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Abstract

A commonly used characteristic of statistical dependence of adjacency relations in real
networks, the clustering coefficient, evaluates chances that two neighbours of a given vertex
are adjacent. Another characteristic is obtained by considering conditional probabilities that
two randomly chosen vertices are adjacent given that they have r common neighbours. We
denote such probabilities cl(r) and call r → cl(r) the clustering function. We compare
clustering functions of several networks having non-negligible clustering coefficient. They
show similar patterns and surprising regularity. We also provide mathematically rigorous
analysis of the clustering function of related random intersection graph models aimed at
explaining the empirical results.
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1 Introduction

Our study is motivated by the question: given two vertices of a network, the presence of how
many common neighbours would imply with certainty that these two vertices are adjacent. A
”softer” question is about the probability that two vertices with (at least) r common neighbours
establish a link. The answer is given by the clustering functions (1) and (2).
Let G = (V, E) be a finite graph on the vertex set V and with the edge set E . The number of
neighbours of a vertex v is denoted d(v). The number of common neighbours of vertices vi and
vj is denoted d(vi, vj). We are interested in the fraction of adjacent pairs vi ∼ vj among all pairs
{vi, vj} ⊂ V having (at least) r common neighbours. Here and below ’∼’ denotes the adjacency
relation of G. More formally, let us consider the random pair of distinct vertices {v∗1, v∗2} drawn
from V uniformly at random. Define the clustering functions of G

r → clG(r) := P(v∗1 ∼ v∗2| d(v∗1, v
∗
2) = r), (1)

r → ClG(r) := P(v∗1 ∼ v∗2| d(v∗1, v
∗
2) ≥ r). (2)

In the case of a social network (1), (2) could be interpreted as measures of social influence or
pressure exercised by the neighbours on a pair of actors to establish a communication link. We
remark that characteristics (1) and (2) are related to the clustering coefficient of G. We recall its
definition for convenience. Let (v∗1, v

∗
2, v
∗
3) be an ordered triple of distinct vertices drawn from V

uniformly at random. The conditional probability that v∗1 is adjacent to v∗2, given that v∗1 and
v∗2 are both adjacent to v∗3, is called the (global) clustering coefficient ([3], [16], [17], [24]). We
denote it CG = P(v∗1 ∼ v∗2|v∗1 ∼ v∗3, v∗2 ∼ v∗3).
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In this paper we study clustering functions first by considering empirical data and then by a
rigorous analysis of related random graph models.
We consider clustering function (1) of real networks admitting positive clustering coefficient: the
actor network, where two actors are declared adjacent whenever they have acted in the same film
([27]), and the Facebook network ([1], [12], [25]). We remark that empirical plots show similar
pattern and surprising regularity of the clustering function r → clG(r) (see Sect. 2 below).
Our choice of the random graph model is motivated by an observation of Newman et al. [18] that
the clustering property of some social networks (so called affiliation networks) could be explained
by the presence of a bipartite graph structure. For example, the bipartite graph, where actors are
linked to films, defines the actor network. It seems reasonable that a bipartite graph structure
might also be helpful in explaining (at least to some extent) the adjacency relations of Facebook
network: two members become adjacent because they share some common interests/attributes.
We secondly consider clustering function (1) of a random intersection graph, where vertices
(actors) are prescribed attribute sets independently at random and two vertices are declared
adjacent whenever they share at least one common attribute ([15], [13], see also [2], [14]). The
random intersection graphs are relatively simple objects and for them rigorous mathematical
results can be obtained. We evaluate the probabilities P(v∗1 ∼ v∗2| d(v∗1, v

∗
2) = r), r = 0, 1, 2, . . .

for a random intersection graph in Sect. 3 below. Our theoretical results are then used to
interpret empirical findings of Sect 2.

2 Clustering functions: empirical results

In Fig.1 we plot clustering functions (1) and (2) of three drama actor networks: English actor
network with n = 402622 actors, m = 66127 films and the clustering coefficient C = 0.32
(clustering coefficient here and below is rounded up to 2 decimal places), French actor network
with n = 43204 actors, m = 5629 films and the clustering coefficient C = 0.30 and Russian actor
network with n = 9880 actors, m = 2459 films and C = 0.44. Data is obtained from [27]. In
Fig.2 we plot clustering function (1) of three networks describing relations between community
members at three different universities (data from [25]): the first network has n = 17425 vertices
and the clustering coefficient C = 0.16 (• blue graph); the second network has n = 9414 vertices
and the clustering coefficient C = 0.15 (? green graph); the third network has n = 6596 vertices
and the clustering coefficient C = 0.16 (� red graph).

3 Clustering functions of random intersection graphs

Vertices v1, . . . , vn of an intersection graph are represented by subsets D1, . . . , Dn of a given
ground set W = {w1, . . . , wm}. Elements of W are called attributes or keys. Vertices vi and
vj are declared adjacent if Di ∩Dj 6= ∅. The adjacency relations of such an intersection graph
resemble that of some real networks, e.g., the collaboration network, where authors are declared
adjacent whenever they have coauthored a paper, or the actor network, where two actors are
linked by an edge whenever they have acted in the same film. Random intersection graph have
attracted considerable attention in the recent literature, see, e.g., [4], [5], [7] [9], [11], [20], [19],
[26]. They admit a power law degree distribution and tunable clustering. We consider two
models of random intesection graphs: the active graph and the inhomogeneous graph.
Active graph. In the active random intersection graph G1(n,m,P ) every vertex vi ∈ V =
{v1, . . . , vn} selects its attribute set Di independently at random ([13], [15]). Here we assume
for simplicity that independent random sets D1, . . . , Dn have the same probability distribution
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Figure 1: Clustering functions for three actor networks: (a) cl(r), (b) Cl(r).
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Figure 2: Clustering functions of three university networks.

such that all attributes have equal probabilities to be selected. In particular, we have

P(Di = A) =
(
m
|A|
)−1

P (|A|), for any A ⊂W. (3)

Here P is the common probability distribution of the sizes of selected sets Xi := |Di| (for each
i = 1, . . . , n we have P(Xi = k) = P (k), k = 0, 1, . . .m). We remark that X1, . . . , Xn are
independent random variables taking values in {0, 1, . . . ,m}.
Here we study the clustering function

r → cl(r) = P(v∗1 ∼ v∗2| d(v∗1, v
∗
2) = r) = P(v1 ∼ v2| d(v1, v2) = r) (4)

of a sparse random intersection graph with large number of vertices (by sparse we mean that the
number of edges scales as the number of vertices n as n→ +∞). It is convenient to consider a
sequence of random intersection graphs {G(n)}n, where G(n) = G1(n,m,P ) and where m = mn

and P = Pn both depend on n. We remark that {G(n)}n is a sequence of sparse random graphs

whenever the size X1 of the typical random set scales as (m/n)1/2 as m,n→∞ ([6]). Assuming,
in addition, that
(i) X1

√
n/m converges in distribution to some random variable Z;

(ii) EZ <∞ and EX1

√
n/m converges to EZ

one obtains the asymptotic degree distribution of {G(n)}

lim
n→+∞

P(d(v1)) = Ee−z1Z(z1Z)k/k!, for k = 0, 1, . . . , (5)

see [6], [7], [10], [22]. Here d(v) denotes the degree of a vertex v and zi denotes the i−th moment
of Z, zi = EZi. Along with the first moment condition (ii) we shall also consider the r−th
moment condition
(ii-r) EZr <∞ and E(X1

√
n/m)r converges to EZr.

