) ]

c h c
U qW

c
χ

χ ε
=

+
 (19) 

where x qy nz ptχ = + + + , 1ε = ± , and , ,n p q are 
arbitrary constants while the constant 2 0c > . 

According to the symmetry group transformation 
Theorem 1 and the traveling wave solution Eqs. (19), we 
can obtain a new type of group invariant solution for 
Eqs. (6) as follows: 

2 2/32
2 2/31

1 1 11/3
1 3

3
2t z

Cw C
C C

δδ ξ η δ Ω′ = − + , 

22
3

11/3 1/3
1 1

3
2 z

Cu q
C C

δδ ξ Ω′ = − + . (20) 

where  
2

2 2
2

2

sec ( / 2 )1 3 3
4 4 2 2 tanh( / 2 )

c h cn pc
q c

Φ
Ω

Φ ε
= − + ± +

+
 (21) 

4
2 2

2
2

sec ( / 2 )3 ,
4 [tanh( / 2 ) ]

c h c
c

Φ

Φ ε+
 

1/3 3
1 1 12/3

1

( )
C

C x q y
C
δ

Φ δ ξ η= + + + +

 3 4 1 2( ) ( ),n C z C p C t C+ + +  

1 1 1 1( , ), ( ),z t zξ ξ η η= = 1 2 3 4, , , , , ,C C C C n p q  are all 
arbitrary constant while the constant δ  possess discrete 
values determined by Eq. (13). 

2 Transformation group and some 
solutions of Maccari’s system 

By using asymptotically exact reduction method 
based on Fourier expansion and spatiotemporal 
rescaling, Maccari derived the Maccari’s system from 
the KP equation, and discussed the construction of Lax 
pairs. Several periodic wave solutions and soliton 
solutions have recently been reported based on an 
F-expansion method and hyperbolic function method. 
Maccari’s system reads: 

0t xxiq q qh+ + = , 
2(| | ) 0t y xh h q+ + = , (22) 

with ( , , )q q x y t≡ complex and ( , , )h h x y t≡ real. 
Here we let eivq u= , where ( , , ),u u x y t v= =  

( , , )v x y t are real functions, and separate the real and 
imaginary part, then Eqs. (22) become: 

2 0,,xx x x tuv u v u+ + =  
2 0,t xx xuv u uv uh− + − =  

2( ) 0.t y xh h u+ + =  (23) 
We apply the standard infinitesimal procedure to 

find the infinitesimals of x, y, t, u, v, h and hence the 
symmetry group of Eqs. (23). we generally give the 
infinitesimal operator 

1 2 3 ,x y t u v hv ξ η τ φ φ φ= ∂ + ∂ + ∂ + ∂ + ∂ + ∂  (24) 
where the coefficients 1 2 3, , , , ,ξ η τ φ φ φ  are functions of 
{ , , , , , }x y t u v h .  

According to the general theory for symmetries of 
differential equations, to find these functions we prolong 
the vector to the third order derivatives and require that 
the third prolonged vector field annihilates Eq. (23) on 
the solution manifold respectively, this condition 
provides us with quite a complicated system of 
determining equations for coefficients. With the help of 
symbolic computation system Maple, we can obtain the 
following results: 

2 3 1 1 2

1 1 2
2

2 2 3 4 5

( / 2) , , ,
1 / 4 (2 ),

1/ 8 1/ 2 ,

F x F y F F F
U F F

F x F x F F

ξ η τ
φ
φ

′= + = = +
′ ′= − +

′′ ′= + + +
 

2
3 2 3 5 21 / 8 1/ 2 ,F x F x F hFφ ′′′ ′′ ′ ′= + + −  (25) 

where  
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1 1 4 4 2 2( ), ( ), ( ),F F y F F y F F ρ= = =   

3 3 5 5( ), ( ),( ),F F F F t yρ ρ ρ= = = −  
and the superscripts denote derivatives of y and ρ . To 
obtain the similarity reductions and some exact solution 
of the Maccari’s system, we have to solve the char- 
acteristic line equations 

1 2 3

d d d d d dx y t u v h
ξ η τ φ φ φ

= = = = = . (26) 

However, it's difficult for us to give out the general 
solutions of Eq. (23). So we shall turn to the symmetry 
group direct method for the general symmetry groups of 
Eqs. (28). 

