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Abstract We introduce a robust and fully adaptive method for pointwise estimation in heteroscedastic
regression. We allow for noise and design distributions that are unknown and fulfill very weak assumptions
only. In particular, we do not impose moment conditions on the noise distribution, and we allow for zero
noise. Moreover, we do not require a strictly positive density for the design distribution. In a first step,
we fix a bandwidth and construct M-estimators that consist of a contrast and a kernel. We then choose
the contrast and the kernel that minimize the empirical variance and demonstrate that the corresponding
M-estimator is adaptive with respect to the noise and design distributions and adaptive (Huber) minimax
for contamination models. In a second step, we additionally choose a data-driven bandwidth via Lepski’s
method. This leads to an M-estimator that is adaptive with respect to the noise and design distribu-
tions and, additionally, adaptive with respect to the smoothness of an isotropic, locally polynomial target
function. These results are also extended to anisotropic, locally constant target functions. Our data-driven
approach provides, in particular, a level of robustness that adapts to the noise, contamination, and outliers.
We finally conclude with a detailed discussion of our assumptions and an outlook on possible extensions.

Keywords: Adaptation, Huber contrast, Lepski’s method, M-estimation, minimax estimation, nonparamet-
ric regression, pointwise estimation, robust estimation.
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1. Introduction

We introduce a new method for pointwise estimation in heteroscedastic regression that is adap-
tive with respect to the model. The new method is, in particular, adaptive with respect to the
noise and design distributions (D-adaptive) and with respect to the smoothness of the regression
function (S-adaptive).

Let us briefly review the related literature. The asymptotic normality of M-estimators for the
location parameter in regular models is proved in the pioneering paper [12]. Later, minimax results
in nonparametric regression were derived in the series of papers [26–29]. More recently, a block
median method is used in [7] to prove the asymptotic equivalence between Gaussian regression and
homoscedastic regression for deterministic designs and possibly heavy-tailed noises. Together with
a blockwise Stein’s Method with wavelets, this leads to an estimator that is adaptive optimal over
Besov spaces with respect to the L2-risk and adaptive optimal over isotropic Hölder classes with
respect to the punctual risk. This estimator is thus S-adaptive. Additionally, the noise density at 0
is estimated, and a D-adaptive estimator is then found with a plug-in method. However, in contrast
to this paper, only homoscedastic regression is considered and multivariate regression functions,
in particular anisotropic functions, are not allowed for. We finally mention [24], where a modified
version of Lepski’s method is applied in homoscedastic regression.

∗. The authors acknowledge partial financial support as member of the German-Swiss Research Group FOR916
(Statistical Regularization and Qualitative Constraints) with grant number 20PA20E-134495/1.
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2 Chichignoud & Lederer

What is the main idea behind our approach? Consider the estimation of t0 ∈ R in the translation
model Y ∼ g(·−t0) for a probability density g. The M-estimator t̂ of t0 corresponding to a constrast
ρ and a sample Y1, . . . ,Yn of Y is then

t̂ := argmin
t

n∑

i=1

ρ(Yi − t).

It holds that (see [12–14])

√
n(t̂− t0)

L−−−−→
n→∞

N (0,AV), AV :=

∫
(ρ′)2dG

(∫
ρ′′dG

)2 , (1.1)

where G is the distribution of Y, ρ′ and ρ′′ are the first and second derivatives of the contrast ρ,
and L indicates convergence in law. In other words, t̂ is asymptotically normal with asymptotic
variance AV. This result suggests that an optimal estimator is obtained minimizing the asymptotic
variance. This is the main idea behind our approach. To support this idea further, we recall that
(see [12])

inf
ρ

∫
(ρ′)2dG

(∫
ρ′′dG

)2 =
(
I(G)

)−1
, (1.2)

where I(G) is the Fisher information for the true distribution G and the infimum is taken over all
twice differentiable contrasts. This implies, together with the Crámer-Rao Inequality, that an effi-
cient M-estimator exists. Huber proposed in [12, Proposal 3] to minimize an estimate of the above
asymptotic variance (since the the distribution G is not available in practice) over the family of
Huber contrasts (see below). He also conjectured that the corresponding estimator is minimax for
certain contamination models. More recently, an M-estimator with a contrast that minimizes an
estimate of the asymptotic variance was introduced for the parametric model, and its asymptotic
normality was proved (see [1]). As examples, Huber contrasts indexed by their scale and a family
of ℓp losses are treated. In this paper, we consider local M-estimators consisting of a contrast and a
kernel such that an estimate of the nonasymptotic variance is minimized. We present, in particular,
a nonasymptotic result which shows that the corresponding estimator mimics the oracle, that is,
the function that minimizes the true variance. An advantage of our approach is, for example, that
a data-driven selection of the scale of the Huber contrast provides an adaptive robustness with
respect to outliers. Additionally, a suitable choice of the support of the kernel can take a maximal
number of points around x0 into account (cf. [10]). In particular, noncentered or even nonconvex
supports can be considered. Finally, we show that our estimator is D-adaptive for various sets of
contrasts and kernels with finite entropy.

We finally study the problem of S-adaptation. Our main goal is to find a simultaneously D- and
S-adaptive pointwise estimator for anisotropic target functions. However, this is not straightforward
since the standard Lepski’s method (see [19, 21]) only applies to isotropic functions. Therefore, we
restrict ourselves to these functions in a first step. We use Lepski’s method for the S-adaptation
plugging-in an estimate of the minimal variance for the D-adaptation (this is also the case in the
context of model selection, see [4], or the Lasso, see [6]).This way, we obtain the first estimator
in heteroscedastic regression with random design and noise distributions with heavy tails which
is simultaneously D- and S-adaptive and optimal in a sense describe later. Additionally, we allow
for zero noise (which is detected by the estimator). Furthermore, we note that the application of
Lepski’s method for nonlinear estimators is still nonstandard, and only very few examples can be
found in the literature ([8, 23, 24]). In a next step, we extend our results to anisotropic target
functions. For this, we have to restrict ourselves to locally constant target functions. We apply a
modification of Lepski’s methods given in [16, 20] and construct an optimal, simultaneously S-and
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D-adaptive estimator. This is the first application of such a method to nonlinear estimators for
anisotropic target functions. Of great interest is, in particular, the corresponding selection of an
anisotropic bandwidth for applications in the context of image denoising (cf. [2]). Moreover, our
methods can be applied to establish robust, adaptive confidence bands (cf. [11]).