We remark that the adjacency relations in a random intersection graph are statistically depen-
dent events. In particular, the clustering coefficient α = α(G(n)) = P(v1 ∼ v2|v1 ∼ v3, v2 ∼ v3)
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of a sparse random intersection graph G(n) is bounded away from zero as n→ +∞ provided that
the second moment of the degree distribution is finite and the ratio βn = m/n is bounded ([7],
[10]). More precisely, assuming that (i) and (ii-2) hold one obtains as n→ +∞

α = β−1/2
n δ

3/2
1 (δ2 − δ1)−1 + o(1). (6)

Here δr denotes the r−th moment of the asymptotic degree distribution. That is, we write
δr = Edr∗ for a random variable d∗ having the distribution P(d∗ = k) = Ee−z1Z(z1Z)k/k!, k =
0, 1, . . . . From (6) we see that βn → +∞ implies α = o(1). For comparison, the (unconditional)
edge probability pe = P(v1 ∼ v2) = δ1n

−1 + o(n−1) is of order O(n−1) no matter whether βn is
bounded or not ([7]).
Theorems 1 and 2 show a first order asymptotics as n → +∞ of cl(r) in the cases where βn is
bounded and βn → +∞, respectively.

Theorem 1. Let m,n → ∞. Assume that (i), (ii-2) hold. Suppose that βn → β ∈ (0,+∞).
Denote Λ =

√
δ1/β. We have

cl(r) =


p−1
e e−Λ(1 + o(1)), r = 0;

α
α+(1−α)eΛ

(1 + o(1)), r = 1;

1− o(1), r ≥ 2.

(7)

Here pe = n−1δ1 + o(n−1) denotes the edge probability, pe = P(v1 ∼ v2).

We remark that for r ≥ 2 the convergence to 1 in (7) can be quite slow, especially in the
cases where the (asymptotic) average degree δ1 is large. This can be seen from a more detailed
expression for cl(r), r ≥ 2, which is obtained from the proof of Theorem 1,

cl(r) =
(
1 + p−1

e f−1
r (Λ)Efr(Λ

′)
)−1

+O(n−1). (8)

Here Λ′ = n−1(z2−Λ)Z1Z2 and fr(λ) = e−λλr/r! denotes the Poisson probability. We note that
when Λ is large, the probability fr(Λ) is small for r << Λ and, in this case, cl(r) may deviate
substantially from 1 even for comparatively large values of n, see also Fig. 4 and 5 below.

Theorem 2. Let m,n→∞. Assume that (i), (ii-2) hold. Suppose that βn → +∞. We have

cl(r) =

{
pe(1 + o(1)), r = 0;

α(1 + o(1)) +O(n−1), r = 1.
(9)

In particular, cl(0) = O(n−1) and cl(1) = o(1), see (6). Furthermore, we have

cl(2) =


1 + o(1), for βn/n→ 0;

1
1+β∗(δ2−δ1)2δ−4 + o(1), for βn/n→ β∗ ∈ (0,+∞);

o(1), for βn/n→ +∞.
(10)

Assuming, in addition, that βkn = o(n) for each k = 1, 2, 3 . . . , we obtain

cl(r) = 1 + o(1), for r = 2, 3, . . . . (11)
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Figure 3: Convergence to the step function for random intersection graphs with all sets of size 10.

We conclude from (7), (9) that the edge dependence measures cl(1) and α are, in fact, equivalent
in the case of a random intersection graph. In particular, we have cl(1) = 1−o(1)⇔ α = 1−o(1)
and cl(1) = o(1) ⇔ α = o(1). Furthermore, (10) tels us that the parameter cl(2) is able to
distinguish between the cases βn = o(n) and n = o(βn). Finally, (11) tels us that any c(r),
r = 1, 2, . . . can’t distinguish between sequences {βn} and {β′n} growing slower that any power
of n (take βn = lnn and β′n = ln2 n, for example).
Remark 1. It is likely that (10) can be extended to an arbitrary r as follows

cl(r) =


1 + o(1), for βn/n

4−2r−1 → 0;

c(r, β∗) + o(1), for βn/n
4−2r−1 → β∗ ∈ (0,+∞);

o(1), for βn/n
4−2r−1 → +∞.

Here c(r, β∗) = (β
r/2
∗ z−r−2

1 zr2z
2
r + 1)−1. We note that numbers zi = EZi can be expressed in

terms of moments of the asymptotic degree distribution (5).
Proofs of Theorems 1 and 2 are given in the Appendix.
Fig. 3 illustrates the convergence to a step function shown by Theorem 1. Here we plot clustering
function (1) of random intersection graphs Gi = G(ni,mi, P ), where ni = mi = 1035i−1, i =
1, 2, 3, and P (10) = 1.
Fig. 4 illustrates the influence of the expected degree δ1 on the slope of the clustering function
(1): the larger is δ1 the more gradual is the slope. In Fig. 4 we plot (1) for random intersection
graphs Gi = G(n,m,Pi), where n = m = 104 and Pi(3

i) = 1, i = 1, 2, 3.
Inhomogeneous graph. The inhomogeneous random intersection graph G1(n,m,P1, P2) on
the vertex set V = {v1, . . . , vn} is obtained as follows. We first generate independent random
variables A1, . . . , An, B1, . . . , Bm such that each Ai has the probability distribution P1 and each
Bj has the probability distribution P2. Then, conditionally on the realized values {Ai, Bj}n,mi,j=1,

we include the attribute wj ∈ W in the set Di with probability pij = min{1, AiBj(nm)−1/2}
independently for each i and j (see [2], [8], [21]). We consider a sequence of inhomogeneous
intersection graphs where P1, P2 remain fixed and m = mn and n tend to infinity. We remark
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Figure 4: Clustering function of random intersection graphs with n = m = 10000 and Pi(3
i) = 1,

i = 1, 2, 3.

that G̃n = G1(n,m,P1, P2) is sparse and the edge probability pe := P(v1 ∼ v2) = a2
1b2n

−1 +
o(n−1). Here we denote ak = EAk1 and bk = EBk

1 .
Our next result shows that G̃n admits a nonvanishing clustering coefficient α = α(G̃n) = P(v1 ∼
v2|v1 ∼ v3, v2 ∼ v3) in the case where βn = m/n is bounded and it is bounded away from zero
as n,m→ +∞. In addition, we show a first order asymptotics of the clustering function cl(·).

