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Geometry of Higher-Order Markov Chains

Bernd Sturmfels∗

Abstract

We determine an explicit Gröbner basis, consisting of linear forms and determi-
nantal quadrics, for the prime ideal of Raftery’s mixture transition distribution
model for Markov chains. When the states are binary, the corresponding pro-
jective variety is a linear space, the model itself consists of two simplices in a
cross-polytope, and the likelihood function typically has two local maxima. In the
general non-binary case, the model corresponds to a cone over a Segre variety.

1 Introduction

In this note we investigate Adrian Raftery’smixture transition distribution model (MTD)
from the perspective of algebraic statistics [4, 8]. The MTD model, which was first
proposed in [9], has a wide range of applications in engineering and the sciences [10].
The article by Berchtold and Raftery [2] offers a detailed introduction and review.

The point of departure for this project was a conjecture due to Donald Richards [11],
stating that the likelihood function of an MTD model can have multiple local maxima.
We establish this conjecture for the case of binary states in Proposition 6.

Our main result, to be derived in Section 4, gives an explicit Gröbner basis for the
MTD model. Here, both the sequence length and the number of states are arbitrary.

We begin with an algebraic description of the model in [2, 9]. Fix a pair of positive
integers l and m, and set N = ml+1 − 1. We define the statistical model MTDl,m whose
state space is the set [m]l+1 of sequences i0i1 · · · il of length l + 1 over the alphabet
[m] = {1, 2, . . . , m}. The model has (m − 1)m+ l − 1 parameters, given by the entries
of an m × m-transition matrix (qij) and a probability distribution λ = (λ1, . . . , λl) on
the set [l] = {1, 2, . . . , l} of the hidden states. Thus the parameter space is the product
of simplices (∆m−1)

m ×∆l−1. The model MTDl,m will be a semialgebraic subset of the
simplex ∆N . That simplex has its coordinates pi0i1···il indexed by sequences in [m]l+1.

The model MTDl,m is the image of the bilinear map

φl,m : (∆m−1)
m ×∆l−1 → ∆N

∗Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA,

bernd@math.berkeley.edu. This research project was supported in part by the National Science
Foundation (DMS-0968882) and the DARPA Deep Learning program (FA8650-10-C-7020).

1

http://arxiv.org/abs/1207.1899v1


which is defined by the formula

pi0i1...il−1il =
1

ml
·

l
∑

j=1

λjqij−1,il (1)

As is customary in algebraic statistics, we pass to a simpler object of study by considering
the Zariski closure MTDl,m of our model in the complex projective space P

N , and we
seek to compute the homogeneous prime ideal of all polynomials in the N +1 unknowns
pi0i1...il that vanish on MTDl,m. This particular goal will be reached in our Theorem 8.

The following probabilistic interpretation of the formula (1) makes it evident that
∑

pi0i1···il = 1 holds on the image of φl,m. We generate a sequence of length l + 1 on
m states as follows. First we select from the uniform distribution on all ml sequences
i0i1 · · · il−1 of length l. All that remains is to determine the state il in position l. The
mixture distribution λ determines which of the earlier states gets used in the transition.
With probability λj , we select position j− 1 for that. The character in the last position
l is determined from the state ij−1 in position j − 1 using the transition matrix (qij).

The model MTDl,m is known to be identifiable [2, §4.2]. Consequently, the dimension
of the projective variety MTDl,m is equal to the number (m − 1)m + l − 1 of model
parameters. A geometric characterization of this variety will be given in Corollary 11.

Equations defining Markov chains and Hidden Markov Models have received consid-
erable attention in algebraic statistics [3, 5, 6, 12]. We contribute to this literature by
studying the algebraic geometry of a fundamental model for higher order Markov chains.
In addition to our theoretical results in Theorems 1 and 8, readers from statistics will find
in Section 3 an analysis of the behavior of the EM algorithm for binary MTD models.

2 Binary States

Our first result concerns the geometry of the model in the case m = 2 of binary states.