The structure of this paper is as follows: In the following section, we first introduce a nonasymp-
totic variance that resembles the asymptotic variance (see Theorem 1) and then provide a choice
for the contrast and the kernel (see Theorem 2). We show, in particular, that the corresponding
estimator is Huber minimax (see Section 2.3). Then, we provide a choice for the bandwidth for
isotropic, locally polynomial target functions (see Theorem 3) and for anisotropic, locally constant
target functions (see Theorem 4). After this, we give a discussion on our assumptions and an out-
look in Section 4. The proofs are finally conducted in Section 5 and in the Appendix, and some
sample entropy calculations are presented in Section 6.1.

2. A D-adaptive Estimator for Fixed Bandwidths

In this section, we consider pointwise estimation in heteroscedastic regression for fixed band-
widths. In the first part, we define an estimator with a local polynomial approach for a fixed kernel
and a fixed contrast. In the second part, we additionally allow for the selection of the kernel and
the contrast via a minimization of the variance of the estimator. Finally, we elaborate on the para-
metric model and relate to important classical results.

Let us specify the model beforehand. We assume the observations Z(n) := (Xi, Yi)i=1,...n, n ∈ N∗,
to be distributed according to P and to satisfy the set of equations

Yi = f∗(Xi) + σ(Xi) ξi, i = 1, . . . , n. (2.1)

We aim at estimating the target function f∗ : [0, 1]d → R at a given point x0 on (0, 1)d. The target
function is assumed to be smooth, more specifically, it is assumed to belong to a Hölder class (see
Definition 4 below). The target function is obscured by the second part of the above model, the
noise. The noise variables (ξi)i∈1,...,n are assumed to be distributed independently according to the
densities gi(·) with respect to the Lebesgue measure on R. The noise densities may be unknown,
but we assume that

∑
i gi(·) is symmetric and that there exist A ∈]0, 1] and γmin > 0 such that

∫ γmin‖σ‖-1
∞

-γmin‖σ‖-1
∞

n-1
∑

i

gi (z)dz ≥ A. (2.2)

The latter assumption is trivially satisfied with A = 1 and γmin = 1 if ‖σ‖∞ = 0 (invoking the
convention 1/0 = ∞). We stress that we do not impose, unlike in the literature on the median
(cf. [7]), any moment assumptions on the noise, and we do not require that the noise densities are
positive at 0. Indeed, Assumption (2.2) imposes that the density

∑
i gi(·) has enough mass on the

interval [-γmin, γmin] (We refer to Section 4 for a more detailed discussion on the assumptions.)
The noise level σ : [0, 1]d → R∗

+ is assumed to be bounded, but may also be unknown. Usually,
the noise level is the variance of the noise, however, this is not the case if the noise distribution
does not have any moments, for example. Finally, the design points (Xi)i∈1,...,n are assumed to be
distributed independently and identically according to µ(·). For ease of exposition, we also assume
that (Xi)i∈1,...,n and (ξi)i∈1,...,n are mutually independent.



4 Chichignoud & Lederer

2.1. Definitions and First Results

In this part, we introduce an estimator of f∗(x0) with a local polynomial approach for a fixed
bandwidth, a fixed kernel, and a fixed contrast. The properties of this estimator are highlighted in
Theorem 1.

As a first step, we set the framework for the local polynomial approach (LPA), described for
example in [15] and in [30, Chapter 1]. The key idea of the LPA is to approximate the function in
the neighborhood of the point in question by a polynomial. To start, we consider a hyperrectangle,
not necessarily centered neighborhood Vh ⊆ [0, 1]d of the point in question x0 ∈ (0, 1)d such that∫
Vh
dx =

∏
j hj , where hj is the jth component of a fixed bandwidth h ∈ H := [hmin, hmax]

d ⊆
(0, 1)d. The minimal and maximal bandwidths are given by

hmin :=

(
C[ln(n)]6

n

)1/d

and hmax := [ln(n)]-1/(2b+d), (2.3)

where C is a constant large enough such that Conditions 1, 2, and 3 in Section 5.1 are satisfied.
Additionally, we define for a fixed b ∈ N the set P := {p = (p1, . . . , pd) ∈ Nd : 0 ≤ |p| ≤ b} with
|p| = p1+ · · ·+ pd and denote its cardinality by |P|. For any multi-indexed vector t⊤ =

(
tp1,...,pd

∈
R : p ∈ P

)
∈ R|P| and for any x ∈ [0, 1]d, we then define the desired polynomial as

Pt(x) :=
∑

p∈P
tp

(
x− x0
h

)p

1lVh
(x).

Here, 1l is the indicator function, zp := zp1

1 · · · zpd

d for all z ∈ Rd, and the division by h is under-
stood coordinatewise. Finally, for a fixed M > 0, we define the set of all polynomials of degree b
as F :=

{
Pt : t ∈ [-M,M ]|P|}.

We now introduce the desired estimator of f∗(x0). To this end, we first specify what we mean
by a kernel and a contrast. A kernel (function) K : Rd → R is a nonnegative function with a
compact support included in [-1/2, 1/2]d, ‖K‖∞ ≤ Kmax (for a given constant Kmax ≥ 1), and∫
K(x)dx = 1. For ease of exposition, we use the notation Kh(x) := K ((x− x0)/h) /

∏
j hj at

some points. Next, we specify what we mean by a contrast (function):

Definition 1. A function ρ is called contrast (function) if it has the following properties:

1. ρ : R → R+ is a convex and symmetric function and ρ(0) = 0;

2. the derivative ρ′ of ρ is 1-Lipschitz on R and bounded: ‖ρ′‖∞ < γmax, for a given constant
γmax ≥ 1;

3. the second derivative ρ′′ of ρ is defined almost everywhere and is Lρ′′-Lipschitz with respect
to the measure P for some Lρ′′ > 0. Moreover, we assume that ‖ρ′′‖∞ ≤ 1 (without loss of
generality) and

ρ′′min := inf
z∈[-γmin,γmin]

ρ′′(z) > 0,

where γmin > 0 is defined in (2.2).

Note that Assumption 3 implies that contrasts are strictly convex on the interval [-γmin, γmin].
Moreover, for a given A > 0, γmin implicitly depends on the noise distribution via Assumption
(2.2), and we assume that it is known; its estimation is discussed in Section 4. Well-known contrasts
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are, for any scale γ > 0, the Huber contrast (see [12])

ρH,γ(z) :=





z2/2 if |z| ≤ γ

γ(|z| − γ/2) otherwise

and the contrast induced by the arctan function (see [26])

ρarc,γ(z) := γz arctan(z/γ)− γ2

2
log(1 + z2/γ2).