Theorem 3. Let m,n → ∞. Assume that 0 < EA2
1 < ∞ and 0 < EB3

1 < ∞. Suppose that
βn → β ∈ (0,+∞). Then we have

α =
b3κ

b3κ+ 0.5
√
β

+ o(1) (12)

and

cl(r) =


a2

1b
∗
2n
−1(1 + o(1)), r = 0;

b∗3κ

b∗3κ+0.5
√
β

(1 + o(1)), r = 1;

1− o(1), r ≥ 2.

(13)

Here κ = a1a
−1
2 b−2

2 and b∗k = EBk
1e
−a1B1/

√
β.

The proof of Theorem 3 is given in the Appendix. We remark that the approach used in the proof
applies to the case of βn → +∞ as well. In particular, for βn → +∞, we have cl(0) = pe(1+o(1))
and α = o(1), cl(1) = o(1). One can show, in addition, that

cl(2) =


1 + o(1), for βn/n→ 0;

b4κ′

b4κ′+0.25β + o(1), for βn/n→ β ∈ (0,+∞);

o(1), for βn/n→ +∞.
(14)

Here κ′ = a−2
2 b−4

2 .
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Figure 5: Sampling subgraphs with degree constraints.

4 Discussion

The first order asymptotics (7), (10), (11) and (13) suggests that the clustering function cl(·) of
a (very) large affiliation network can be approximated by a step - like function. Furthermore,
cl(1) is closely related to the clustering coefficient.
Simulations in Fig. 3 and 4 show that the convergence in (7) can be rather slow and we observe
a sigmoid function approximation of the step function. Furthermore, the larger is the average
degree, the more remote is the “step“ from the origin and the more gradual is the slope of the
clustering function.
In order to learn about the influence of the inhomogeneity of the degree sequence on the slope
of the clustering function r → cl(r) we select various subnetworks of real networks according
to certain regularity conditions satisfied by their degree sequences. We observe that the inho-
mogeneity (heavy tail) of the degree sequence affects the slope of the clustering function: the
heavier the tail the more gradual is the slope of the clustering function. We illustrate this
observations in Fig. 5 and 6.
Fig. 5 plots clustering function (1) of subgraphs of the first university network (see Sect 2.)
sampled as follows. G1 is the subgraph that includes all vertices of degree not larger than 50.
It has n0 = 7165 vertices. G2 is a subgraph induced by n0 vertices drawn uniformly at random
(without replacement) from the vertices of degree not larger than 150. G3 is a subgraph of
induced by n0 vertices drawn uniformly at random (without replacement) from the set of all
vertices. Now all three graphs have the same number of vertices.
In Fig. 6 we plot two subgraphs of French actor network (data from [27]). The subgraph G4

is induced by the set of marked vertices obtained as follows: we put a mark on each vertex v
with probability d−τ (v) and independently of the other vertices. Choosing τ = 0.5 we obtain a
random subgraph denoted G4. In our case the realized number of marked vertices n1 = 8871.
G5 is the subgraph of French actor network induced by n1 vertices drawn uniformly at random
(without replacement) from the set of all vertices. Now both subgraphs have the same number
of vertices, but the degree sequence of G4 is much more regular than that of G5.
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Figure 6: Sampling a subgraph with a random degree constraint.

Finally, we examine how well a random intersection graph fits the real data. For this purpose we
consider a memoryless actor network obtained as follows. Assume every actor of a given actor
graph has forgotten about the titles of movies he or she acted in, but remembers the number of
movies.
We first simulate an instance of the active memoryless graph where each actor chooses films
independently and uniformly at random from a given set of m̃ films so that the number of films
chosen by each actor is the same as in the true actor graph. In the active memoryless graph
all films have equal chances to be selected by any of actors. We remark that in the case where
m̃ = m, i.e., the number of films in the active memoryless graph is the same as in the real
underlying actor network, the expected degree of the memoryless graph does not match the
average degree of the real network. We can easily adjust the number of films (of the memoryless
graph) so that these degrees match. We denote this number m′ and call the active memoryless
graph with m̃ = m′ adjusted one. In Fig. 7. we plot clustering function (1) of two instances of
memoryless graphs for comparison with the underlying French actor network: one with the true
number of films and another with the adjusted number of films.
We secondly simulate an instance of the inhomogeneous memoryless graph where an actor vi
chooses the film wj with probability aibjM

−1 independently for each i and j. Here the numbers
ai, bj are observed characteristics of the underlying actor network: vi acted in ai films; bj actors
acted in the film wj . M =

∑
1≤i≤n ai =

∑
1≤j≤m bj is the total number of links of the bipartite

graph where actors are linked to films. In Fig. 8 we plot clustering function (1) of an instance of
the inhomogeneous memoryless graph of the French actor network. Here we observe a remarkable
accuracy of the approximation of the real clustering function by that of the memoryless graph.

5 Appendix

The section is organized as follows: we first collect some notation, then we prove Theorems 1, 2
and 3. At the very end we present two auxiliary results used in proofs: Lemmas 2 and 3.
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Figure 7: Real French actor network and two simulated active memoryless networks.

Figure 8: Real French actor network and a simulated inhomogeneous memoryless network.
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By Xni we denote the size of the set Di in G(n). Furthermore, we denote Zn1 = β
−1/2
n Xn1 and

Z01 := Z. Introduce the function

t→ ϕ(t) = sup
n≥0

EZ2
n1I{Zn1≥t}.

We remark that conditions (i), (ii-2) imply ϕ(t) = o(1) as t → +∞ (see [7]). By P̃ and Ẽ we
denote the conditional probability and the conditional expectation given D1, D2. We introduce
events A = {v1 ∼ v2}, Ai = {|D1 ∩D2| = i} and probabilities pi(r) = P(Ai ∩ {d12 = r}). By
fr(λ) = e−λλr/r! we denote the Poisson probability.

Proof of Theorems 1 and 2. We have

cl(r) = P(A|d12 = r) =
P(A ∩ {d12 = r})

P(d12 = r)
. (15)

In order to evaluate the numerator we write A = ∪i≥1Ai and apply the total probability formula

P(A ∩ {d12 = r}) =
∑
i≥1

pi(r) =
∑

1≤i≤k
pi(r) +Rk(r). (16)

Here Rk(r) =
∑

i>k pi(r) ≤ P(|D1 ∩D2| ≥ k + 1). Similarly we obtain

P(d12 = r) =
∑
i≥0

pi(r) =
∑

0≤i≤k
pi(r) +Rk(r). (17)

In order to prove Theorem 1 we choose k = 1 in (16), (17) and invoke the asymptotic expressions
of pi(r) and the upper bound for P(|D1 ∩D2| ≥ k + 1) shown in Lemma 1.
Theorem 2 is obtained in the same way, but now we choose k = 2.