Theorem 1. The variety MTDl,2 is a linear subspace of dimension l+1 in the projective

space P
N . This variety intersects the probability simplex ∆N in a regular cross-polytope

of dimension l + 1. The model MTDl,2 is the union of two (l + 1)-simplices spanned by

vertices of the cross-polytope MTDl,2∩∆N . The two simplices meet along a common edge.

The cross-polytope is the free object in the category of centrally symmetric polytopes
[13]. It can be represented as the convex hull of all signed unit vectors ei and −ei where
i = 0, 1, . . . , l, so it is an (l+1)-dimensional polytope with 2l+2 vertices and 2l+1 facets.

Before we come to the proof Theorem 1, let us first see some examples to illustrate
it. In what follows we abbreviate the model parameters by q11 = a, q21 = b and λ2 = λ.

Example 2. Theorem 1 also applies in the trivial case l = 1, where (1) reads

(

p11 p12
p21 p22

)

=

(

a/2 (1− a)/2
b/2 (1− b)/2

)

. (2)
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The variety MTD1,2 is the plane in P
3 given by p11 + p12 = p21 + p22. Its intersection

with the tetrahedron ∆3 coincides with the model MTD1,2, which is a regular square:

MTD1,2 = MTD1,2 ∩∆3 = conv

{(

1/2 0
1/2 0

)

,

(

1/2 0
0 1/2

)

,

(

0 1/2
1/2 0

)

,

(

0 1/2
0 1/2

)}

.

The first three and last three matrices in this list form the two triangles referred to in
Theorem 1. Their common edge consists of all transition matrices (2) of rank 1.

Example 3. Our first non-trivial example arises for l = m = 2. The map φ2,2 is given by

(a, b, λ) 7→ p =
1

4

[

ae111 + (λb+ (1− λ)a)e121 + (λa+ (1− λ)b)e211 + be221 + (1−a)e112
+(λ(1−b)+(1−λ)(1−a))e122 + (λ(1−a)+(1−λ)(1−b))e212 + (1−b)e222

]

Here {e111, e112, . . . , e222} denotes the standard basis in the space of 2 × 2 × 2-tensors.
The variety MTD2,2 is the 3-dimensional linear subspace of P7 defined by

p111 + p112 = p121 + p122, p211 + p212 = p221 + p222,
p121 + p122 = p221 + p222, p111 + p221 = p121 + p211.

The intersection of this linear space with the simplex ∆7 is the regular octahedron whose
vertices are the images under φ2,2 of the vertices of the cube (∆1)

2 × ∆1. The model
MTD2,2 consists of two tetrahedra formed by vertices of the octahedron. Their common
edge is the segment between 1

4
(e111+e121+e211+e221) and

1
4
(e112+e122+e212+e222).

Example 4. The statement of Theorem 1 does not extend to m ≥ 3. Consider the case
l = 2, m = 3. The 7-dimensional variety MTD2,3 lives in P

26, and it is not a linear space.
The linear span of MTD2,3 is 10-dimensional. Inside this P

10, the variety MTD2,3 has
codimension 3, degree 4, and it is cut out by six quadrics. In Example 10 we shall display
a Gröbner basis consisting of 16 linear forms and six quadrics for its prime ideal.

Proof of Theorem 1. It is known by [2, §4.2] that the model is identifiable, so MTDl,2

is a semi-algebraic set of dimension l + 1 in ∆N . Its Zariski closure MTDl,2 is a variety
of dimension l + 1 in P

N . That variety is irreducible because it is defined by way of a
rational parametrization. For any binary sequence i0i1 · · · il−1, the identity

pi0i1···il−12 = 2−l − pi0i1···il−11 (3)

holds on MTDl,2, so it suffices to consider relations on probabilities of sequences that
end with 1. On our model, these probabilities satisfy the linear equations

pi0i1···ir ···is···il−11 + pi0i1···̃ir···̃is···il−11
= pi0i1···ir ···̃is···il−11

+ pi0i1···̃ir···is···il−11
. (4)

In other words, the l-dimensional 2×2× · · ·×2-tensor (pi0i1···il−11) has tropical rank 1.
The set of such tensors is a classical linear space of dimension l + 1.