Note that the absolute loss (cf. Assumption 3) and quadratic loss (cf. Assumption 2) do not satisfy
the above conditions. However, they can be mimicked by the Huber contrast with γ small (median)
and big (mean). We can now combine a kernel and a contrast to obtain the local λ-criterion for
any f ∈ F :

Pnλ(f) := n-1
n∑

i=1

λ(Xi, Yi, f), where λ(x, y, f) := ρ
(
y − f(x)

)
Kh(x), for all x, y ∈ R. (2.4)

The λ-LPA estimator f̂λ(x0) of f
∗(x0) is finally defined as

f̂λ := argmin
f∈F

Pnλ(f). (2.5)

The coefficients of the estimated polynomial can be considered as estimators of the derivatives of
the function f∗ at x0. In this paper, however, we focus on the estimation of f∗(x0).

The variance of the estimator is crucial for the following. To state it explicitly, we need to
introduce some more notation: First, let λ′ and λ′′ be the first and second derivative of the function
λ(x, y, ·) and set Πh :=

∏d
j=1 hj , Pζ := E(X,Y )∼P Pnζ(X,Y ), and λ′∞ := supx,y,f Πh|λ′(x, y, f)| =

‖ρ′‖∞‖K‖∞. We then introduce the crucial quantity

V(λ) :=



√
Πh

√
P [λ′(f∗)]2 + λ′∞(nΠh)

−1/4

Pλ′′(f∗)




2

. (2.6)

We call it nonasymptotic variance since it plays the role of the variance in the risk bounds in the
theorems below. The explicit expressions of the numerator and the denominator can be deduced
from

P [λ′(f∗)]2 =

∫
µ(x)K2

h(x)

∫ [
ρ′
(
σ(x)z

)]2
n-1
∑

i

gi (z)dz dx (2.7)

and Pλ′′(f∗) =

∫
µ(x)Kh(x)

∫
ρ′′
(
σ(x)z

)
n-1
∑

i

gi (z) dz dx. (2.8)

The variance V(λ) depends on h, but one can show that this dependence is weak. From Assumption
(2.2), the strict convexity of ρ on [-γmin, γmin], and the boundedness assumption on ρ′ in Definition
1, we conclude that V(λ) < ∞. In the particular case h = (1, . . . , 1) (see the parametric case
below), the nonasymptotic variance V (λ) tends towards the asymptotic variance AV(λ) defined in
(1.1) as n→ +∞.

At this point, we can give a first result for the above estimator. To this end, we define the bias
term of the estimator as

bh := inf
f∈F

sup
x∈Vh

|f(x)− f∗(x)|, (2.9)
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and we introduce the entropy term for all ε > 0 as

B̆ε := 27

∫ 1

0

√
HF ,ν

(
u
)
∧ ndu+ 2

(
1

(nhdmin)
1/4

+
1√
n

)
HF ,ν(1) + ε. (2.10)

HF ,ν(·) is the metric entropy of the set F with respect to the pseudometric

ν(f1, f2) :=

√
ΠhP [λ′(f1)− λ′(f2)]

2
f1, f2 ∈ F .

Then, the follwoing result holds:

Theorem 1. If n is sufficiently large (according to Condition 1 in Section 5.1), it holds that for
any λ ∈ Λ, any h ∈ H, and for all q ≥ 1

Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q

≤ Cq

(
bh + B̆0

√
V(λ)√
nΠh

)q

+ 2|P|((1 + |P|)M)q exp

(
− nΠh/(4 ln

2 n)

98γ2maxK2
max + 4Kmaxγmax

)
.

For a constant Cq (Cq = 4q|P| · 68q Gamma(q) works, where Gamma(·) is the classical Gamma
function).

Remark 1. We note that we could replace in (2.2) the global quantity ‖σ‖∞ by the local one
supx∈Vh

|σ(x)|. Moreover, if we additionally impose Condition 3 on n, the second term on the right
hand side of the above bound is of order o(1/n) and thus negligible. However, we stress that the
above result is nonasymptotic - in contrast to the classical results of Huber (cf. [12] and also [26–29],
[1]). Moreover, we also stress that we do not impose conditions on the design and the noise level
except for its boundedness. In particular, we allow for degenerate designs and vanishing noise.
(A more detailed discussion is given in Section 4.) For the proof, we use Bernstein’s inequality
and chaining arguments, in particular, we use deviation inequalities in [22] that rely on Dudley’s
entropy integral. With this, we can recover the shape of the variance, but we obtain an additional
(large) factor CqB̆

q
0 . The reduction of these factors is of minor interest for this paper. Finally, for

further implications of the above result, we refer to Section 2.3.

Remark 2. The above bound is, to the best of our knowledge, a new result in nonparametric
regression. However, the next step is to choose a λ that minimizes the right hand side. If we
neglect the second term, this reduces to a minimization of the variance term B̆0

√
V(λ)/

√
nΠh

since the bias term bh does not depend on λ. Note that V does not depend on the target function,
and, in particular, not on the smoothness of the target function. This allows for a wide range
of applications in various models, for example, in high dimensional settings (see Section 4). The
adaptation with respect to the smoothness of the target function is finally done via the selection
of a suitable bandwidth. The simultaneous D- and S-adaptation is difficult since the variance V
depends on h. We detail this in Section 3.

2.2. Selection of the Kernel and the Contrast for Fixed Bandwidths
(D-adaptation)

How should the combined function λ ∈ Λ, that is, the kernel and the contrast, be selected? We
introduce an oracle that minimizes the bound in Theorem 1 above and then propose a selection
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that mimics this oracle. We first introduce, for a given set of contrasts Υ, a given set of kernels K,
and a bandwidth h > 0, the set of possible combined functions λ:

Λ :=
{
λ : λ(x, y, f) = ρ

(
y − f(x)

)
Kh(x), ρ ∈ Υ, K ∈ K

}
. (2.11)

We then note that the bias term bh in Theorem 1 is of importance for the choice of the bandwidth
later. For a fixed bandwidth, however, we can concentrate on the second term only and introduce
the oracle as

λ∗ := argmin
λ∈Λ

V(λ). (2.12)

To mimic the oracle λ∗, we then define the estimator λ̂

λ̂ := argmin
λ∈Λ

V̂(λ), where V̂(λ) :=




√
Πh

√
Pn

[
λ′(f̂λ)

]2
+ λ′∞(nΠh)

−1/4

Pnλ′′(f̂λ)




2

. (2.13)

Note that we estimate P [λ′ (f∗)]2 and Pλ′′ (f∗) by their empirical versions Pn

[
λ′
(
f̂λ

)]2
and

Pnλ
′′
(
f̂λ

)
, and that estimate f∗ by f̂λ and that the explicit expressions for the numerator and

the denominator are given by

Pn[λ
′(f̂λ)]

2 =
1

n

n∑

i=1

K2
h(Xi)

[
ρ′
(
Yi − f̂λ(Xi)

)]2

and Pnλ
′′(f̂λ) =

1

n

n∑

i=1

Kh(Xi)ρ
′′(Yi − f̂λ(Xi)

)
.