Lemma 1. Assume that βn → β ∈ (0,+∞]. Suppose that (i), (ii-2) hold. Denote Λ1 = β
−1/2
n z1

and Λ2 = z2 − β−1/2
n z1. We have as n→ +∞

p0(0) = 1− o(1), p0(r) = o(n−2), r ≥ 3, (18)

p0(r) = n−r(r!)−1Λr2z
2
r + o(n−r), r = 1, 2, (19)

p1(r) = n−1z2
1fr(Λ1) + τr, r ≥ 0 (20)

p2(r) = 2−1n−2fr(2Λ1)Λ2
2 + τ2. r ≥ 0. (21)

Here τr = O(n−2), for r = 0, 1, and τr = O(n−2β
−1/2
n ) + o(n−2), for r ≥ 2. Furthermore,

P(|D1 ∩D2| ≥ 3) = o(n−2) and P(|D1 ∩D2| ≥ k) = O(n−k), k = 1, 2. (22)

Proof of Lemma 1. Before the proof we introduce some notation. By P̃i(·) = P(·|Ai, D1, D2)
we denote the conditional probability given Ai and D1, D2. By IB we denote the indicator of an
event B and write IB = 1− IB. In the proof we use several indicators

I = I{X1+X2<ε2nβ
1/2
n }, Ij = I{Xj<0.5ε2nβ

1/2
n }, I∗j = I{Xj≤β

1/2
n ε−1},

I?j = I{Xj≤εm}, Ij = I{Xj<m1/2n−1/4}, I∗j = I{Xj≤0.5m}.

Some of them depend on ε > 0, value of which will be clear from the context. We will use the
following simple properties of the Poisson probability λ→ fr(λ). It follows from the mean value
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theorem fr(t) − fr(s) = f ′r(ξ)(t − s), where 0 < s ≤ ξ ≤ t, and the inequalities |f ′r(ξ)| ≤ 1 and
|f ′2+r(ξ)| ≤ ξ that

|fr(s)− fr(t)| ≤ |s− t| and |f2+r(s)− f2+r(t)| ≤ (s+ t)|s− t|. (23)

Now we outline the proof. In order to evaluate pi(r) we write

pi(r) = EP̃(Ai ∩ {d12 = r}) = Ep̃i(r)P̃(Ai), (24)

where p̃i(r) = P̃i(d12 = r). Next we approximate P̃(Ai) using (73) and apply the Poisson
approximation to p̃i(r). We observe that, given Ai, D1, D2, the random variable

d12 =
∑

3≤j≤n
I{v1∼vj}I{v2∼vj}

has binomial distribution Bin(n−2, qi), where qi is the probability that D3 intersects with both
sets D1 and D2. Hence, p̃i(r) can be approximated by the Poisson probability fr(λi), where
λi = (n− 2)qi. Finally, we approximate λi by λ̃i = nq̃i and fr(λi) by fr(λ̃i). Here

q̃0 = n−2(z2 − β−1/2
n z1)Z1Z2, q̃1 = n−1β−1/2

n z1, q̃2 = 2n−1β−1/2
n z1 (25)

are approximations of q1, q2 and q3 respectively. In order to obtain an upper bound for the error
of such approximation we write

∆r,i := p̃i(r)− fr(λ̃i) = ∆′r,i + ∆′′r,i, (26)

where ∆′r,i = p̃i(r)− fr(λi) and ∆′′r,i = fr(λi)− fr(λ̃i), and estimate

|∆r,i| ≤ 2nq2
i , i, r = 0, 1, 2, . . . , (27)

using LeCam’s lemma (see Lemma 2), and estimate ∆′′r,i using the mean value theorem, see (23).
Now we briefly explain approximations (25). Let {w∗1, . . . , w∗i } denote the intersection D1 ∩D2

provided it is non empty. We write qi = P̃i(n1 ≥ 1, n2 ≥ 1), where nj = |D3 ∩Dj |, j = 1, 2, and
split

q0 = q01 + q02, q1 = q11 + q12, q2 = q21 + q22 + q23 + q24,

where

q01 = P̃0(n1 = 1, n2 = 1), q02 = P̃0(n1 + n2 ≥ 3, n1 ≥ 1, n2 ≥ 1),

q11 = P̃1(w∗1 ∈ D3), q12 = P̃1(w∗1 /∈ D3, n1 ≥ 1, n2 ≥ 1), (28)

q21 = P̃2(w∗1 ∈ D3, w
∗
2 /∈ D3), q22 = P̃2(w∗1 /∈ D3, w

∗
2 ∈ D3),

q23 = P̃2(w∗1, w
∗
2 ∈ D3), q24 = P∗2(w∗1, w

∗
2 /∈ D3, n1 ≥ 1, n2 ≥ 1).

Approximations qi ≈ q̃i, see (25), are obtained as follows. We have q0 ≈ q01 ≈ q̃0, q1 ≈ q11 = q̃1

and q2 ≈ q21 + q22 ≈ q̃2.
Proof of (18), (19). In order to prove (18), (19) we show that

E∆r,0P̃(A0) = o(n−r∧2), r ≥ 0 (29)

Efr(λ̃0)P̃(A0) = (r!)−1Eλ̃r0 + o(n−r∧2). r = 0, 1, 2, (30)

Efr(λ̃0)P̃(A0) = o(n−2), r ≥ 3. (31)
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We firstly prove (29). In the case where β < ∞ we find n0 > 0 such that β < 2βn for n ≥ n0.
In the case where β = +∞ we find n0 such that βn > 1 for n ≥ n0. In order to prove (29) we
show that for any 0 < ε < min{0.5β1/2, 0.1} and n ≥ n0 we have

E|∆r,0| ≤ c∗n−3 + c∗n
−r∧2R1(ε) + 4n−2ε−4R2(ε), (32)

where

R1(ε) = 2ϕ(ε−1) + 4z2(ε+m−1 + n−1) and R2(ε) = ϕ(εn)(1 + 4ε−4n−2z2).

