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Abstract: In this paper, a predator-prey model is established with the modified Holling-type II schemes 
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1 Introduction 

The dynamic relationship between the predator and 
the prey has long been and will continue to be one of the 
dominant themes in population dynamics due to its 
universal existence and importance [1]. The functional 
response, which is given by / ( )ax b x+ , is a familiar 
nonlinear factor. Recently, the dynamics of a 
predator-prey system with Holling-type II functional 
response has been well studied [2-6].  

In fact, mutual interference between predator and 
prey is also a factor affect the population dynamics. 
Leslie [7] introduced a predator-prey model where the 
carry capacity of the predator’s environment is propor- 
tional to the number of prey and the predator dynamics, 
which can be described by the equation:  

d / d (1 / )y t ry y xα= − .  
He also thinks that the predator y  can switch 

over to other population when the prey population is 
severely scarce. But its growth will be limited, because 
there is the fact that its most favorite food, the prey x  
is not in abundance. Therefore, a positive constant can 

be added to the denominator and the equation above 
becomes:  

d / d (1 / ( ))y t ry y x dα= − + .  
Based on paper [8], has proposed a first study of 

the following two-dimensional system of autonomous 
differential equation:  

1

2

d / d ( )( ( ) ( ) / ( ( )),
d / d ( )( ( ) / ( ( )).
x t x t a bx t cy t m x t
y t y t r fy t m x t

= − − +⎧
⎨ = − +⎩

 (1) 

However, population dynamics is inevitably 
affected by environmental white noise which is an 
important component in an ecosystem. Therefore, lots of 
authors introduced stochastic perturbation. Recently, 
studied the predator-prey model (1) with stochastic 
perturbation and successfully proved the existence and 
uniqueness of the positive solution [9].  

Motivated by these, we can suppose that the carry 
capacity of the prey’s environment is inversely propor- 
tional to the number of predator. So, we can describe 
this case by the following equation: 

d / d (1 / )x t rx xy α= − ,  
where 0α >  is the conversion factor of predator into 
prey. The term /xy α  measures the increment in the 
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prey population due to the rarity of the predator. We can 
predicate that other predators will switch over to the 
prey when the predator population is severely scare, but 
the prey’s reduction will be limited, because the prey is 
not the most favorite food for other predators. Similarly 
in this situation, we can add a positive constant, then the 
equation becomes d / d (1 / ( / 1/ ))x t rx x y dα= − + ,  and 
thus, d / d ( / ( ))x t x r rd xy y dα= − ⋅ + .  

Then, we can consider a predator-prey model with 
modified Holling-type II: 

( ) ( )( ) ( )( ),( )
( ) ( )(t) ( )( ( ) ),( )

fx t y tx t x t r m y t
cx t y ty y t a by t m y t

⎧ = −⎪ +
⎨
⎪ = − − + +⎩

 (2) 

with initial value 0 0(0) 0 (0) 0x x y y= > , = > , where 
( )x t  and ( )y t  represent the population densities at 

time t , and parameters a b c f r, , , ,  and m  are all 
positive. These parameters are defined as follows: a  is 
the death rate of predator y , b  measures the strength 
of competition among individuals of species y , m  
measures the extent to which the environment provides 
protection to prey x  and to the predator y , r  
describes the growth rate of prey x . 

In this paper, we also consider the effect of 
randomly fluctuating environment. So, we can incorpo- 
rate white noise in each equations of the system (2). We 
assume that fluctuations in the environment will 
manifest themselves mainly as fluctuations in the 
growth rate of the prey population and the predator 
population, specifically,  

1d ( )r r B tα→ + ,  2d ( )a a B tβ→ + ,  
where 1 2( ) ( )B t B t,  are mutually independent Brownian 
motions, α  and β  represent the intensities of the 
white noise. Then corresponding to the deterministic 
model system (2), the stochastic system takes the 
following form:  

1

2

( ) ( )d ( ) ( )( )d ( )d ( ),( )
( ) ( )d ( ) ( )( ( ) )d ( )d ( ).( )

fx t y tx t x t r t x t B tm y t
cx t y ty t y t a by t t y t B tm y t

α

β

⎧ = − +⎪ +
⎨
⎪ = − − + −+⎩

 

 (3) 
We mainly use Lyapunov function, Itôs formula, 

the theory of linear stochastic equation to estimate the 

positive solution of system (3). As we all know, for 
system (2), there is a trivial equilibrium point 0 (0E = ,  
0) , and a unique interior equilibrium point ( )E x y∗ ∗ ∗= , , 
if the condition / /r f a c>  is satisfied, here *x =  

* * *( ) / ( ) /r m y fy y rc af bf+ , = − . While for stochastic 
system (3), there is not positive time independent equi- 
librium point as a solution of the corresponding equation. 

