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Abstract

Consider the case where cause-effect relation-
ships between variables can be described as a
directed acyclic graph and the corresponding
linear structural equation model. This paper
provides graphical identifiability criteria for
total effects by using surrogate variables in
the case where it is difficult to observe a treat-
ment/response variable. The results enable
us to judge from graph structure whether a
total effect can be identified through the ob-
servation of surrogate variables.

1 INTRODUCTION

1.1 BACKGROUND

Evaluation of causal effects from observational studies
is one of the central aims in many fields of practical
science. Researchers have attempted to clarify cause-
effect relationships and to evaluate the causal effect of
a treatment variable on a response variable through
statistical data. Statistical causal analysis is a power-
ful tool to achieve this purpose.

The central aim of statistical causal analysis is to eval-
uate causal effects through both qualitative causal in-
formation and statistical data. Statistical causal anal-
ysis started with path analysis (Wright, 1923, 1934),
and advanced to structural equation models (Wold,
1954; Bollen, 1989). Recently, Pearl (2000) has devel-
oped a new framework of causal modeling based on a
directed acyclic graph and the corresponding nonpara-
metric structural equation model. In addition, he pro-
vided the mathematical definition of causal effects in
this framework. Furthermore, Pearl (2000) suggested
several graphical identifiability conditions for causal
effects, such as the back door criterion, the front door
criterion and so on, which enable us to evaluate causal
effects from nonexperimental data.

When a linear structural equation model is assumed as
the data generating process, Tian (2004) stated that
the identifiability criteria for causal effects in the non-
parametric structural equation model can be trans-
lated into the identifiability criteria for total effects.
Here, a ”total effect” is a measure for evaluating causal
effects, and can be interpreted as the change of the
mean of a response variable when a treatment variable
is changed by one unit through an external interven-
tion. In addition, as a generalization of the instrumen-
tal variable method (Bowden and Turkington, 1984),
Brito and Pearl (2002) developed the conditional in-
strumental variable method in order to identify total
effects. However, it should be noted that both a treat-
ment variable and a response variable are assumed to
be observed in their discussion. Then, in the case
where a treatment/response variable can not be ob-
served, it is difficult to use their results to evaluate
total effects .

In practice, there are many situations where a treat-
ment/response variable can not be observed, and what
we can measure are some surrogate variables affected
by the unobserved variables. For example, in Danish
longitudinal study on work, unemployment and health
(Ditlevsen at al, 2005), we are interested in evaluat-
ing the effect of cynical hostility (exposure) on self-
reported symptom load (response). However, both
cynical hostility and symptom load are latent vari-
ables. In this study, cynical hostility was measured
by 8 items derived from the Cook-Medley Hostility
Scale (Everson et al, 1997), and symptom load was
measured by 13 questions on physiological and mental
symptoms. Then, how to use these surrogate variables
to evaluate the effect of cynical hostility on symptom
load is a problem to be solved. Another example is in
the field of quality control. During the non-destructive
testing, it may be infeasible or impracticable to ob-
serve the final characteristic unless destructing the
product. However, in order to achieve quality improve-
ment, it is necessary to understand the mechanism for
how the adjustment of the treatment can influence the



response (Kuroki and Miyakawa, 2004). Although it is
difficult to observe the final characteristic, usually we
can observe some surrogate variables that are affected
by the final characteristic. Then the problem arises
that whether we can evaluate the influence of treat-
ment adjustment on the final characteristic through
these surrogate variables.

The examples above show the importance of evalu-
ating causal effects even when a treatment/response
variable is unobserved, but it appears that there is a
scarcity in studies of such situations. Then, the aim
of this paper is to provide identifiability criteria for
total effects from observational studies where a treat-
ment/response variable can not be observed, but some
surrogate variables are observed.

In this paper, we assume that cause-effect relation-
ships between variables can be described as a directed
acyclic graph and the corresponding linear structural
equation model. Then, we provide graphical identifia-
bility criteria for total effects by using surrogate vari-
ables in observational studies. We consider two cases:
(1) a treatment or a response variable is not observed,
and (2) both the treatment and the response variables
are not observed. In each case, several surrogate vari-
ables of the unobserved variable(s) are observed. The
results help us test from graph structure whether to-
tal effects can be evaluated through the observation
of surrogate variables when it is difficult to observe a
treatment/response variable.