Here and below c∗ denotes a constant independent of n,m and ε. Observe that limt→+∞ ϕ(t) = 0
implies that the left-hand side of (32) is o(n−r∧2). Now we fix ε and prove (32). For this purpose
we write ∆r,0 = ∆r,0I + ∆r,0I and show the inequalities

E|∆r,0I| ≤ c∗n−3 + c∗n
−r∧2R1(ε), (33)

E|∆r,0I| ≤ EI ≤ 4n−2ε−4R2(ε). (34)

The first inequality of (34) is obvious. In order to prove the second one we combine the inequalies

ε4n2EI ≤ β−1
n E(X1 +X2)2I ≤ 2β−1

n E(X2
1 +X2

2 )I = 4β−1
n EX2

1 I,

which follow from Markov’s inequality, with the inequalities

β−1
n EX2

1 I ≤ β−1
n EX2

1 (I1 + I2) ≤ β−1
n EX2

1 (I1 + 4ε−4n−2β−1
n X2

2 I2) ≤ R2(ε).

Here we applied the inequality I ≤ I1 + I2 and then Markov’s inequality.
In order to prove (33) we write ∆r,0I = ∆′r,0I + ∆′′r,0I, see (26), and invoke the inequalities

E|∆′r,0|I ≤ c∗n−3 and E|∆′′r,0|I ≤ c∗n−r∧2R1(ε). (35)

The first inequality of (35) follows from (27) and the inequalities q2
0 ≤ 2q̃2

0 + 2(q0 − q̃0)2 and

|q0I− q̃0I| ≤ n−1m−1X1X2R1(ε). (36)

The second inequality of (35) follows from (23) and (36).

We complete the proof of (29) by showing (36). We note that for n ≥ n0 we have εβ
−1/2
n < 1.

In particular, the inequality X1 +X2 < ε2nβ
1/2
n implies X1 +X2 < εm. We shall show that

(1− 3m−1)q̃0 ≤ q01 ≤ (1 + 2ε)q̃0, (37)

q02 ≤ 2n−1m−1X1X2(ϕ(ε−1) + 2εz2). (38)

These inequalities imply (36). In order to prove (37) we write q01 = Ẽq∗01, where q∗01 = P̃0(n1 =
1, n2 = 1|X3), and show that

κ1κ2(1− 3m−1) ≤ q∗01 ≤ κ1κ2(1 + 2ε), (39)

where κ1 = m−1X1X3 and κ2 = m−1X2(X3 − 1). We have

q∗01 = τ1τ2, τ1 = P̃0(n1 = 1|X3), τ2 = P̃0(n2 = 1|n1 = 1, X3). (40)

Combining the inequalities, which follow from (73),

κ1(1− (m−X1)−1) ≤ τ1 ≤ κ1,

κ2(1− (m−X1 −X2)−1) ≤ τ2 ≤ κ2m(m−X1)−1
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with the inequality X1 +X2 < εm we obtain (39).
Now we prove (38). We split q02 = q03 + q04, where q03 = P̃0(n1 ≥ 2, n2 ≥ 1) and q04 = P̃0(n1 ≥
1, n2 ≥ 2) and construct upper bounds for q03 and q04. Both quantities are estimated in the
same way. We only consider q03. We denote pk∗ = P̃(n1 ≥ k, n2 ≥ 1|X3), k = 1, 2, and write

q03 = Ẽp2∗ = Ẽp2∗(I∗3 + I∗3) ≤ Ẽp2∗I∗3 + Ẽp1∗I∗3. (41)

Here we use the inequality p2∗ ≤ p1∗. Next, proceeding as in the proof of the right hand
side inequality of (39) we obtain p1∗ ≤ κ1κ2(1 + 2ε) ≤ 2κ1κ2. Hence, we have Ẽp1∗I∗3 ≤
2n−1m−1X1X2ϕ(ε−1). In order to estimate Ẽp2∗I∗3 we write

p2∗ = τ1∗τ2∗, τ1∗ = P̃0(n1 = 2|X3), τ2∗ = P̃0(n2 = 1|n1 = 2, X3)

and invoke the inequalities, which follow from (73),

τ1∗ ≤ 2−1m−2X2
1X

2
3 , τ2∗ ≤ (m−X1)−1X2X3.

We note that X1 ≤ X1+X2 < ε2nβ
1/2
n < εm imply τ1∗τ2∗ ≤ ε2nβ

1/2
n m−3X1X2X

3
3 . Furthermore,

using the inequality X3I∗3 ≤ ε−1β
1/2
n we write

Ẽp2∗I∗3 ≤ Ẽτ1∗τ2∗I∗3 ≤ εβnnm−3X1X2EX
2
3 .

Invoking in (41) the upper bounds for Ẽp2∗I∗3 and Ẽp1∗I∗3 we obtain (38). Proof of (36) is
complete.
We secondly prove (30). For this purpose we write

fr(λ̃0)P̃(A0) = (r!)−1λ̃r0P̃(A0) +R01 = (r!)−1λ̃r0 +R01 +R02. (42)

Here in the first step we apply the inequality 1− e−λ̃0 ≤ λ̃0 and in the second step we apply the
inquality, see (73),

1− P̃(A0) = P̃(D1 ∩D2 6= ∅) ≤ X1X2m
−1. (43)

Hence, |R01| ≤ λ̃r+1
0 and |R02| ≤ λ̃r0X1X2m

−1. Now, for r = 0, 1, we obtain (30) from (42)
using the simple bounds E|R0i| = O(n−r−1), i = 1, 2. In the case where r = 2 we invoke the
truncation argument. It follows from the inequalities

I1I2 ≤ 1 ≤ I1I2 + I1 + I2 (44)

that
f2(λ̃0)P̃(A0) = I1I2f2(λ̃0)P̃(A0) +R03, λ̃2

0 = I1I2λ̃
2
0 +R04, (45)

where |R0j | ≤ λ̃2
0(I1 +I2) are negligibly small, i.e., E|R0j | ≤ c∗n−2ϕ(n1/4) = o(n−2), for j = 3, 4.

Now combining (42) and (45), and invoking the bounds

E|R0jI1I2| ≤ c∗E(X1X2m
−1)3I1I2 ≤ c∗n−1/2E(X1X2m

−1)2 = O(n−5/2), j = 1, 2

we obtain (30) for r = 2.
Let us prove (31). We write

Efr(λ̃0)P̃(A0) ≤ Efr(λ̃0) ≤ Efr(λ̃0)(I1I2 + I1 + I2)

and apply the inequalities fr(t) ≤ tjfr−j(t) ≤ tj , 0 ≤ j ≤ r. For r ≥ 3 we obtain

Efr(λ̃0)I1I2 ≤ Eλ̃3
0I1I2 ≤ c∗n−1/2Eλ̃2

0 = O(n−5/2),

Efr(λ̃0)(I1 + I2) ≤ Eλ̃2
0(I1 + I2) ≤ c∗n−2ϕ(n1/4) = o(n−2).
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Proof of (20), (21). Given a sequence of random variables {Yn} and r ≥ 0 we write Yn ≺ τr

to denote the fact that E|Yn| = O(n−2), for r ∈ {0, 1}, and E|Yn| = O(n−2β
−1/2
n ) + o(n−2), for

r ≥ 2. In the proof we use the following inequalities, which are obtained from (44) and (73),