Throughout this paper, unless otherwise specified, 
we let 0( { } )t tF F PΩ, , ,≥  be a complete probability space 
with a filtration 0{ }t tF ≥  satisfying the usual conditions 
(i.e. it is right continuous and 0F  contains all P-null 
sets). Let 1 2( ) ( )B t B t,  denote the independent standard 
Brownian motions defined on this probability space.  

2 Existence and uniqueness of the 
positive solution 

As the ( ), ( )x t y t  in Eq. (3) are population densi- 
ties of the prey and the predator at time t  respectively, 
we are only interested in the positive solutions. 
Moreover, for a stochastic differential equation, in order 
to have a unique global (i.e. no explosion in a finite time) 
solution for any given initial value, the coefficients of 
the equation are generally required to satisfy local 
Lipschitz condition and the linear growth condition (cf. 
Arnold [1]; Friedman [10]; Mao [11]). However, the coeffi- 
cients of Eq. (3) neither satisfy local Lipschitz condition, 
nor the linear growth condition. In this section, we will 
show existence and uniqueness of the solution by 
making the change of variables, comparison theorem 
and Lyapunov functions for stochastic equation [12-13].  

Theorem  There exists a unique positive global 
solution ( ) ( )x t y t,  for [0 )et τ∈ ,  to Eq. (3) a.s. with 
the initial value 0 00 0x y> , > .  

Proof  Consider the following system:  
2

1

2

2

d ( )d d ( ),2

d ( )d d ( ),2

u v

v

u vv
v

fe eu r t B tm e
ce ev a be t B tm e

α α

β β

⎧ = − − +⎪ +
⎨
⎪ = − − − + −+⎩

 (4) 

with initial value 0 0 0 0ln lnu x v y= , = .  Obviously, the 
coefficients of Eq. (4) satisfy local Lipschitz condition, 
then there is a unique local solution ( ) ( )u t v t, on t∈  
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[0 )eτ, , where eτ  is the explosion time (see Arnold [1] 
and Friedman [10]). Therefore, by Itôs formula, it is easy 
to check ( ) ( )( ) , ( )u t v tx t e y t e= =  is the unique positive 
local solution to Eq. (3) with the initial value 0 0x > ,  

0 0y > .  
Next, we will use two different methods to prove 

this solution is global, i.e. eτ = ∞ . 
Method one  Let 0 0k ≥  be sufficiently large in 

order that both 0x  and 0y  lie within the interval 

0 0[1 ]k k/ , . For each integer 0k k≥ , define the stopping 
time:  

inf{ [0 ) min{ ( ) ( )} 1k et x t y t kτ τ= ∈ , : , /≤  or  
max{ ( ) ( )} }x t y t k, ,≥  

where throughout this paper, we set inf ∅ = ∞  (as 
usual ∅  denotes the empty set). Obviously, kτ  is in- 
creasing as k →∞ . Set lim kk

τ τ∞ →∞
= , whence eτ τ∞ ≤  

a.s., then eτ = ∞  and ( ) 0 ( ) 0x t y t> , >  a.s. for all 
0t≥ . That is to say, to complete the proof, all we need 

to show is that τ∞ = ∞  a.s.. If this conclusion is not 
right, then there are a pair of constants 0T >  and 

[0 1)ε ∈ ,  such that { }P Tτ ε∞ >≤ . 
Hence there is an integer 1 0k ' k≥  such that  

{ }P Tτ ε∞ ≤ ≥  for all 1k k '≥ . (5) 
Define a 2C -function 2V R R ++: →  by  

( ) ( ln ) ( ln )V x y c x x f y y, = − + − . 
The non-negativity of this function can be seen 

from ln 1 0u u u− ,∀ >≥ . Using Itôs formula, we get  
2

1d ( 1)[( )d d ( )] 2dfxyV c x r t B t c t
m y

α α= − − + + / +
+

 

2( 1)[( )d d ( )]cxyf y a by t B t
m y

β− − − + − +
+

 

2
12d d ( 1) d ( )f t LV t c x B tβ α/ := + − −  

2( 1) d ( )f y B tβ− , 
where  

2 2( 1) / 2 / 2 ( 1)LV cr x c f f yα β= − + + + −  

( ) ( ) / ( )a by cfxy y x m y crx− − + − + +≤  
2 2( / 2) ( ) ( / 2)c r fy b a f aα β− + + − + + −  

2 2 2/ ( ) ( / 2) (bfy cfxy m y c r f aα+ + − + + +≤  
2 2/ 2) ( )crx f b a y bfy cfxy Mβ + + − − + ≤ , 

and M  is a positive constant. Therefore  

0 0
d ( ( ), ( )) dk kT T
V x t y t M t

τ τ∧ ∧
+∫ ∫≤  

1 20 0
( 1)d ( ) ( 1)d ( )k kT T

c x B t f y B t
τ τ

α β
∧ ∧

− − −∫ ∫ , 

which implies that  

[ ]( ( ) ( )) ( (0) (0))k kE V x T y T V x yτ τ∧ , ∧ , +≤  

0
d ( (0) (0))k T

E M t V x y MT
τ ∧

, + .∫ ≤  (6) 