1.2 PROBLEM DESCRIPTION

Let us consider a simple case described in Fig.1.

Fig.1: Path diagram (1)

Here, the target quality characteristic Y can be ob-
served only through the destructive testing, which is
unreasonable in practice. When X represents a treat-
ment variable that can be controlled by an operator,
suppose that we are interested in the total effect τyx of
X on Y . In order to identify the τyx, some measurable
characteristics, which are affected by Y , are utilized
as surrogate variables. In Fig.1, they are denoted as
U and W . In addition, Z in Fig.1 represents a set

of observed covariates, such as environment factors.
Furthermore, a bidirected arrow ”←→” indicates the
presence of unobserved confounders affecting on two
observed variables.

In this paper, such cause-effect relationships are sup-
posed to be described as the path diagram shown in
Fig.1 and the corresponding linear structural equation
model. Then, we hope to determine a set of variables
used in order to identify the τyx based on the graph
structure shown in Fig.1. By the result of this paper, it
is shown that the τ2

yx is identifiable through the obser-
vation of Z, X and a set {U, W} of variables affected
by Y .

2 PRELIMINARIES

2.1 PATH DIAGRAM

In statistical causal analysis, a directed acyclic graph
that represents cause-effect relationships is called a
path diagram. A directed graph is a pair G = (V , E),
where V is a finite set of vertices and the set E of
arrows is a subset of the set V ×V of ordered pairs
of distinct vertices. The graph theoretic terminology
used in this paper is provided in Lauritzen (1996) and
Kuroki and Cai (2004).

DEFINITION 1 (PATH DIAGRAM)

Suppose a directed acyclic graph G = (V , E) with a
set V = {V1, · · · , Vn} of variables is given. The graph
G is called a path diagram, when each child-parent
family in the graph G represents a linear structural
equation model

Vi =
∑

Vj∈pa(Vi)

αvivj Vj + εvi , i = 1, . . . , n, (1)

where pa(Vi) denotes a set of parents of Vi in G and
εv1 , . . . , εvn are assumed to be independent and nor-
mally distributed. In addition, αvivj (�=0) is called a
path coefficient. �

In a linear structural equation model discussed in this
paper, it is assumed that each variable in V has mean 0
and variance 1. For further details of linear structural
equation models, refer to Bollen (1989).

Here, we define some notations for future use. Let
σxy·z = cov(X, Y |Z), σyy·z = var(Y |Z) and βyx·z =
σxy·z/σxx·z. For disjoint sets X , Y and Z, let Byx·z
and Σxy·z be the regression coefficient matrix of x in
the regression model of Y on x∪z and the conditional
covariance of X and Y given Z, respectively. Further,
letting X = {X1, · · · , Xq}, denote Σxx·z as the condi-
tional covariance matrix of X given Z, and σxixj ·z as
the (i, j) component of the inverse matrix of Σxx·z.



When Z is an empty set, Z is omitted from these
arguments. The similar notations are used for other
parameters.

For a set Z of variables not including descendants of
Vj , if Z d-separates Vi from Vj in the graph obtained
by deleting from a graph G an arrow pointing from Vi

to Vj , then βvjvi·z = αvjvi holds true. This criterion is
called ”the single door criterion” (e.g. Pearl, 2000). In
addition, when Z d-separates Vi from Vj in the graph
G, then Vi is conditionally independent of Vj given
Z in the corresponding distribution (e.g. Pearl, 1988,
2000).

2.2 LEMMAS

In this section, we introduce the back door criterion
(e.g. Pearl, 2000) and the conditional instrumental
variable method (Brito and Pearl, 2002) as the iden-
tifiability criteria for total effects, where a total effect
τyx of X on Y is defined as the total sum of the prod-
ucts of the path coefficients on the sequence of arrows
along all directed paths from X to Y . When a total
effect can be determined uniquely from the correla-
tion parameters of observed variables, it is said to be
identifiable, that is, it can be estimated consistently.

DEFINITION 2 (BACK DOOR CRITERION)

Let {X, Y } and T be disjoint subsets of V in a path
diagram G. If a set T of variables satisfies the fol-
lowing conditions relative to an ordered pair (X, Y )
of variables, then T is said to satisfy the back door
criterion relative to (X, Y ).