We now show that the estimator that results from (2.5) and (2.13) performs - up to constants
- as well as the oracle. For this, we define for all z > 0

Bz :=

(
1 ∨ 27

∫ 1

0

√
HF∪Λ,ω

(
u
)
∧ ndu

)

+ 2

(
1

(nhdmin)
1/4

+
1√
n

)
HF∪Λ,ω(1) + 10

√
z +

2z

(nΠh)1/4
, (2.14)

where HF∪Λ,ω(·) is the metric entropy of F ∪ Λ with respect to the pseudometric

ω ((f1, λ1), (f2, λ2))

:= ν(f1, f2) ∨
√
ΠhP [κ(f1, λ1)− κ(f2, λ2)]

2 ∨
√
ΠhP [λ′′1 (f1)− λ′′2(f2)]

2 (2.15)

for any f1, f2 ∈ F , λ1, λ2 ∈ Λ,

κ(f, λ) :=
λ′(f)√

ΠhP [λ′(f)]2 + λ′∞/(nΠh)
1
4

,

and ν(·, ·) is defined above Theorem 1. For example, we give, in the Appendix, the computation of
this entropy for the family of Huber contrasts indexed by the scale. Then, we have the following
result:
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Theorem 2. If n is sufficiently large (according to Conditions 1 and 2 in Section 5.1), then, for
any h ∈ H and for all q ≥ 1, it holds that

Ef

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q ≤ 2Cq

(
bh +B0

√
V(λ∗)√
nΠh

)q

+ o(1/n).

Remark 3. We stress that our estimator does not depend on the densities (gi)i and (µi)i and
the noise level σ, and we observe that it achieves - up to constants- the optimal variance V(λ∗).

We thus call f̂λ̂ D-adaptive optimal. This notion of optimality, however, depends on the family Λ
under consideration.

Remark 4. Via a bias/variance trade-off, we can obtain S-minimax results (with minimal vari-
ance) with respect to the Hölder smoothness β of the target function (see Definition 4 below).

Indeed, we can obtain the usual S-minimax rate n−β̄/(2β̄+1), where β̄ is the harmonic average of ~β.

2.3. Parametric Case and Huber Minimaxity

We finally elaborate on the special case of parametric estimation, that is, we assume f∗ =
t0, t0 ∈ [-M,M ], and consider the model Y ∼ g(· − t0) for a symmetric density g. In parametric
estimation, we set the kernel equal to 1 and thus consider the estimator

t̂ρ := arg min
t∈[-M,M ]

1

n

n∑

i=1

ρ
(
Yi − t

)
(2.16)

of the scalar t0.

From the above results, we can now deduce the following corollary:

Corollary 1. Let ρ∗ and ρ̂ be constructed according to (2.12) and (2.13) with h := (1, . . . , 1)
and λ(y, t) := ρ

(
y − t

)
for all y ∈ R and t ∈ [-M,M ]. Then, if n is sufficiently large (according to

Conditions 1 and 2 in Section 4.1), it holds that

Et0
∣∣t̂ρ̂ − t0

∣∣
1
≤ 2C1B0

√
V(ρ∗)√
n

+ o(1/n).

We note that the constant M does only appear in the residual term and does not play a major
role in the following.

Let us relate our results to the Huber minimaxity. For this, we define the set of r-contaminated
normal distributions for a contamination level r ∈ [0, 1[ as

Gr := {G : G = (1− r)N + rT, T ∈ Ξ} ,

where N is the standard normal distribution and Ξ is the set of all symmetric real distributions.
The “minimax” variance over this set of distribution is then as follows:
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Lemma 1. Let the distribution G0 be the minimizer of the Fisher information I(G) over Gr.
Then, for any r ∈ [0, 1[

inf
ρ

sup
G∈Gr

AV(ρ,G) ≥ sup
G∈Gr

I-1(G) = I-1(G0),

where the infimum is taken over all twice differentiable and convex contrasts and AV is defined in
(1.1). Moreover, the expression of the density of the distribution G0 is

g0(z) =





1−r√
2π

exp
(
γrt+ γ2r/2

)
if t ≤ -γr

1−r√
2π

exp
(
−t2/2

)
if -γr ≤ t ≤ γr

1−r√
2π

exp
(
−γrt+ γ2r/2

)
if t ≥ γr

,

where γr is the solution of

(1− r)-1 = 2

∫ γr

0

1√
2π
e−z2/2dz +

√
2

γr
√
π
e−γ2

r/2.

The first claim follows from (1.2) and the second one from [12, Theorem 2]. Lemma 1 shows that
I-1(G0) is a lower bound for the asymptotic variance in the worst case. This asymptotic variance
can be achieved, as we see in the following result:

Lemma 2. For any r ∈ [0, 1[ and the Huber contrast ρH,γr as defined in the previous section,
it holds that the Huber corresponds to the maximum likelihood estimator for the distribution G0,
ρH,γr(·) = - ln(g0(·)) and

sup
G∈Gr

AV(ρH,γr , G) ≤ I-1(G0).

This is a corollary of [12, Theorem 2]. It means that the estimator constructed with ρH,γr has
minimal asymptotic variance for the worst distribution G0 in Gr. We may say that I-1(G0) is the
asymptotic minimax variance and the estimator constructed with ρH,γr is asymptotic minimax.

Usually, a minimax estimator is desired for an unknown contamination level r. We show that
it can be constructed with Corollary 1: Set ΥH := {ρH,γ : γ ∈ [γmin, γmax]} such that γr ∈
[γmin, γmax] for all r ∈ [0, 1[. Then, define γ̂ as the minimizer of V̂(ρH,γ) (see (2.13)) over [γmin, γmax].
Finally, define t̂γ̂ according to (2.16) with ρ = ρH,γ̂ . The resulting estimator t̂γ̂ has then the fol-
lowing property:

Corollary 2. For any r ∈ [0, 1[, it holds that

sup
G∈Gr

Et0
∣∣t̂γ̂ − t0

∣∣ ≤ 2C1B0√
nI(G0)

+ o(1/n).