P̃(Ai) ≤ κi, (46)

P̃(Ai) ≤ P̃(Ai)(I1I2 + I1 + I2) ≤ κiI1I2 + I1 + I2 ≤ n−i/2 + I1 + I2. (47)

Here κi = (X1)i(X2)i/(i!(m)i) and i = 1, 2. We remark that (20), (21) follows from the bounds

∆r,iP̃(Ai) ≺ τr∨i, (48)

fr(λ̃i)P̃(Ai)− fr(λ̃i)κi ≺ τr∨i, i = 1, 2. (49)

Let us show (48). For this purpose we write

∆r,i = ∆r,iI∗1 + ∆r,iI∗1 = ∆′r,iI∗1 + ∆′′r,iI∗1 + ∆r,iI∗1

and invoke the bounds

∆′r,iI∗1P̃(Ai) ≺ τr∨i, ∆′′r,iI∗1P̃(Ai) ≺ τr∨i, ∆r,iI∗1P̃(Ai) ≺ τ2. (50)

We note that the third bound of (50) follows by Markov’s inequality

E∆r,iI∗1P̃(Ai) ≤ EI∗1 ≤ (4nm)−1ϕ(0.5
√
nm) = o(n−2).

Next we establish the first and second bound of (50) in the case where i = 1. The first bound
of is obtained from (27) using the simple inequality q2

1 ≤ 2q2
11 + 2q2

12 (recall that q11 = q̃1) and
the inequality, which is shown below,

q12I∗1 ≤ 2n−1m−1z2X1X2. (51)

More precisely, we note that (51) implies Enq2
12I∗1 = O(n−3) and proceed as follows

∆′r,1I∗1P̃(A1) ≤ 2nq2
1I∗1P̃(A1) ≤ 4nq̃2

1P̃(A1) + 4nq2
12I∗1 ≺ τr.

In the last step we used the inequality, see (46), Enq̃2
1P̃(A1) ≤ c∗n−2β−1

n .
In the proof of the second bound of (50) we combine (23), (51) and apply the simple inequalities

|λ1 − λ̃1| ≤ 2q̃1 + nq12, λ1 + λ̃1 ≤ 2nq̃1 + nq12.

In particular, for r = 0, 1 we have

E∆′′r,1I∗1P̃(A1) ≤ E|λ1 − λ̃1|I∗1P̃(A1) ≤ 2Eq̃1P̃(A1) + Enq12I∗1P̃(A1) ≺ τr.

In the last step we invoked the bounds Eq̃1P̃(A1) = O(n−2) and Enq12I∗1P̃(A1) = O(n−2),
which follow from (46), (51). For r ≥ 2 we have

∆′′r,1I∗1P̃(A1) ≤ |λ1 − λ̃1|(λ1 + λ̃1)I∗1P̃(A1)

≤ 4(nq̃2
1 + n2q̃1q12 + n2q2

12)I∗1P̃(A1)

≺ τr.

Here in the last step we invoked the bounds, which follow from (46), (51),

Enq̃2
1P̃(A1) = O(n−2β−1

n ), En2q̃1q12I∗1P̃(A1) = O(n−2β−1/2
n )
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and the inequalities, see (51), (47),

En2q2
12I∗1P̃(A1) ≤ En2q2

12I∗1(n−1/2 + I1 + I2) ≤ c∗n−5/2 + c∗n
−2ϕ(n1/4).

We complete the proof of (50), in the case where i = 1, by showing (51). We obtain (51) from
the inequalities, see (73),

q12 ≤ P̃1(n1 ≥ 1, n2 ≥ 1) = ẼP̃1(n1 ≥ 1, n2 ≥ 1|X3) = Ẽτ ′1τ
′
2,

τ ′1 : = P̃1(n1 ≥ 1|X3) ≤ m−1X1X3,

τ ′2 : = P̃1(n2 ≥ 1|n1 ≥ 1, X3) ≤ (m−X1)−1X2X3.

Now we establish the first two bounds of (50) in the case where i = 2. The first bound is
obtained from (27) using the simple inequality q2

2 ≤ 2q2
21 + 2q2

22 + 2q2
23 + 2q2

24 and the upper
bounds for q2j , j = 1, 2, 3, 4 shown below. In particular, we have q21 = q22 and

q22 = ẼP̃2(w∗2 ∈ D3|w∗1 /∈ D3, X3)P̃(w∗1 /∈ D3, X3) = Ẽ
X3

m− 1

(
1− X3

m

)
=
q̃2

2
+R21, (52)

where |R21| ≤ c∗n−2(β
−3/2
n + β−1

n ). Furthermore, we have, see (73),

q23 = Ẽ(X3)2/(m)2 ≤ c∗n−2, (53)

q24I∗1 ≤ c∗(nm)−1X1X2. (54)

Here (54) is shown in the same way as (51) above. From (27), (46) we obtain

∆′r,2P̃(A2)I∗1 ≤ 2nq2
2P̃(A2)I∗1 ≤ 4n(q2

21 + q2
22 + q2

23)κ2 + 4nq2
24I∗1 ≺ τ2.

In the last step we used the bounds, which follow from (52), (53) and (54),

n(q2
21 + q2

22 + q2
23)κ2 ≺ τ2 and q2

24I∗1 ≺ τ2.

Let us show the second bound of (50). Since the absolute value of

λ2 − λ̃2 = (n− 2)(q23 + q24 + (q21 + q22 − q̃2))− 2q̃2

is bounded from above by n(q23 + q24 + 2R21) + 2q̃2, see (53), we obtain from (23) that

∆′′r,2P̃(A2)I∗1 ≤ n(q23 + 2R21)κ2 + 2q̃2κ2 + nq24I∗1κ
1/2
2 (n−1 + I1 + I2) ≺ τ2.

Here in the first step we applied (46) and the inequality (P̃(A2))2 ≤ κ2(n−1 + I1 + I2), which
follows from (46) and (47). In the second step we used (52), (53), (54).
Finally, we prove (49). In the case where i = 1 it suffices to show that

0 ≤ E|m−1X1X2 − P̃(A1)| ≤ c∗n−2(1 + β−1/2
n ). (55)

We derive (55) from the inequalities

m−1X1X2 ≥ P̃(A1) ≥ P̃(A1)I∗1 ≥ m−1X1X2(1−R11). (56)

Here
R11 = I∗1 + (m−X1)−1X1X2I∗1 ≤ 2m−1X1 + 2m−1X1X2.
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We note that the first and third inequality of (56) follow from (73). Indeed (73) implies

P̃(A1) ≥ m−1X1X2(1− (m−X1)−1X1X2)

and we have (1− (m−X1)−1X1X2)I∗1 = 1−R11.
Now we prove (49) in the case where i = 2. For this purpose we show that for every 0 < ε < 0.5

E|κ2 − P̃(A2)| ≤ εEκ2 + c∗n
−2ϕ(ε

√
n). (57)

We note that (57) follows from the inequalities

κ2 ≥ P̃(A2) ≥ P̃(A2)I?1I?2 ≥ κ2

(
1− X1X2

m−X1

)
I?1I?2 ≥ κ2(1− ε− I?1 − I?2).