1. No vertex in T is a descendant of X , and

2. T d-separates X from Y in GX ,

where GX is the graph obtained by deleting from a
graph G all arrows emerging from vertices in X . �

If a set T of observed variables satisfies the back door
criterion relative to (X, Y ) in a path diagram G, then
the total effect τyx of X on Y is identifiable through the
observation of {X, Y }∪T , and is given by the formula
βyx·t (Pearl, 2000).

DEFINITION 3 (CONDITIONAL INSTRU-
MENTAL VARIABLE)

Let {X, Y, Z} and T be disjoint subsets of V in a path
diagram G. If a set T∪{Z} of variables satisfies the
following conditions relative to an ordered pair (X, Y )
of variables, then Z is said to be a conditional instru-
mental variable given T relative to (X, Y ).

1. T is a subset of nondescendants of Y in G,

2. T d-separates Z from Y but not from X in GX . �

When Z is a conditional instrumental variable given

T relative to (X, Y ), a total effect of X on Y is identi-
fiable through the observation of {X, Y, Z}∪T , and is
given by σyz·t/σxz·t (Brito and Pearl, 2002).

Regarding the discussion about selection of identifia-
bility criteria, refer to Kuroki and Cai (2004).

In addition, in order to prove our results, the following
lemmas are needed:

LEMMA 1

When {X, Y } ∪ S ∪ T are normally distributed, the
following equations hold true:

βyx·s = βyx·st + Byt·xsBtx·s. (2)

Σtt·x = Σtt·xs + Bts·xΣss·xB′
ts·x. (3)

�

Equation (2) is the result of Cochran (1938). Equation
(3) is a well-known result (e.g. Whittaker, 1990).

In addition, the following lemma was given by Wer-
muth (1989):

LEMMA 2

When {X, Y } ∪ S ∪ T are normally distributed, if T
is conditionally independent of X given S or Y is
conditionally independent of T given {X}∪S, then
βyx·st = βyx·s holds true. �

3 IDENTIFIABILITY CRITERIA

In general, it is difficult to use the results of Pearl
(2000), Brito and Pearl (2002) and Tian (2004) in
order to test whether total effects can be estimated
from statistical data, in the case where a treat-
ment/response variable can not be observed. Thus,
it is necessary to propose new identifiability criteria
for total effects in such a situation. In order to achieve
this aim, we provide the following theorem:

THEOREM 1

Suppose that a set {X, U, W}∪Z∪T of observed
variables and an unobserved variable Y satisfy
the following conditions in the moral graph of
{X, Y, U, W}∪Z∪T corresponding to a path diagram
G:

(1) {Y }∪Z∪T separates each element {X, U, W} from
the others,

(2) Letting R1 be a subset of {X, U, W}, {Y, X, U, W}
∪Z\R1 separates R1 from T .

(3) Letting R2 be a subset of {X, U, W}∪T , {Y, X, U,
W}∪T \R2 separates R2 from Z.

Then, letting S = {X, U, W}∪Z∪T , ΣsyΣys is identi-
fiable. �



Here, elements of the Σ−1
ss , σuw, σxw and σxu are as-

sumed to be non-zeros in Theorem 1. In addition,
condition (2) is omitted from Theorem 1 when T is an
empty set, and condition (3) is omitted from Theorem
1 when Z is an empty set.

Theorem 1 is based on a necessary and sufficient con-
dition for a single factor models, which is provided in
Vicard (2000).

PROOF OF THEOREM 1

Letting S = {X, U, W}∪Z∪T , from Lemma 1,

Σss = Σss·y +
1

σyy
ΣsyΣys,

Here, from the Sherman-Morrison-Woodbury formula
for matrix inversion (e.g. Rao, 1973), we can obtain