Solving the linear equations (3) and (4) on the simplex ∆N , we obtain an (l + 1)-
dimensional polytope P that contains the model MTDl,2. Its Zariski closure in P

N is
an (l + 1)-dimensional linear space that contains the variety MTDl,2. Being irreducible
varieties of the same dimension, they must be equal. This proves the first assertion.
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We next claim that the polytope P of all non-negative real solutions to (3) and (4)
is a regular cross-polytope. For r ∈ {0, 1, . . . , l − 1} and s ∈ {1, 2} define the 2l points

Ers =
1

2l
·

[

∑

{

ei0i1···il−11 | ir = s
}

+
∑

{

ei0i1···il−12 | ir 6= s
}

]

∈ ∆N .

These are extreme non-negative solutions of (3) and (4). They form the vertices of
an l-dimensional cross-polytope, since 1

2
(Er1+Er2) is equal to the uniform distribution

1
2l+1 e++···++ for all r. In addition to the 2l vertices Ers, the polytope P has two more ver-
tices, namely, 1

2l
e++···+1 and 1

2l
e++···+2. Hence P is a bipyramid over the l-dimensional

cross-polytope, so it is an (l + 1)-dimensional cross-polytope.

It remains to identify the model MTDl,2 inside P . The parameter polytope is the
product (∆1)

2 × ∆l−1, and, as before, we chose coordinates (a, b) on the square (∆1)
2.

The map φl,2 contracts the simplex {(0, 0)} ×∆l−1 onto the vertex 1
2l
e++···+2 of P , and

it contracts the simplex {(1, 1)} × ∆l−1 onto the vertex 1
2l
e++···+1 of P . The vertex

(0, 1) × er is mapped to the vertex Er,2, and the vertex (1, 0) × er is mapped to the
vertex Er,1. The parameter points with a = b are contracted onto the line segment
S = [ 1

2l
e++···+1,

1
2l
e++···+2]. The parameter points with a < b are mapped bijectively

onto the (l + 1)-simplex formed by S and {E0,2, E1,2, . . . , El−1,2}, but with S removed.
The parameter points with a > b are mapped bijectively onto the (l+1)-simplex formed
by S and {E0,1, E1,1, . . . , El−1,1}, but with S removed. Hence MTDl,2 equals the union
of two (l + 1)-simplices glued along the special diagonal S of the cross-polytope P .

Corollary 5. For large l, there are far fewer distributions in the model MTDl,2 than

distributions in its Zariski closure. Namely, with respect to Lebesgue measure, we have

vol(MTDl,2)

vol(MTDl,2 ∩∆N )
=

1

2l−1
.

Proof. We can triangulate the cross-polytope P into 2l simplices, all of the same volume
and containing the special diagonal S. The model MTDl,2 consists of two of them. Hence
2/2l is the fraction of the volume of P = MTDl,2 ∩∆N that is occupied by MTDl,2.

3 Likelihood inference

We next discuss maximum likelihood estimation (MLE) for the mixture transition dis-
tribution model MTDl,m. Any data set is represented by a function u : [m]l+1 → N

that records the frequency counts of the observed sequences. Given such a function u,
our objective is to maximize the corresponding log-likelihood function

Lu =
∑

i0i1···il

ui0i1···il · log(pi0i1···il) (5)

over all probability distributions that lie in the model MTDl,m. A standard method
for solving this optimization problem is the expectation-maximization (EM) algorithm.
Other algorithms for the same task can be found in [1, 10].

4



A general version of the EM algorithm for algebraic models with discrete data is
described in [8, §1.3], while the specific case of the MTD model is treated in [2, §4.5].
Richards [11] conjectured that the EM algorithm for the MTD model may get stuck in
local maxima. Our next result confirms that this is indeed the case, even for m = 2.