The estimator t̂γ̂ is thus adaptive with respect to the contamination level r and is (up to con-
stants) asymptotic minimax in the above sense. This corollary is deduced from Corollary 1 and the
definition of V(ρ∗). In the following, we then focus to find upper bounds with the minimal value
of the variance as Theorem 2, that is, the optimality for us.
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3. A D-adaptive and S-adaptive Estimator

In this section, we introduce an estimator of f∗(x0) that is simultaneously S- and D-adaptive.
For this, we apply the data-driven procedure introduced above to select the contrast and the kernel,
and we apply the data-driven Lepski’s method to select the bandwidth. Afterwards, we present
adaptive S-minimax results for this D-adaptive estimator.

Let us introduce the necessary definitions first. To start, we recall the notion of S-minimaxity.
To this end, let f̃n(x0) be an estimator of f∗(x0) and S a set of functions. For any q > 0, we then
define the maximal risk and the S-minimax risk of f̃n for x0 and S as

Rn,q

[
f̃n,S

]
:= sup

f∗∈S
Ef

∣∣f̃n(x0)− f∗(x0)
∣∣q and Rn,q

[
S
]
:= inf

f̃
Rn,q

[
f̃ ,S

]
, (3.1)

respectively. The infimum on the right hand side is taken over all estimators. We can now define
the S-minimax rates of convergence and the (asymptotic) S-minimax estimators:

Definition 2. A sequence φn is an S-minimax rate of convergence and the estimator f̂ is an
(asymptotic) S-minimax estimator with respect to the set S if

0 < lim inf
n→∞

φ−q
n Rn,q

[
S
]
≤ lim sup

n→∞
φ−q
n Rn,q

[
f̂ ,S

]
<∞.

Usually, the set S is unknown. In our case, for example, it depends the smoothness ~β. More
generally, S = Sm,m ∈ M, for a set of parametersM. It is then desirable to have an estimator that
is adaptive with respect to M. This motivates the following definition, where Ψ := {ψn(m)}m∈M
is a given family of normalizations:

Definition 3. The family Ψ is called admissible if there exist an estimator f̂n such that

lim sup
n→∞

sup
m∈M

ψ−q
n (m)Rn,q

(
f̂n,Sm

)
<∞.

The estimator f̂n is then called Ψ-adaptive in the S-minimax sense.

The LPA is designed for functions that can be locally approximated by polynomials. This is,
for example, the case for Hölder classes. Similarly as in [3], we define:

Definition 4. Let ~β := (β1, . . . , βd) ∈]0,+∞[d such that ⌊β1⌋ = . . . = ⌊βd⌋ =: ⌊β⌋, and let

L,M > 0. The function s : [0, 1]d → [-M,M ] belongs to the anisotropic Hölder Class Hd(~β, L,M)
if for all x, x0 ∈ [0, 1]d

|s(x)− P(s)(x− x0)| ≤ L

d∑

j=1

|xj − x0,j |βj and

∑

p∈S⌊β⌋

sup
x∈[0,1]d

∣∣∣∣
∂|p|s(x)

∂xp1

1 · · ·∂xpd

d

∣∣∣∣ ≤ M,

where P(s)(x − x0) is the Taylor polynomial of s of order ⌊β⌋ at x0, and xj and x0,j are the jth
components of x and x0, respectively.



A Fully Adaptive Pointwise M-estimator 11

We distinguish two cases in the following: First, we consider the special case of isotropic Hölder
classes, that is, β1 = . . . = βd. These classes require only one common bandwidth for all dimensions
that is chosen with the standard version of Lepski’s method (see [19] and [21]). Afterwards, we allow
for anisotropic Hölder classes. These classes necessitate a separate bandwidth for every dimension
of the domain under consideration. The standard version of Lepski’s Method is not applicable
because it requires a monotonous bias. We circumvent this problem using a modified version of
Lepski’s method as described in [16] and [20].

3.1. A Fully Adaptive Estimator for Isotropic, Locally Polynomial
Functions

We first allow for functions that can be approximated locally by polynomials but restrict our-
selves to isotropic Hölder classes. Therefore, only one bandwidth hiso = h1 = . . . = hd > 0 has to
be selected. Geometrically, this means that we select a hypercube in Rd with edge length hiso as
domain of interest (in contrast to the anisotropic case where we select a hyperrectangle with edge
lengths h1, . . . , hd).

A major issue is the choice of the bandwidth. Unfortunately, we cannot apply Lepski’s method
directly since the variance V(λhiso)/(nh

d
iso) for (cf. Definition 2.4)

λhiso(x, y, f) := λ(x, y, f) := ρ
(
y − f(x)

)
Khiso(x) for all x, y ∈ R

(or an estimate of it as, for example, in (2.13)) is not necessarily monotonous with respect to
the bandwidth (see also the next section and Section 4). We can circumvent this problem with a
redefinition of the variance term. For this, we introduce the set of bandwidths Hiso := [hmin, hmax],
where hmin and hmax are defined in (2.3), and we introduce the maximal variance for any ρ ∈ Υ
and K ∈ K (see (2.11))

Vmax(ρ,K) := sup
hiso∈Hiso

V(λhiso). (3.2)

The variance V is defined in (2.6) and λhiso := λ is defined according to (2.4) with h := (hiso, . . . , hiso).
The modified variance term Vmax(ρ,K) does not depend on hiso. On the one hand, we may lose
considerably taking the supremum with respect to hiso, on the other hand, this allows us to avoid
more restrictive assumptions on the design and the noise. This is detailed in Section 4. We now
define, for any ρ ∈ Υ, K ∈ K, and λ, the new oracle as

(ρ̄∗, K̄∗) := arg min
ρ∈Υ, K∈K

Vmax(ρ,K) (3.3)

and the estimator of the variance as

V̂max(ρ,K) := sup
hiso∈Hiso

V̂(λhiso), (3.4)

where V̂(λhiso) is defined in (2.13). We then select a contrast and a kernel according to

(ρ̄, K̄) := arg min
ρ∈Υ, K∈K

V̂max(ρ,K) (3.5)

and introduce the isotropic M-estimator as

f̂hiso

iso := argmin
f∈F

n-1
∑

i

ρ̄(Yi − f(Xi))K̄(hiso,...,hiso)(Xi). (3.6)
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Eventually, we set Hiso
ǫ :=

{
hiso ∈ Hiso, ∃m ∈ N : hiso = hmaxǫ

m
}
, ǫ ∈]0, 1[, a net on the set of

bandwidths Hiso such that |Hiso
ǫ | ≤ n and apply Lepski’s method for isotropic functions (see [19]

and [21]) to define the data-driven bandwidth ĥiso:

ĥiso := max



hiso ∈ Hiso

ǫ :
∣∣∣f̂hiso

iso (x0)− f̂
h′
iso

iso (x0)
∣∣∣ ≤ 20(B0 + isoǫ(n))

√
V̂max(ρ̄, K̄)
√
n(h′iso)

d
,

for all h′iso ∈ Hiso
ǫ such that h′iso ≤ hiso

}
, (3.7)

where isoǫ(n) := 11
√
ln(n|Hiso

ǫ |).