Σ−1
ss = Σ−1

ss·y−
Σ−1

ss·yΣsyΣysΣ−1
ss·y

σyy + ΣysΣ−1
ss·yΣsy

= Σ−1
ss·y−λλ′, (4)

where λ = Σ−1
ss·yΣsy/

√
σyy + ΣysΣ−1

ss·yΣsy. When par-
titioning λ′ into (λ1, λ2, λ3, λ

′
4, λ

′
5) according to ele-

ments of S, from condition (1), by using Lemmas 1
and 2,

Σ−1
ss = Σ−1

ss·y − λλ′

=

⎛
⎜⎜⎜⎜⎝

σxx·y 0 0 Σxz·y Σxt·y

σuu·y 0 Σuz·y Σut·y

σww·y Σwz·y Σwt·y

Σzz·y Σzt·y

Σtt·y

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

λ2
1 λ1λ2 λ1λ3 λ1λ

′
4 λ1λ

′
5

λ2
2 λ2λ3 λ2λ

′
4 λ2λ

′
5

λ2
3 λ3λ

′
4 λ3λ

′
5

λ4λ
′
4 λ4λ

′
5

λ5λ
′
5

⎞
⎟⎟⎟⎟⎠

, (5)

where the lower triangular components are omitted.
From equation (5), since λ1λ2 = −σxu, λ1λ3 = −σxw

and λ2λ3 = −σuw hold true, we can obtain

λ2
1 = −σxuσxw

σuw , λ2
2 = −σxuσuw

σxw

λ2
3 = −σxwσuw

σxu .

Thus, from condition (2), we can obtain

if Σtx·y = 0, then λ5 = − 1
λ1

Σtx,

if Σtu·y = 0, then λ5 = − 1
λ2

Σtu,

if Σtw·y = 0, then λ5 = − 1
λ3

Σtw.

In addition, from condition (3), we can obtain

if Σzx·y = 0, then λ4 = − 1
λ1

Σzx,

if Σzu·y = 0, then λ4 = − 1
λ2

Σzu,

if Σzw·y = 0, then λ4 = − 1
λ3

Σzw,

if Σzt·y = 0, then λ4 = −Σztλ5

λ′
5λ5

.

By noting λ1/λ2 = σxw/σuw, λ1/λ3 = σxu/σuw and
λ2/λ3 = σxu/σxw, λλ′ is identifiable. Thus, from
equation (4), Σss·y is also identifiable and is given by
Σss·y = (Σ−1

ss + λλ′)−1. In addition, letting σyy = 1,
we can obtain ΣsyΣys = Σss − Σss·y, which indicates
that ΣsyΣys is identifiable. Q.E.D.

Here, consider the path diagram shown in Fig.2.

Fig. 2: Path Diagram (2)

Fig.2 (a) represents the case where the response vari-
able Y is unobserved, but surrogate variables W , U
and T affected by Y are observed. In addition, Z sat-
isfies the back door criterion relative to (X, Y ). First,
we can obtain

σ2
xy·z = (σxy − ΣxzΣ−1

zz Σzy)2

= σ2
xy − 2σxyΣyzΣ−1

zz Σxz

+ΣxzΣ−1
zz ΣzyΣyzΣ−1

zz Σzx,

which is identifiable since both ΣzyΣyz and σ2
xy are

identifiable from Theorem 1. Thus, when Z satisfies
the back door criterion relative to (X, Y ), since the
total effect τyx of X on Y can be given by τyx = βyx·z
and σxx·z is estimable, we can obtain

τ2
yx = β2

yx·z =
σ2

xy·z
σ2

xx·z
,

which indicates that the square of the total effect τ2
yx

is identifiable.

Fig.2 (b) represents the case where the treatment vari-
able Y is unobserved, but surrogate variables W , U
and T affected by Y are observed. In addition, Z sat-
isfies the back door criterion relative to (X, Y ), Then,

σyy·z = σyy − ΣyzΣ−1
zz Σzy

= σyy − tr(Σ−1
zz ΣzyΣyz),



which is also identifiable from Theorem 1. Thus, when
Z satisfies the back door criterion relative to (Y, X),
since the total effect τxy of Y on X can be given by
τxy = βxy·z, we can obtain

τ2
xy = β2

xy·z =
σ2

xy·z
σ2

yy·z
,

which indicates that the square of the total effect τ2
xy

is identifiable.

Next, consider the path diagram shown in Fig.3.