Proposition 6. The log-likelihood function Lu on the binary model MTDl,2 has either

one or two local maxima. With probability one, there will be two local maxima, and both

of these will be reached by the EM algorithm for different choices of initial parameters.

Here the statement about “probability one” in the second sentence refers to any
absolutely continuous probability distribution that is positive on the simplex ∆N .

Proof. We saw in Theorem 1 that MTDl,2 is the union of two convex polytopes. The
log-likelihood function Lu is strictly concave on the ambient simplex ∆N , so it attains a
unique maximum on each of the two polytopes. This proves the first statement.

For the second statement consider the empirical distribution u/|u| which is a point
in ∆N . Its log-likelihood function Lu has a unique maximum p∗ in the interior of the
cross-polytope P . With probability one, this maximum p∗ will not lie in the segment
S, so let us assume that this is the case. Then either p∗ lies in precisely one of the two
(l+1)-simplices that make up MTDl,2, or p

∗ does not lie in MTDl,2. In the former case, p∗

is the MLE, and the maximum over the other simplex is in the boundary of that simplex
and constitutes a second local maximum. In the latter case, each of the two simplices
has a local maximum in its boundary. When choosing starting parameter values near
either of these local maxima, the EM algorithm converges to that local maximum.

The point p∗ in the cross-polytope P at which Lu attains its maximum is an algebraic
function of the data u. The degree of this algebraic function is the ML degree (see [7]) of
the linear subvariety MTDl,2 of PN . By Varchenko’s Formula [8, Theorem 1.5], this ML
degree coincides with the number of bounded regions in an arrangement of hyperplanes.
This arrangement lives inside the affine space that is cut out by (3) and (4) and it
consists of the restrictions of the coordinate hyperplanes {p• = 0}.

Computations show that the ML degree equals 9 for l = 3, and it equals 209 for l = 4.
It would be interesting to find a general formula for that ML degree as a function of l.

The local maxima that occur on the boundary of the two simplices of MTDl,2 have
ML degree 1, that is, they are expressed as rational functions in the data u. Indeed,
these local maxima are precisely the estimates for the Markov chain obtained by fixing
λi = 1 for some i. Hence, if p∗ 6∈ MTDl,2, then the MLE is a rational expression in u.
The next example illustrates the behavior of the EM algorithm for m = 2 and l = 3.

Example 7. The data consists of eight positive integers, here written as a matrix

U =

(

u111 u121 u211 u221

u112 u122 u212 u222

)

.

The MLE p̂ will be either

p′ =
1

2|u|

(

u111 + u211 u121 + u221 u111 + u211 u121 + u221

u112 + u212 u122 + u222 u112 + u212 u122 + u222

)
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or

p′′ =
1

2|u|

(

u111 + u121 u111 + u121 u211 + u221 u211 + u221

u112 + u122 u112 + u122 u212 + u222 u212 + u222

)

,

or it will be the unique probability distribution satisfying (3), (4), and

rank

















u111 u112 u121 u122 u211 u212 u221 u222

p111 p112 p121 p122 p211 p212 p221 p222
p111 p112 −p121 −p122 0 0 0 0
0 0 0 0 p211 p212 −p221 −p222
0 0 p121 p122 0 0 −p221 −p222

p111 0 −p121 0 −p211 0 p221 0

















≤ 5. (6)

This is the matrix denoted

[

u

J̃

]

in [7, §3]. The rank constraint (6) represents Proposi-

tion 2 in [7]. The unique probability distribution that lies in our model and also satisfies
(6) was called p∗ in the proof of Proposition 6. Its defining constraints (3), (4) and (6)
form a system of polynomial equations that has 9 complex solutions. The distribution
p∗ is the unique solution to that system whose coordinates are both real and positive.

The trichotomy in this example is best explained by the following observations: For
almost all data matrices U , the three points p′, p′′, p∗ are distinct, one of them coincides
with the global maximum p̂ of Lu over MTDl,2, and another one is a local maximum.

It would be interesting to extend the findings in Proposition 6 tom ≥ 3. The algebraic
tools that may be needed for such an analysis are developed in the next section.