We obtain these inequalities combining the following ones

I∗1I∗2 ≤ 1 ≤ I∗1I∗2 + I∗1 + I∗2,

κ2 ≥ P̃(A2) ≥ κ2

(
1− X1X2

m−X1

)
.

Here the first line is obvious, the second line follows from (73).
Proof of (22). In the proof we apply (73). We have, see (46),

P̃(|D1 ∩D2| ≥ k) ≤ κk ≤ Zk1Zk2n−k. (58)

Taking the expected values in (58) we obtain (22) for k = 1, 2. For k = 3 we write, see (44),
P̃(|D1 ∩D2| ≥ 3) ≤ n−3/2 + I1 + I2 and

P̃(|D1 ∩D2| ≥ 3) = P̃2/3(|D1 ∩D2| ≥ 3)P̃1/3(|D1 ∩D2| ≥ 3) ≤ κ2/3
3 (n−3/2 + I1 + I2)1/3.

Hence, P(|D1 ∩D2| ≥ 3) ≤ Eκ2/3
3 (n−3/2 + I1 + I2)1/3 = o(n−2).

Proof of Theorem 3. Given wj , wk, wl ∈W we denote the events

Hj = {wj ∈ D1 ∩D2}, H1
j = {wj ∈ D1 ∩D2 ∩D3},

Hjk = {wj ∈ D1 ∩D3, wk ∈ D2 ∩D3},
Hjkl = {wj ∈ D1 ∩D2, wk ∈ D1 ∩D3, wl ∈ D2 ∩D3},

and their unions

H1 =
⋃
j∈[m]

H1
j , H2 =

⋃
{j,k}⊂[m]

Hjk, H3 =
⋃

{j,k,l}⊂[m]

Hjkl.

Furthermore, we denote H̃1 = ∪j∈[m−1]H1
j and H̃2 = ∪{j,k}⊂[m−1]Hjk.

Let us prove (13). To this aim we write cl(r) = p∗r/(p
∗
r + p∗r), where

p∗(r) := P(v1 ∼ v2, d12 = r), p∗r := P(v1 6∼ v2, d12 = r),

and show that

p∗r = EfΛ(r)a2
1B

2
mn
−1 + o(n−1), (59)

p∗r = fΛ1(r) +O(n−τr). (60)
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Here we denote Λ = a1Bmβ
−1/2
n and Λ1 = 2−1a2

1a2b
2
2n
−1, and τr = 1 + I{r≥1}.

We first show (59). Expanding the event {v1 ∼ v2} = ∪j∈[m]Hj we obtain, by inclusion-exclusion,
0 ≤ S1 − p∗r ≤ S2. Here

S1 =
∑
j∈[m]

P(Hj ∩ {d12 = r}) = mP(Hm ∩ {d12 = r}),

S2 =
∑

{j,k}⊂[m]

P(Hj ∩Hk) =
(
m
2

)
P(H1 ∩H2) = O(n−2).

We complete the proof of (59) by showing that

P(Hm ∩ {d12 = r}) = EfΛ(r)a2
1B

2
mn
−2β−1

n + o(n−2). (61)

We denote, for short, κ := P(Hm ∩ {d12 = r}) and write

κ = EP(Hm ∩ {d12 = r}) = EP(d12 = r|Hm)P(Hm) = EP(d12 = r|Hm)p1mp2m,

where P denotes the conditionall probability given A1, A2, Bm, and approximate P(d12 = r|Hm)
by a Poisson probability fλ(r). Indeed, d12 =

∑n
i=3 Ii is the sum of indicators of events Li =

{Di ∩D1 6= ∅, Di ∩D2 6= ∅} which are conditionally independent, given A1, A2, Bm,Hm. Hence,
for λ = (n− 2)p̃ and p̃ = P(L3), Lemma 2 implies

|P(d12 = r|Hm)− fλ(r)| ≤ 2(n− 2)p̃2. (62)

Next we evaluate the probability p̃. We observe that L3 = {wm ∈ D3} ∪ H̃1 ∪ H̃2. Denoting
p? := P(wm ∈ D3) we write

0 ≤ p̃− p? ≤ P(H̃1) + P(H̃2). (63)

Since p? ≤ a1Bm(nm)−1/2 and

P(H̃1) = (m− 1)P(H1
1) ≤ A1A2a1b3n

−3/2m−1/2,

P(H̃2) =
(
m−1

2

)
P(H12) ≤ A1A2a2b

2
2n
−2

we obtain from (63) that

p̃2 ≤ 3P(H̃1) + 3P(H̃2) + 3p2
? ≤ c

(
A1A2 +Bm(n1/4 + nI?)

)
n−2. (64)

Here c is a constant which does not depend on n and m. In the last step we used the simple
inequality p? ≤ p?I? + I?, where I? := I{Bm<n1/4} and I? := 1− I?. Now, (62), (64) imply

κ = Efλ(r)p1mp2m + o(n−2).

Next, using the inequality |fλ(r)− fΛ(r)| ≤ |λ−Λ| we replace λ by Λ. We have arrived to (61)

κ = EfΛ(r)p1mp2m + o(n−2) = EfΛ(r)a2
1B

2
mn
−2β−1

n + o(n−2).

We secondly show (60). We denote C = {v1 6∼ v2} and write

p∗r = P(d12 = r|C)P(C). (65)

By the inequalities 0 ≤ 1−P(C) ≤ E
∑

3≤j≤m p1jp2j , the second probability P(C) = 1+O(n−1).
For the first probability we apply the Poisson approximation as in the proof of (59) above. In
particular, Lemma 2 implies

|P(d12 = r|C)− fλ1(r)| ≤ 2(n− 2)p̂2, (66)
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where λ1 = (n− 2)p̂ and p̂ = P(L3|C). Next we evaluate p̂ = P(L3 ∩ C)/P(C). We observe that
L3 ∩ C = C ∩ H2. Hence, by inclusion-exclusion, we have 0 ≤ Ŝ1 −P(L3 ∩ C) ≤ Ŝ2, where

Ŝ1 =
∑

{s,t}⊂[m]

P(Hst ∩ C) =
(
m
2

)
P(H12 ∩ C), (67)

Ŝ2 =
∑
∗

P(Hst ∩Hxy) =
(
m
2

) ((
m−2

2

)
p′ + 2(m− 2)p′′

)
= O(n−3).

