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Abstract: In this paper, a predator-prey model is established with the modified Holling-type II schemes

with stochastic perturbation. We mainly use Lyapunov function and comparison theorem to show that there

is a unique positive solution to the system with positive initial value.
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1 Introduction

The dynamic relationship between the predator and
the prey has long been and will continue to be one of the
dominant themes in population dynamics due to its
universal existence and importance . The functional
response, which is given by ax/(b+x), is a familiar
nonlinear factor. Recently, the dynamics of a
predator-prey system with Holling-type II functional
response has been well studied >/,

In fact, mutual interference between predator and
prey is also a factor affect the population dynamics.
Leslie " introduced a predator-prey model where the
carry capacity of the predator’s environment is propor-
tional to the number of prey and the predator dynamics,
which can be described by the equation:

dy/dt=ry(l1-y/ax).

He also thinks that the predator y can switch
over to other population when the prey population is
severely scarce. But its growth will be limited, because
there is the fact that its most favorite food, the prey X

is not in abundance. Therefore, a positive constant can

Received date: 2011-06-26.

Document code: A

ArticleID: 1001-5132 2012 02-0068-04

be added to the denominator and the equation above
becomes:

dy/dt=ry(d-y/(ax+d)).

Based on paper [8], has proposed a first study of
the following two-dimensional system of autonomous

differential equation:

dx/dt = x(t)(a—bx(t)—cy(t)/ (m, + x(t)), )
dy/dt = y(t)(r — fy(t)/ (m, + x(t)).
However, population dynamics is inevitably

affected by environmental white noise which is an
important component in an ecosystem. Therefore, lots of
authors introduced stochastic perturbation. Recently,
studied the predator-prey model (1) with stochastic
perturbation and successfully proved the existence and
uniqueness of the positive solution ..

Motivated by these, we can suppose that the carry
capacity of the prey’s environment is inversely propor-
tional to the number of predator. So, we can describe
this case by the following equation:

dx/dt =rx(1-xy/ a),
where « >0 is the conversion factor of predator into

prey. The term Xy /o measures the increment in the
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prey population due to the rarity of the predator. We can
predicate that other predators will switch over to the
prey when the predator population is severely scare, but
the prey’s reduction will be limited, because the prey is
not the most favorite food for other predators. Similarly
in this situation, we can add a positive constant, then the
equation becomes dx/dt=rx(1-x/(a/y+1/d)), and
thus, dx/dt=x(r—rd-xy/(y+ad)).

Then, we can consider a predator-prey model with
modified Holling-type 1I:

() = x(t(r -,
@
J(0) = y(t)(-a—by(t) + ZOYO,

my()
with initial value x(0)=x,>0, y(0)=Y, >0, where
X(t) and y(t) represent the population densities at
time t, and parameters a,b,c, f,r and m are all
positive. These parameters are defined as follows: a is
the death rate of predator y, b measures the strength
of competition among individuals of species y, m
measures the extent to which the environment provides
protection to prey X and to the predator Yy, r
describes the growth rate of prey X.

In this paper, we also consider the effect of
randomly fluctuating environment. So, we can incorpo-
rate white noise in each equations of the system (2). We
assume that fluctuations in the environment will
manifest themselves mainly as fluctuations in the
growth rate of the prey population and the predator
population, specifically,

r—-r+adB(t), a—a+dB,(t),
where B,(t),B,(t) are mutually independent Brownian
motions, « and [ represent the intensities of the
white noise. Then corresponding to the deterministic
model system (2), the stochastic system takes the
following form:

ax(t)=x(t)(r —XOYOy e 4 oxtya, (1),

m+y(t)
_ cx(®)y()
dy(t)=y(O)(-a=by(t)+ T as)dt- By (DB, (1),
3)

We mainly use Lyapunov function, Ités formula,

the theory of linear stochastic equation to estimate the

positive solution of system (3). As we all know, for
system (2), there is a trivial equilibrium point E; = (0,
0), and a unique interior equilibrium point E"=(x",y"),
if the condition r/f >a/c is satisfied, here X =
r(m+y")/ fy",y =(rc—af)/bf . While for stochastic
system (3), there is not positive time independent equi-
librium point as a solution of the corresponding equation.
Throughout this paper, unless otherwise specified,
we let (2,F,{F}.,,P) be a complete probability space
with a filtration {F}_, satisfying the usual conditions
(i.e. it is right continuous and F, contains all P-null
sets). Let B, (t),B,(t) denote the independent standard

Brownian motions defined on this probability space.

2 Existence and uniqueness of the
positive solution

As the X(t),y(t) in Eq. (3) are population densi-
ties of the prey and the predator at time t respectively,
we are only interested in the positive solutions.
Moreover, for a stochastic differential equation, in order
to have a unique global (i.e. no explosion in a finite time)
solution for any given initial value, the coefficients of
the equation are generally required to satisfy local
Lipschitz condition and the linear growth condition (cf.
Armold "; Friedman "%; Mao [“]). However, the coeffi-
cients of Eq. (3) neither satisfy local Lipschitz condition,
nor the linear growth condition. In this section, we will
show existence and uniqueness of the solution by
making the change of variables, comparison theorem
and Lyapunov functions for stochastic equation '],

Theorem There exists a unique positive global
solution X(t),y(t) for te[0,7,) to Eq. (3) a.s. with
the initial value x, > 0,y, > 0.