We now obtain on isotropic Hölder classes

H
iso
d (β, L,M) := Hd((β, . . . , β), L,M), for all β, L,M > 0 (3.8)

the following result:

Theorem 3. For n sufficiently large (according to Conditions 1, 2, and 3 in Section 5.1), x0 ∈
(0, 1)d, β ∈ [0, b], and L > 0, we have

Rn,q

[
f̂

ˆhiso

iso (x0),H
iso
d (β, L,M)

]
≤ Ciso

q inf
hiso∈Hiso



Ld h

β
iso + (B0 + isoǫ(n))

√
Vmax(ρ̄∗, K̄∗)√

nhdiso





q

+ o(1/n),

for a constant Ciso
q (Ciso

q = 2q−1

ǫd/2

(
2β
d ∨ d

2β

)
[40q + 2Cq] works).

This result has the flavor of an oracle inequality: the first term on the right hand side is supposed
to be a bound of the smallest possible pointwise risk, whereas the second term o(1/n) is, at least
asymptotically, insignificant. The latter is justified by the following corollary:

Corollary 3. Under Conditions of the previous theorem and if Vmax(ρ̄
∗, K̄∗) > 0, we have

lim sup
n→∞

sup
β>0, L>0

(
n

(B0 + isoǫ(n))
√
Vmax(ρ̄∗, K̄∗)

)β/(2β+d)

Rn,q

[
f̂ ĥiso

iso (x0),H
iso
d (β, L,M)

]
<∞.

This corollary can be deduced minimizing the first term on the right hand side of the last theorem
by the usual bias/variance trade-off.

Remark 5. This corollary shows that our estimator is simultaneously S- and D-adaptive. We note
that this result generalizes results in [7] (that rely on the asymptotic equivalence of the block median
method) to heteroscedastic regression with random design. We also stress that our estimator does
not require positive noise densities at their median and thus allows for more general noise densities.
Additionally, the choice of the contrast is Huber minimax (see Corollary 2 and [12]). We also note
that Lepski’s method has been used for locally M-estimators in [24], but not to locally polynomial

M-estimators as it is done here. We can finally deduce the rate (ln(n)/n)
β/(2β+1)

in the above
result from the entropy calculations in Section 6.1. This rate is asymptotically nearly optimal (see
[5] and [19]); the additional factor ln(n) is the usual price to pay in pointwise adaptive estimation.
This is discussed in more detail in Section 4.
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Remark 6. Note that our estimator detects the presence of noise or not. Indeed, the maximal
variance (3.2) vanishes when the noise level is zero. The threshold term, in Lepski’s procedure
(3.7), also vanishes and the procedure then selects a small bandwidth (maybe the smallest one).
Our estimator thus has a small bias and novariance, that is, only a simple approximation of the
target.

3.2. A Fully Adaptive Estimator for Anisotropic, Locally Constant
Functions

In this part, we allow for anisotropic Hölder classes and for (possibly) separate bandwidths for
each dimension. In return (see Section 4), we restrict ourselves to locally constant functions, that
is, b = 0 (and thus |P| = 1) and F = [-M,M ], and we restrict ourselves to the uniform design
µ(·) ≡ 1 with a homoscedastic noise σ(·) ≡ σ ≥ 0. We introduce an S- and D-adaptive estimator
of f∗(x0) in this setting and give its main properties in Theorem 4. The results are, in particular,
applicable to linear estimators, or more generally, to M-estimators with two times differentiable
contrasts.

We first introduce an estimator for each h ∈ H. For this, we define the variance

V(ρ,K) :=




√∫ [
ρ′(σz)

]2 1
n

∑n
i=1 gi(z)dz + ‖ρ′‖∞‖K‖∞(nhdmin)

−1/4

∫
ρ′′(σz) 1n

∑n
i=1 gi(z)dz




2

, (3.9)

which is independent of the bandwidth h. As above, we then introduce the oracle for a set of
contrasts Υ and a set of kernels K as

(ρ∗,K∗) := arg min
ρ∈Υ, K∈K

V(ρ,K). (3.10)

Next, we introduce an estimator of the variance as

V̂(ρ,K) := V̂(λhmax), (3.11)

where V̂ (λ) is defined in (2.13) and λhmax(x, y, f) := ρ
(
y−f(x)

)
Khmax(x). The data-driven selection

of the contrast and the kernel is finally

(ρ̂, K̂) := arg min
ρ∈Υ, K∈K

V̂(ρ,K), (3.12)

and, similarly to (2.4) and (2.5), the estimator is

f̂h := argmin
f∈F

n-1
∑

i

ρ̂(Yi − f(Xi))K̂h(Xi) (3.13)

for all h ∈ (0, 1)d. It is again necessary that (ρ̂, K̂) does not depend on the bandwidth h; we discuss
this point in Section 4.

Eventually, we can describe the choice of the bandwidth h with Lepski’s method. For this,
we define for all a, b ∈ R the scalar a ∨ b := max(a, b) and for all h, h′ ∈ (0, 1)d × (0, 1)d the
vector h ∨ h′ := (h1 ∨ h′1, . . . , hd ∨ h′d). We then consider the two families of Locally Constant
Approximation (LCA) estimators

{
f̂h
}
h∈(0,1)d

and
{
f̂h,h′

:= f̂h∨h′
}
h,h′∈(0,1)d×(0,1)d

,
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where f̂h is defined in (3.13). Note that f̂h,h′

= f̂h′,h by symmetry. Recall the definition of the
set of bandwidths H := [hmin, hmax]

d, where hmin and hmax are defined in (2.3). Additionally, we
introduce an order � on H such that

h � h′ ⇔
d∏

j=1

hj ≤
d∏

j=1

h′j .