4 Non-linear Models

In this section we examine the geometry of model MTDl,m and the variety MTDl,m for an
arbitrary number m of states. In particular, we prove that its prime ideal is minimally
generated by linear forms and quadrics. These minimal generators form a Gröbner basis.

Theorem 8. The variety MTDl,m spans a linear space of dimension (m−1)(lm− l+1)
in P

N . In this linear space, its prime ideal is given by the 2×2-minors of an l×(m−1)2-
matrix of linear forms. The linear and quadratic ideal generators form a Gröbner basis.

This theorem explains our earlier result that the model is linear for binary states.
Indeed, for m = 2, the dimension (m − 1)m + l − 1 of the model coincides with the
dimension (m−1)(lm− l+1) of the ambient linear space, and there are no 2×2-minors.

Proof. We shall present an explicit Gröbner basis consisting of linear forms and quadrics.
The term order we choose is the reverse lexicographic term order induced by the lexico-
graphic order on the states i0i1 · · · il of the model. We first consider the linear relations

pi0i1i2···il−1il −
l−1
∑

j=0

pm···mijm···mil + (l − 1)pmm···mmil . (7)
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This linear form is non-zero and has the underlined leading term if and only if at least
two of the entries of the l-tuple (i0, i1, . . . , il−1) are not equal to m. Thus the number of
distinct Gröbner basis elements (7) equals ml+1 −m(1 + l(m− 1)).

Our second class of Gröbner basis elements consists of the linear relations

pm···mijm···m1 + pm···mijm···m2 + · · ·+ pm···mijm···mm

− pm···mmm···m1 − pm···mmm···m2 − · · · − pm···mmm···mm.
(8)

These linear forms are non-zero with the underlined leading term provided 0 ≤ j ≤ l−1
and 1 ≤ ij ≤ m − 1. The number of distinct linear forms (8) equals l(m − 1), and the
set of their leading terms is disjoint from the set of leading terms in (7).

The number of unknowns p• not yet underlined equals l(m−1)2+(m−1)+1. We use
these unknowns to form m− 1 matrices A2, A3, . . . , Am, each having format l× (m− 1),
as follows. Define the matrix Ar by placing the following entry in row j and column ij :

pm···mijm···mr − pm···mmm···mr. (9)

We finally form an l × (m− 1)2 matrix by concatenating these m− 1 matrices:

A =
(

A2A3 · · · Am

)

. (10)

The third and last group of polynomials in our Gröbner basis is the set of 2× 2-minors
of A. The entries of A have distinct leading terms, underlined in (9), and the leading
term of each 2× 2-minor is the product of the leading terms on the main diagonal.

Note that we could also define the matrix A1 and include it when forming (10). This
would not change the ideal, but it would lead to a generating set that is not minimal.

It is well-known that the 2× 2-minors of a matrix of unknowns form a Gröbner basis
for the prime ideal they generate. Since no unknown p• underlined in (7) or (8) appears
in the matrix A, it follows that these linear relations together with the 2× 2-minors of
(10) generate a prime ideal and form a Gröbner basis for that prime ideal.

The ideal of 2×2 minors of A has codimension l(m−1)2−l−(m−1)2+1. Subtracting
this quantity from the number l(m−1)2+(m−1)+1 of unknowns not underlined in (7)
or (8), we obtain l+(m−1)2−1+(m−1)+1 = (m−1)m+ l. This is the dimension of
the affine variety defined by our prime ideal. The corresponding irreducible projective
variety has dimension (m− 1)m+ l − 1. This is precisely the dimension of MTDl,m.

It hence suffices to prove that our variety contains the model MTDl,m, or, equivalently,
that the linear forms (7) and (8) are mapped to 0 by the parameterization (1), and that
the specialized matrix φl,m(A) has rank 1. For (8) this is obvious because, for fixed ij,

m
∑

r=1

φ∗

l,m

(

pm···mijm···mr

)

=
1

ml
.

Here φ∗

l,m denotes the homomorphism of polynomial rings induced by the map φl,m.