Fig. 3: Path Diagram (3)

Fig.3 represents the case where the response variable
Y is unobserved, but surrogate variables W and U af-
fected by Y are observed. Thus, when Z is the condi-
tional instrumental variable given T relative to (X, Y ),
since the total effect τyx of X on Y can be given by
τyx = σyz·t/σxz·t, we can obtain

σ2
yz·t = (σyz − ΣxtΣ−1

tt Σty)2

= σ2
yz − 2σyzΣytΣ−1

tt Σtx

+ΣxtΣ−1
tt ΣtyΣytΣ−1

tt Σtx,

which is identifiable from Theorem 1. Thus, since σxz·t
is estimable, we can understand that τ2

yx is identifiable.

In addition, we consider the case where both a treat-
ment variable and a response variable are unobserved.

THEOREM 2

Suppose that a set {U1, U2, W1, W2}∪T 1∪T 2∪Z of ob-
served variables and an unobserved variable {X1, X2}
satisfy the following conditions:

(1) Letting X = U1, Y = X1, W = W1, S = U2 and
T = T 1, {X, Y, S, W}∪T∪Z satisfies conditions (1),
(2), and (3) in Theorem 1,

(2) Letting X = U1, Y = X2, S = U2, W = W2

and T = {W1}∪T 2, {X, Y, S, W}∪T∪Z satisfies con-
ditions (1), (2) and (3) in Theorem 1, and

(3) {X1}∪Z d-separates U1 from X2.

Then, β2
x2x1·z is identifiable. �

Here, T 1 ∩ T 2 = φ is not required in Theorem 2.

Theorem 2 can be applied to the path diagram shown
in Fig.4 with unobserved treatment variable X1 and re-
sponse variable X2, where U1 and W1 are observed sur-
rogates of X1, and U2 and W2 are observed surrogates
of X2. Here, for simplicity we assume T i (i = 1, 2) is
an empty set in this graph.

Fig. 4: Path Diagram (4)

PROOF OF THEOREM 2

From condition (1), letting S1 = {U1, W1, U2}∪T 1∪Z,
Σs1x1Σx1s1 is identifiable from Theorem 1. In ad-
dition, from condition (2), letting S2 = {U1, U2,
W1, W2}∪T∪Z, Σs2x2Σx2s2 is identifiable from The-
orem 1. Since βx2u1·z = βx2x1·zβx1u1·z holds true from
condition (3), β2

x2x1·z is identifiable from Thorem 1.
Q.E.D.

As an example, we test whether the total effect of
X1 on X2 is identifiable through the observation of
{U1, U2, W1, W2, Z} in the path diagram shown in
Fig.4. First, letting X = U1, Y = X1, U = U1,
W = W1 and T = φ, {X1, W1, U1, U2, Z} satisfies
conditions (1), (2) and (3) in Theorem 1. Next, let-
ting X = U1, Y = X2, U = U2, W = W2 and
T = {W1}, {X2, W1, W2, U1, U2, Z} satisfies condi-
tions (1), (2) and (3) in Theorem 1. Furthermore,
{X1, Z} d-separates U1 from X2. Thus, the square of
the total effect of X1 on X2 is identifiable from The-
orem 2. Here, it is noted that condition (3) is not
required in the case where U1 is the conditional in-
strumental variable given Z relative to (X1, X2).

4 CONCLUSION

This paper derived the graphical identifiability criteria
for total effects in observational studies with an unob-
served treatment/response variable, when cause-effect
relationships between variables can be described as a
directed acyclic graph and the corresponding linear
structural equation model. The results of this paper
enable us to evaluate total effects when it is difficult
to observe a treatment/response variable but graphi-
cal structure of cause-effect relationships between vari-
ables is known.



Finally, we would like to provide some comments on
our results. First, regarding the case where a treat-
ment variable or response variable is not observed, the
graphical identifiability criteria for total effects pro-
posed in this paper are related to that of a single fac-
tor model proposed by Stanghellini (1997) and Vicard
(2000) and the path model with one hidden variable by
Stanghellini and Wermuth (2005). However, it should
be noted that we are interested in the identification of
total effects but not in that of all the path coefficients,
while Stanghellini and Wermuth (2005) are interested
in all the path coefficients with only one latent vari-
able. Second, regarding the case where neither a treat-
ment variable nor a response variable is observed, it is
possible to extend Theorem 2 to the case where there
are several unobserved variables, which is closely con-
nected to the identification of multi-factor models with
correlated errors. Thus, as the future works, the de-
tailed discussion regarding the identification of multi-
factor models (e.g. Grzebyk et al., 2004) is required.
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