We let 

1 1 1 1 ,u U V Hα β γ θ= + + +  

2 2 2 2 ,v U V Hα β γ θ= + + +  

3 3 3 3 ,h U V Hα β γ θ= + + +  (27) 
where , , , , ( 1,2,3), , ,

ii i i iα β γ θ ξ η τ=  are all functions 
of { , , }x y t , while ( , , )U U ξ η τ≡ , ( , , )V V ξ η τ≡ , H ≡  

( , , )H ξ η τ satisfy the Maccari’s system but with new 
independent variables { , , }ξ η τ , i.e., 

2

2 0,

0,

UV U V U

UV U UV UH
ξξ ξ ξ τ

τ ξξ ξ

+ + =

− + − =
 

2( ) 0.H H Uτ η ξ+ + =  (28) 
Substituting Eqs. (27) into Eqs. (23) then vanishing 

,V Uξξ ξξ  and Hτ by using Eqs. (28), from that, the 
remained determining equations of the functions of 

, , , ( 1,2,3), , ,
ii i i iα β γ θ ξ η τ= can be read off by 

eliminating the coefficients of the polynomials of 
{ , , }U V H and its derivatives, then after tedious 
calculation, it is straightforward to figure out the general 
solution of the determining equations. The result as 
follows, 

2 1 0 0 2 1
2

2 1 2
2 2 2

3 2

1 3 2 1 0 3 1

, , , ,
[ / (8 )] ,

[ / (8 ) 3 / (16 )] ,

, ,

F x F C
F F x A A

F F F F x A

F F

ξ δ δ η η τ η γ δ

α

α

β δ δ δ η θ δ

′= = = + + =

′′ ′= − + +

′′′ ′ ′′ ′ ′= − + +

′ ′ ′= =

 

1 2 3 1 3 1 2 0,α β β γ γ θ θ= = = = = = =  (29) 

Where 0 1 1 2 2( ), ( ), ( ) ( ),y A A y A A t yη η ρ ρ= = = = − and 
the C is the arbitrary constant, and the constant 

1 2 3, ,δ δ δ possess discrete values determined by 1 1,δ = ±  

2 31, 1.δ δ= ± = ±  
From the above results, noticing that q is complex 

while h is real at the same time, one can get the theorem 
for Eqs. (23) as follows: 

Theorem 2  If ( , , ), ( , , ),U U x y t V V x y t= = H =  
( , , )H x y t is a solution of Eqs. (23), then so is, 

3 2 0 2 0 0

2
1 2 2 0 0

2
2

2

( , , ),

( , , ),
8

3( )
8 16

u F U F x F C
Fv x A A V F x F C
F
F Fh x
F F

δ δ η δ η η

δ η η

′ ′ ′= + +
′′

′= − + + + + +
′
′′′ ′′

= − + +
′ ′

 

2 2 0 0( , , ).A F H F x F Cδ η η′ ′ ′+ + +  (30) 

Remark 2  From theorem 2, it is easy to see that 
the symmetry group MSG of the Maccari’s system is 
divided into two sectors: the Lie point symmetry group 
which corresponds to 1 2 1δ δ= = and a coset of the Lie 
group which is related to 1 21, 1δ δ= = − . The coset is 
equivant to the reflected transformation of x, ie. 
x x→− company with the usual Lie point symmetry 
transformation. In other words, if we denote by S the Lie 
point symmetry group of the Maccari’s system, by xδ the 
reflection of x, by I the identity transformation and 
by { , }xR I δ≡ the discrete reflection group, then the full 
Lie symmetry group MSG of the Maccari’s system given 
by theorem 2 can be expressed as 