The indices of the unknowns in the linear form (7) all have the same letter il in the
end. The formula (1) for the corresponding probabilities can thus be written as

φ∗

l,m(pi0i1···ii−1il) = u+ xi0 + yi1 + · · ·+ zil−1
.

7



In other words, for any fixed il, the resulting l-dimensional tensor has tropical rank 1.
This representation implies linear relations like (4), and these are equivalent to (7).

Finally, if we apply our ring homomorphism to (9) then we get

φ∗

l,m(pm···mijm···mr) − φ∗

l,m(pm···mmm···mr) = λj · (qij ,r − qm,r). (11)

Thus, the matrix φk,l(A) is the product of the column vector (λ1, . . . , λl) and a row vector
of length (m − 1)2 whose entries are qij ,r − qm,r for 2 ≤ r ≤ m and 1 ≤ ij ≤ m− 1. In
particular, the matrix φ∗

l,m(A) has rank ≤ 1. This completes the proof of Theorem 8.

Remark 9. The prime ideal in Theorem 8 is the kernel of φ∗

l,m, so it characterizes the
image of the model parametrization φl,m. On the model MTDl,m, the map φl,m can be
inverted as long as the rows of the transition matrix (qij) are distinct. Indeed, qij equals
2lφ∗

l,m(pii···iij), and the coordinates of λ are identified from (11). Thus, our result refines
the well-known fact that MTD models are identifiable [2, §4.2].

Example 10. We illustrate Theorem 8 for the case l = 2, m = 3, by presenting the
Gröbner basis promised in Example 4. Note that N = 26. Here the ambient linear
space has dimension (m − 1)(lm − l + 1) = 10, and our Gröbner basis for that linear
space consists of twelve linear forms (7) and four linear forms (8). These are respectively,

p111−p311−p131+p331, p121−p321−p131+p331, p211−p311−p231+p331, p221−p321−p231+p331,
p112−p312−p132+p332, p122−p322−p132+p332, p212−p312−p232+p332, p222−p322−p232+p332,
p113−p313−p133+p333, p123−p323−p133+p333, p213−p313−p233+p333, p223−p323−p233+p333.

and p311 + p312 + p313 − p331 − p332 − p333 , p321 + p322 + p323 − p331 − p332 − p333 ,
p131 + p132 + p133 − p331 − p332 − p333 , p231 + p232 + p233 − p331 − p332 − p333.

The remaining l(m − 1)2 + (m− 1) + 1 = 8 + 2 + 1 = 11 not yet underlined unknowns
are p132, p232, p312, p322, p133, p233, p313, p323, p332, p333, p331. These represent coordinates
on the linear subspace P10 of P26 that is cut out by these linear forms. Inside that linear
subspace P10, our variety MTD2,3 has codimension 3, and it is defined ideal-theoretically
by the 2× 2-minors of the 2× 4-matrix

A =
(

A2 A3

)

=

(

p132 − p332 p232 − p332 p133 − p333 p233 − p333
p312 − p332 p322 − p332 p313 − p333 p323 − p333

)

.

These six quadrics, together with the 16 linear forms, form a reduced Gröbner basis.

Our proof of Theorem 8 gives rise to the following geometric description:

Corollary 11. The projective variety MTDl,m is a cone with base P
m−1 over the Segre

variety P
l−1 × P

m2
−2m. If m ≥ 3, then this variety is singular and its singular locus is

the P
m−1 that forms the base of that cone. The degree of MTDl,m equals

(

l+(m−1)2−2
l−1

)

.

Proof. The ideal of singular locus of MTDl,m is generated by the entries of the matrix
A together with the linear forms (7) and (8). Together, these linear equations are
equivalent to requiring that the value of pi0i1···il−1r depends only on r. It does not on
i0i1 · · · il−1. These constraints define a linear space P

m−1 in P
N . The 2× 2-minors of an

l× (m−1)2 matrix define the Segre variety P
l−1 × P

m2
−2m, whose degree is known to be

the binomial coefficient.
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