Set { }k k TΩ τ= ≤  for 1k k ',≥  then by Eq. (5), 
we know ( )kP Ω ε≥ . Note that for every kω Ω∈ , 
there is at least one of ( ) ( )k kx yτ ω τ ω, , ,  equaling either 
k  or 1 k/ , then ( ( ) ( ))k kV x yτ τ,  is no less than k −  
ln k  or 1/ ln1/ 1/ lnk k k k− = + . Consequently,  

( ( ) ( )) ( ln ) (1/ ln )k kV x y k k k kτ τ, − ∧ +≥ . 
It then follows from Eq. (5) and Eq. (6) that  

( (0) (0)) [1 ( ) ( ( ) ( ))]k k kV x y MT E w V x yΩ τ τ, + ,≥ ≥ 
[( ln ) (1/ ln )]k k k kε − ∧ + , 

where 1 ( )k wΩ  is the indicator function of kΩ . Letting 
k →∞ , we get ( (0) (0))V x y MT∞ > , + = ∞,  which 
leads to the contradiction. So we must have kτ =∞  a.s.. 

Method two  Since the solution is positive, we 
have 1d ( ) ( )d d ( )x t rx t t B tα+ .≤   

Let  
2

12( ) ( )

2 1

0

( )
r t B t

x

et
α α

Φ
− +

= ,  (7) 

then 2 ( )tΦ  is the unique solution of the equation: 

2 2 2 1

2 0

d ( ) ( )d ( )d ( ),
(0) .

t r t t t B t
x

Φ Φ αΦ
Φ

= +⎧
⎨ =⎩

 (8) 

The comparison theorem for stochastic equations 
yields 2( ) ( ) [0 )ex t t tΦ τ, ∈ , ,≤  a.s..   

Besides,  

1d ( ) ( )( ( ))d ( )d ( )x t x t r fx t t x t B tα− +≥ . 
Let  

2
12

2
12

( ) ( )

1
( ) ( )

0
0

( ) .
1 d

r t B t

t r s B s

et
f e s

x

α

α

α

α
Φ

− +

− +
=

+ ∫
 (9) 

Similarly, we can get 1( ) ( ) [0 ) a.sex t t tΦ τ, ∈ , ,≥ ,  
on the other hand,  

2d ( ) ( )( ( ))d ( )d ( )y t y t a by t t y t B tβ− − −≥ . 
Obviously,  

2
22

2
22

( ) ( )

1
( ) ( )

0
0

( )
1 d

a t B t

t a s B s

et
b e s

y

β

β

β

β
Ψ

− − −

− − −
=

+ ∫
, (10) 

is the solution to the equation: 
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1 1 2

1 0

( ) ( )( ( ))d ( )d ( ),
(0) ,

d t t a by t t y t B t
y

Ψ Ψ β
Ψ

= − − −⎧
⎨ =⎩

 (11) 

and 1( ) ( ) [0 ) a.s..ey t t tΨ τ, ∈ , ,≥   
Now, we have  

2d ( ) ( )( ( ) ( ))dy t y t a by t c t tΦ− − + −≤  
2( )d ( )y t B tβ . 

By the arguments as above, we can get  
2

2 22 0

2
2 22 0

( ) ( ) ( )d

2
( ) ( )d ( )

0
0

( ) ( )
1 d

t

s

a t B t c s s

t a s c u u B s

ey t t
b e s

y

β

β

β Φ

Φ β
Ψ

− − − −

− − − −

∫
:= ,

∫+ ∫
≤   

[0, )et τ∈ , a.s.. (12) 

To sum up, there are 1 2( ) ( ) ( )t x t tΦ Φ≤ ≤  and 

1 2( ) ( ) ( ) [0 ) a.s..et y t t tΨ Ψ τ, ∈ , ,≤ ≤  
Noting that 1( )tΦ , 2 ( )tΦ , 1( )tΨ  and 2 ( )tΨ  are 

all exist on 0t≥ , hence we have there is a unique 
positive solution ( ) ( ) 0x t y t t, , ≥  to Eq. (3) a.s. for any 
initial value 0 00 0x y> , > .  
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一类带有随机扰动的捕食-食饵模型正解的存在唯一性 

许温琴, 张建勋* 

（宁波大学 理学院，浙江 宁波 315211） 

摘要:主要讨论了一类带有随机扰动和改进了的功能性反应函数 II 的捕食-食饵模型, 通过构造 Lyapunov
函数和使用比较定理两种不同的方法证明了其正解的存在唯一性. 
关键词: 伊藤公式; 布朗运动; 存在唯一性 
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