MSG R S= ⊗ . (31) 
By means of Theorem 2, considering q is complex 

while h is real, we can obtain many kinds of group- 
invariant solutions starting from simple solutions in for 
the Maccari’s system, we can easily obtain one Jacobi 
elliptic function solutions for Maccari’s system as 
follows, 

2

2

2( )( 2 )( , , )
1

k n kq x y t
m

λ μ+ − −
= ± ⋅

+
 

( )( , ) ,i kx y t lsn m e α λϕ + + +  (32) 
2

2
2

2( )( , , ) ( , ) ,
1

kh x y t sn m
m
μ λ ϕ μ− −

= +
+

 (33) 

where  
2

02 ( 2 ),
1
k x ny kt

m
μ λϕ ξ− −

= ± + − +
+

 (34) 

0 1, 2 ,m n k<≤ ≤ 0, , , ,lμ α λ ξ are arbitrary constants, 
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then the application of symmetry group theorem 2 on 
the solution (32) and (33). 

2

2

2( )( 2 )
1

k n kq
m

λ μ+ − −
= ⋅

+
 

3 2 0 ( , ) ,iF sn m eΘδ δ η′ ′ Ψ  (35) 
2

2
22

3( )
8 16
F Fh x A
F F
′′′ ′′

′= − + + +
′ ′

 

2
2

2

2( ) ( , ) ,
1

k F sn m F
m
μ λ ϕ μ− − ′ ′+

+
 (36) 

where  
2

2 02 [
1
k F x n

m
μ λΨ δ η− − ′= ± + −

+
 

0 02 ( ) ],k F Cη ξ+ + +  (37) 
2

1 2 28
F x A A k F x
F

Θ δ
′′

′= − + + + +
′

 

0 0 .F C lαη λ λη λ+ + + +  (38) 

3 Conclusion 

In this paper, the Lie symmetry of a (3+1)- 
dimensional nonlinear evolution equation and Maccari’s 
system are obtained By the classical Lie approach and 
symbolic computation. Then making use of the new 
symmetry group method proposed by Lou et al. and 
symbolic computation, finite symmetry transformation 
groups for a (3+1)-dimensional nonlinear evolution 
equation and Maccari’s system are obtained by solving 
the corresponding determining equations-a huge number 
of nonlinear partial differential equations. From the 
finite symmetry groups, not only the Lie symmetry 
group can be given, but a group of discrete trans- 
formations can be also obtained simultaneously. Further, 
one exact solution of a (3+1)-dimensional nonlinear 
evolution equation by a subequation expansion method 
and some simple exact solutions of Maccari’s system in 
terms of Jacobi elliptic functions are presented. Finally, 
some group invariant solutions with rich structure for 
these two equations are derived by their finite symmetry 
transformation groups. 

However, when nonlinear terms of dependent 
variables occur in the Lie symmetry algebra of a given 

NLPDE, we have to assume the finite symmetry group 
transformations to have a more complex form, even a 
general form. In turn, the price to pay is to solve a very 
large number of nonlinear NLPDEs. How to seek for an 
appropriate finite symmetry group transformation for a 
given NLPDE? How to integrate a large number of 
NLPDEs resulting from the above finite transformations? 
These problems should be studied further. 
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一个 3+1维非线性发展方程和Maccari系统的对称群及精确解 

胡  晓 
（宁波大学 理学院, 浙江 宁波 315211） 

摘要: 利用广义对称群方法和符号计算, 首先得到了一个 3+1维非线性发展方程和Maccari系统的李群以

及非李对称变换群, 然后利用它们求出的对称群以及一些简单的种子解构造出新解. 

关键词: 对称群; 3+1维非线性发展方程; Maccari系统 
（责任编辑  史小丽） 

 