In particular, the variance is decreasing on this order. We finally introduce a net Hǫ := {hmin} ∪
{h ∈ H : ∀j = 1, . . . , d, ∃mj ∈ N : hj = hmaxǫ

mj} , ǫ ∈]0, 1[ (where we assume that |Hǫ| ≤ n),

set aniǫ(n) := 11
√
ln(n|Hǫ|), and select the bandwidth according to

ĥ := max
�



h ∈ Hǫ :

∣∣∣f̂h,h′

(x0)− f̂h′

(x0)
∣∣∣ ≤ 16(B0 + aniǫ(n))

√
V̂(ρ̂, K̂)
√
nΠh′

,

for all h′ ∈ Hǫ such that h′ � h

}
, (3.14)

where the maximum is taken with respect to the order �, V̂max(·, ·) and (ρ̂, K̂) are defined in (3.4)
and (3.12), and Bz is defined in (2.14).

We can now give the following result for the estimator f̂ ĥ:

Theorem 4. If n is sufficiently large (according to Conditions 1, 2, and 3 in Section 5.1),

x0 ∈ (0, 1)d, ~β ∈ (0, 1]d, and L > 0, then, it holds that

Rn,q

[
f̂ ĥ(x0),Hd(~β, L,M)

]
≤ Cq inf

h∈H



L

d∑

j=1

h
βj

j + (B0 + aniǫ(n))

√
V(ρ∗,K∗)√
nΠh





q

+ o(1/n)

for a constant Cq (Cq = 2dǫ-d/2

minj βj
[5qGamma(q) 1152q] works).

We can also derive the following corollary from Theorem 4 via a bias/variance trade-off:

Corollary 4. Let β̄ :=
(∑

j 1/βj

)
-1

be the harmonic average. Under the conditions of the pre-

vious theorem and if V(ρ∗,K∗) > 0, it holds that

lim sup
n→∞

sup
~β∈(0,1]d, L>0

(
n

(B0 + aniǫ(n))
√

V(ρ∗,K∗)

)β̄/(2β̄+1)

Rn

[
f̂ ĥ(x0),Hd(~β, L,M)

]
<∞.

This corollary can be deduced minimizing the first term on the right hand side of the last theorem
by the usual bias/variance trade-off.

Remark 7. This transfers the results of the previous section to anisotropic Hölder classes. How-
ever, as opposed to the previous results, the above corollary only allows for locally constant func-
tions. Moreover, we note that this is, to the best of our knowledge, the first application of [20]’s
Method to select an anisotropic bandwidth for nonlinear M-estimators. We discuss this in Section 4.

Finally, we refer to the remarks after Theorem 3. The adaptive S-minimax rate (ln(n)/n)
β̄/(2β̄+1)

follows from the definition of is nearly optimal. The optimal rate is given by [17] in the white noise
model for anisotropic Hölder functions.
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4. Discussion

Let us detail on the assumptions and restrictions and highlight some open problems:

1. The symmetry assumption on our model (2.1) (cf. [12], [25]) leads to Ef∗(
∑

i ρ
′(ξi)) = 0. We

stress that we only assume that the sum
∑

i gi(·) is symmetric. This is satisfied, of course,
if all densities gi(·) are symmetric, but this may not be the case. The symmetry assumption
can be replaced in the proof of Proposition 1 (control of the deviations of M-estimators) if
the expectation stays very small, that is, Ef∗(ρ′(ξ)) < n-1. To ensure small expectations for
asymmetric sums of densities, we expect that an asymmetric contrast has to be chosen. This
seems to be an interesting but hard problem.

2. It is well-known that the median is very sensitive to the noise density at 0. Indeed, its
variance is 1/(4g2(0)). The value of g(0) is estimated in [7], for example, but in practice, this
requires many observations near the location. On the contrary, contrasts as in Definition 1
(the Huber contrast with a scale γ, for example) depend on the mass of the noise density
on the interval [-γ, γ] (denominator of the variance (2.6)). Moreover, note that the term in
assumption (2.2) is, up to ρ′′min, a lower bound of the denominator of the variance in (2.6).
Therefore, the parameter γmin can be estimated for a given A similarly as the denominator
of the variance. The mentioned assumption guarantees the consistence of M-estimators with
a contrast strictly convex on the interval [-γmin, γmin]. Additionally, if the parameter γmin is
chosen as a function of A such that there is a sufficiently large mass is on the appropriate
interval, it guarantees a good estimation of the variance for all γ ≥ γmin. However, we note
that A is expected to require a calibration in practice.

3. Conditions 2 and 3 on n in the following section are only introduced to simplify the residual
terms in the proofs. However, the first assumption in Condition 1 is crucial. We recall that
bhmax is the bias and Aρ′′min is a lower bound of the denominator of the variance, that is, the
mass of the noise density on [-γmin, γmin]. Condition 1 thus means that this mass has to be
larger than the bias. This ensures that the denominator of the variance is not too small and
thus that the estimator is consistent (cf. Lemma 7).

4. To estimate the variance of M-estimators (2.6), we use its empirical version but the residuals

stays unknown. To solve this problem, we notice Yi − f̂λ is an estimate of σ(Xi)ξi if and

only if f̂λ is a consistent estimator of f∗. The assumption (2.2) is assumed to guarantee the
consistence of all of estimators in Λ. However, a pre-estimator could be used (for example
the contrast associated to the arctan function as defined below Definition 1) and thus a more
general family of estimators could be considered (with some of them nonconsistent).

5. We do not assume any conditions on the design and the noise level except for the boundedness
of the noise level. The design density and the noise level could be zero or explode at x0. This
can be detected via the variance (2.6) if the rate of convergence is influenced (see [9] for
degenerate design). However, the design and the noise level could compensate each other
such that no effect is visible the variance term. This is a very interesting point and could be
studied in the future.

6. Lepski’s method is very sensitive to outliers (see [24]). In this paper, however, we chose
the robustness via the minimization of the variance. This could be interesting for many
applications.

7. In Section 3.2, we present anisotropic results for pointwise estimation in heteroscedastic
regression with heavy tailed noises and random designs. To the best of this knowledge, this is
the first result of this kind for nonlinear M-estimators in our framework. We note, however,
that we have to restrict ourselves to locally constant M-estimators because of the bias term
(cf. Lemma 12).
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8. We allow in this paper for a selection of the contrast and the kernel from large families.
Additionally, we can extend the family of contrast allowing for a selection the support of
the kernel (not necessarily centered at x0). This could be interesting (cf. [2, 10]) especially
for applications. Furthermore, we could add, for example, the selection of the tail of the
contrast. Such extensions are only limited by the required convexity of the contrast and
the complexity of the selection. Indeed, we need that contrast is convex and strictly convex
around 0 to ensure that the denominator of the variance (2.6) is positive. We think that this
has to be studied further.