Here the sum
∑
∗ runs over distinct pairs

{
{s, t}, {x, y}

}
of subsets of [m] of size 2 and

p′ = P(H12 ∩H34) = O(n−7), p′′ = P(H12 ∩H13) = O(n−6).

Therefore, P(L3 ∩ C) = Ŝ1 +O(n−3). Furthermore, combining (67) with relations

P(H12 ∩ C) = Ep11p31p22p32q = a2
1a2b

2
2(nm)−2 +O(n−5),

here we denote q = (1− p12)(1− p21)
∏m
j=3(1− p1jp2j) and use

0 ≤ 1− q ≤ p12 + p21 +
∑

3≤j≤m
p1jp2j , (68)

we obtain Ŝ1 = 2−1a2
1a2b

2
2n
−2 +O(n−3). We have shown that

p̂ = P(L3 ∩ C)/P(C) = 2−1a2
1a2b

2
2n
−2 +O(n−3).

Invoking this expression of p̂ in (66) we derive (60) from (65), (66).

Let us prove (12). To this aim we write α = P(B)/P(D), where D denotes the event {v1 ∼
v3, v2 ∼ v3} and B = D ∩ {v1 ∼ v2}, and show that

P(B) = κ1 + o(n−2), P(D) = κ1 + κ2 + o(n−2). (69)

Here κ1 := a3
1b3n

−3/2m−1/2 and κ2 := 2−1a2
1a2b

2
2n
−2. To show the first relation of (69) we

observe that the event H1 implies B, and the event B implies H1 ∪ H3. In particular, we have
0 ≤ P(B)−P(H1) ≤ P(H3). Here

P(H3) =
(
m
3

)
P(H123) = O(n−3).

Hence, P(B) = P(H1) +O(n−3). Next we approximate P(H1) using inclusion-exclusion∑
s∈[m]

P(H1
s)−

∑
{s,t}⊂[m]

P(H1
s ∩H1

t ) ≤ P(H1) ≤
∑
s∈[m]

P(H1
s) (70)

and obtain P(H1) = κ1 + o(n−2). Here we invoke the bound∑
{s,t}⊂[m]

P(H1
s ∩H1

t ) =
(
m
2

)
P(H1

1 ∩H1
2) = O(n−3)

and
∑

s∈[m] P(H1
s) = mP(H1

s) = κ1 + o(n−2).

Let us prove the second relation of (69). We observe that D = H1 ∪H2 and approximate

P(D) ≈ P(H1) + P(H2) ≈ mP(H1
1) +

(
m
2

)
P(H12) = κ1 + κ2 + o(n−2).
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The rigorous argument is a bit more involved since we operate under minimal moment conditions.
Introduce event A∗ = {A3 < n1/4} and its indicator function I = IA∗ . We construct upper and
lower bounds for P(D) using the inequalities

P(H1 ∩ A∗) + P(H2 ∩ A∗)−P(H1 ∩H2 ∩ A∗) ≤ P(D ∩A∗) ≤ P(D) ≤ P(H1) + P(H2).

By the union bound, the right hand side is bounded by mP(H1
1)+

(
m
2

)
P(H12) = κ1+κ2+o(n−2).

Next we show a matching lower bound for P(D). Proceeding as in (70) we write

P(H1 ∩ A∗) = mP(H1
1 ∩ A∗) +O(n−3),

where

P(H1
1 ∩ A∗) = Ep11p21p31I = Ep11p21p31 + o(n−3) = a3

1b3(nm)−3/2 + o(n−3).

Hence, we have P(H1 ∩ A∗) = κ1 + o(n−2). It remains to show that

P(H2 ∩ A∗) ≥ κ2 + o(n−2), P(H1 ∩H2 ∩ A∗) = o(n−2). (71)

For the first inequality we write, by inclusion-exclusion,

P(H2 ∩ A∗) ≥
∑

{s,t}⊂[m]

P(Hst ∩ A∗)−R =
(
m
2

)
P(H12 ∩ A∗)−R,

where P(H12 ∩ A∗) = a2
1a2b

2
2(nm)−2 + o(n−4) and where

R =
∑
∗

P(Hst ∩Hxy ∩ A∗) =
(
m
2

)(
m−2

2

)
R1 + 2

(
m
2

)
(m− 2)R2 = o(n−2).

Here we invoked the bounds

R1 = P(H12 ∩H34 ∩ A∗) ≤ (nm)−4E(A1A2)2A4
∗(B1B2B3B4)2 = O(n−3.5m−4),

R2 = P(H12 ∩H13 ∩ A∗) ≤ (nm)−3EA1A
2
2A

3
∗(B1B2B3)2 = O(n−2.75m−3).

In the last step we used inequalities A4
3I < A2

3n
1/2 and A3

3I < A2
3n

1/4.
Finally, in order to show the second bound of (71) we apply the union bound

P(H1 ∩H2 ∩ A∗) ≤
∑

{s,t}⊂[m]

P(H1 ∩Hst ∩ A∗) ≤
∑

{s,t}⊂[m]

(rs + rt +
∑

u∈[m]\{s,t}

r′u)

and invoke the bounds

rs = P(H1
s ∩Hst ∩ A∗) ≤ (nm)−5/2EA1A

2
2A

2
3B

3
sB

2
t = O((nm)−5/2),

r′u = P(H1
u ∩Hst ∩ A∗) ≤ (nm)−7/2EA2

1A
2
2A

3
3B

2
sB

2
tB

3
uI = O((nm)−7/2n1/4).

The following inequality is refered to as LeCam’s lemma, see e.g., [23].

Lemma 2. Let S = I1 + I2 + · · · + In be the sum of independent random indicators with
probabilities P(Ii = 1) = pi. Let Λ be Poisson random variable with mean p1 + · · · + pn. The
total variation distance between the distributions PS of PΛ of S and Λ

sup
A⊂{0,1,2... }

|P(S ∈ A)−P(Λ ∈ A)| ≤ 2
∑
i

p2
i . (72)
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Lemma 3. ([7]) Given integers 1 ≤ s ≤ d1 ≤ d2 ≤ m, let D1, D2 be independent random
subsets of the set W = {1, . . . ,m} such that D1 (respectively D2) is uniformly distributed in the
class of subsets of W of size d1 (respectively d2). The probabilities p′ := P(|D1 ∩D2| = s) and
p′′ := P(|D1 ∩D2| ≥ s) satisfy(

1− (d1 − s)(d2 − s)
m+ 1− d1

)
p∗d1,d2,s ≤ p′ ≤ p′′ ≤ p∗d1,d2,s, (73)

Here we denote p∗d1,d2,s
=
(
d1

s

)(
d2

s

)(
m
s

)−1
.
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