Proof Consider the following system:

du=(r- %2 r;e (ZV ——)dt + adB, (1), @
dv=(-a —/’77 —be' + r%ig )dt — AdB, (1),

with initial value u, =InX,,v, =Iny,. Obviously, the
coefficients of Eq. (4) satisfy local Lipschitz condition,

then there is a unique local solution u(t),v(t)on te



70

2012

[0,7,), where 7, is the explosion time (see Arnold (

and Friedman !'%). Therefore, by Itds formula, it is easy
to check x(t)=e"",y(t)=¢e"" is the unique positive
local solution to Eq. (3) with the initial value X, >0,
Yy >0.

Next, we will use two different methods to prove
this solution is global, i.e. 7, =.

Method one Let k, >0 be sufficiently large in
order that both X, and Yy, lie within the interval
[1/K,,k,]. For each integer k >k, , define the stopping
time:

7, =inf{t €[0,7,) : min{X(t), y(t)} <1/k or

max {x(t), y(t)} >k},

where throughout this paper, we set inf@ =0 (as
usual <& denotes the empty set). Obviously, 7, is in-
creasing as K > . Set 7, = %l_)n;lo 7., whence 7, <7,
as., then 7,=c0 and X(t)>0,y(t)>0 as. for all
t = 0. That is to say, to complete the proof, all we need
to show is that 7, = a.s.. If this conclusion is not
right, then there are a pair of constants T >0 and
€€[0,1) suchthat P{r, <T}>¢.

Hence there is an integer k' =k, such that

P{r, <T}=g¢ forall k=Kk'. %)

Definea C”-function V:R?> - R, by

V(X y)=c(x—-Inx)+ f(y—Iny).

The non-negativity of this function can be seen

from u-Inu=1vu>0. Using [tds formula, we get
DY )t + adB, ()] + ca® / 2dt +
y

m+
CX
f(y-Di(-a-by+—2Y
m+y

f £ /2dt := LVdt + ¢(x - ))erdB, (t) -
f(y-1AdB, (1),

dV =c(x-D[(r—

)dt — 4dB, ()] +

where
LV =cr(x—1)+ca’/2+ f g /2+ f(y-1)
(—a—-by)+cixy(y—x)/(m+y)<crx+
c(-r+a’/2)+ fy(b-a)+ f(a+p°/2)-
bfy* +cfxy> /(m+y)<c(-r+a’/2)+ f(a+
B> /2)+crx+ f(b—a)y—bfy> +cfxy< M ,
and M is a positive constant. Therefore

I v (x(), ) < [ " Mdt +

[ catx-dB,®) - [ £ A(y-1)dB, (1),
which implies that
E[V(X(z, AT), y(z AT)] <V (X(0), y(0) +
E["" Mdt <V (x(0), y(0)) + MT. (6)
Set Q ={r, <T} for k=k/, then by Eq. (5),
we know P(£))=¢ . Note that for every we 2,
there is at least one of X(7,,w), y(7,,®) equaling either
k or 1/k, then V(x(z,),y(r,)) is no less than k-
Ink or 1/k—In1/k=1/k+Ink . Consequently,
V(x(z,),Y(r,) = (k—Ink) A(1/k +Ink) .
It then follows from Eq. (5) and Eq. (6) that
V (X(0), y(0)) + MT > E[1Q W)V (X(z, ). ¥(5,))] >
el(k—Ink)A(1/k +1nk)],
where 12 (W) is the indicator function of 2 . Letting
k—>ow, we get o >V(x(0),y(0))+MT =co, which
leads to the contradiction. So we must have 7, =0 as..
Method two Since the solution is positive, we
have dx(t) < rx(t)dt + adB, (1).

Let
(r-<)t+aB, (1)
(1) =—7—, (7
%o
then @,(t) is the unique solution of the equation:
{d@z (t) = ra, (t)dt + a®, (t)dB, (1), ®
@,(0) =X,

The comparison theorem for stochastic equations
yields Xx(t) < @, (t),t €[0,7,), as..
Besides,
dx(t) = x(t)(r — fx(t))dt + ax(t)dB, (1) .
Let
e(r—%)tmsl )

Q(t): 1 t 2 : (9)
L fJ' e(r—T)SHzB,(s)dS
X, 0

Similarly, we can get X(t) > @ (t),t €[0,7,), a.s,
on the other hand,

dy(t) = y(t)(-a—by(t))dt - Sy(t)dB, (t).
Obviously,

e(—a—%zn—ﬁBz(t)
H )= ] . = , (10)
4 b . e(*a*T)S*ﬂBz(S)dS
0

is the solution to the equation:
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{dy’l (t) = ¥/ (H(-a—by(t)dt - By(1)dB, (1), (11
#(0) =Y,
and y(t) =¥ (1),t €[0,7,),as..
Now, we have
dy(t) < y(t)(-a—by(t) + c@,(t)dt -
BY(®)dB, (1) .
By the arguments as above, we can get
(L8, (1< @ ()as
o= 1 ¢ (a-tscf @ udu-p8,(s) =50,
—+ bj e “ds
Yo 0
te[0,7,),as.. (12)

To sum up, there are Q@(t) < x(t) <@, (t) and
P () < ylt) < P(t),te[0,7,),as..

Noting that @ (), @ (1), # () and ¥, (1) are
all exist on t=>0, hence we have there is a unique
positive solution x(t), y(t),t =0 to Eq. (3) a.s. for any

initial value X, >0,y, >0.
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