9. We obtain the desired variance in Theorems 1 and 2 up to the constants B̆0 and B0, respec-
tively (cf. Remark 1). These constants are mostly due to Dudley’s integral that is a part of
the deviation inequalities from [22] we use. We expect that these constants can be reduced
with a refined analysis.

10. The variance and the choice of the contrast and the kernel do not depend on the bias term
(see Theorem 1, (2.13), and Remark 2) and, more generally, do not depend on what we
estimate. This is an interesting point because this allows for a treatment of other problems
as in high dimensional settings. In [18], for example, the Huber loss with an ℓ1 penalization
is studied. They show that the shape of the tuning parameter is similar to the variance of
M-estimators (cf. (1.1)). We thus expect that our results on the choice of the contrast can
be applied in high dimensional settings.

11. The simultaneous D- and S-adaptation is a hard problem especially because the variance
(2.6) depends on the bandwidth which is the parameter of interest in S-adaptation (see
Section 3). Lepski’s method requires a decreasing variance with respect to the bandwidth,
but unfortunately, this is not always the case in heteroscedastic regression. For example, the
noise level could be zero in a neighborhood Vh of x0 and huge on the set Vh′ \ Vh, where Vh′

is a bigger neighborhood of x0. This would imply that the variance increases. To avoid such
problems, we propose to maximize the variance with respect to h (see Section 3), but this
is a very conservative approach. Models with a homoscedastic noise and a uniform designs
do not have these issues (cf. Section 3.2). It may also happen that the design and the noise
level are such that the variance is decreasing and thus Lepski’s method is applicable without
problems.

12. From the computation of the entropy (in Section 6.1) and the definition of isoǫ(n), the shape
of 20(B0+ isoǫ(n)) in the threshold term in (3.7) is C ln(n) where C is a positive and known
constant but large. An appropriate value for applications is rather between 1 and 2 (see [21]).
Usually, such quantities are calibrated with cross-validation or similar methods. Moreover,
we showed in Corollary 3 that our estimator achieves the minimax rate up to a factor ln(n).
As mentioned in Remark 5, this is due to the threshold term in the selection rule (3.7) and
is nearly optimal. Indeed, the optimal factor is (b− β) ln(n) in a certain sense (see [17]). To
achieve this optimality, the term isoǫ(n), in (3.7), has to be proportional to ln(hmax/hiso)
(see [21]). The same remark applies to the anisotropic rate in Corollary 4 (see [17]). The
optimality of these rates is only proved in the white noise model (see [5, 17, 19]), but we
conjecture that they are nearly S-minimax optimal in more general settings (for all of models
where the Fisher information exists, for example).

5. Proofs of the Main Results

Let us introduce some additional notation to simplify the exposition. First, we introduce the
best approximation of the target f∗ in F :

f0 := argmin

{
sup
x∈Vh

∣∣f(x) − f∗(x)
∣∣ : f ∈ F , f(x0) = f∗(x0)

}
. (5.1)
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The minimum is not necessarily unique, but all minimizers work for our derivations. We then set
t0 := t0(f∗, x0, h) :=

{
t0p : p ∈ P

}
and f0 := Pt0 . Next, we denote the vector of the monomials

(x − x0)
p/hp of order smaller or equal than b by X and the smallest eigenvalue of the matrix∫

X⊤Xµ(x)Kh(x)dx by ν. This allows us to define the set

Fδn :=
{
f = Pt : ‖t− t0‖ℓ1 ≤ δn

}
, (5.2)

where

δn := 2|P|3/2(Aρ′′minν)
-1

(
(lnn)-1 + bh

∫
Kh(x)µ(x)dx

)
.

Furthermore, we denote the vector of partial derivatives of the λ-criterion Pnλ(·) (defined in (2.4)
by

D̃λ(·) :=
(
-
∂

∂tp
Pnλ(·)

)⊤

p∈P
(5.3)

and the corresponding expectation and the “parametric” expectation with respect to the distribu-
tion P 0 of (X, f0(X) + σ(X)ξ) by

P
[
D̃λ(·)

]
and P 0

[
D̃λ(·)

]
, (5.4)

respectively. Next, we introduce the Jacobian matrix JD of P 0
[
D̃λ

]
as

(
JD(·)

)
p,q∈P :=

(
∂

∂tq
P 0
[
D̃p

λ(·)
])

p,q∈P
=

(
∂

∂tq
P 0

[
-
∂

∂tp
Pnλ(·)

])

p,q∈P
, (5.5)

where D̃p
λ(·) is the pth component of D̃λ(·). The Jacobian matrix exists according to Defini-

tion 1 and Fubini’s Theorem. Furthermore, the sup-norm on R|P| is denoted by ‖ · ‖ℓ∞ , and

the vector of coefficients of the estimated polynomial f̂λ is denoted by t̂λ. Finally, we set ãn :=
max

{√
bhmax , (lnn)

-1
}
and

an :=
(1 + ãn)

√
1 + ãn

(1− ãn)
√
1− ãn

, (5.6)

and
cλ := Pλ′′(f∗). (5.7)

By Definition 1, it holds that infλ∈Λ cλ > 0.

5.1. Conditions on n

Condition 1: We assume that n is sufficiently large such that for all λ ∈ Λ

√
bhmax + δn ≤ 1

2
∧ Aρ′′min

2Lρ′′

and γmaxKmaxB0 ≤
√
nhdmin(2 lnn)

-1.

Condition 2: We assume that n is sufficiently large such that for all λ ∈ Λ and all h ∈ H

(2∨Lρ′′)γmaxKmax(δn+bh)+
γ2maxK2

maxBln(n)√
nhdmin

≤ ãn max

{
Aρ′′min

∫
Kh(x)µ(x)dx,Πh inf

λ∈Λ
P [λ′(f∗)]

2
}

and ãn < 1/3, where ãn is defined in (5.6).
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Condition 3: We assume that n is sufficiently large such that

2 ln(n) ≤ nhdmin/(4 ln
2 n)

98γ2maxK2
max + 4γmaxKmax

,
11
√
2 ln(n)

(nhdmin)
1/4

≤ 1, and
2γmaxKmax

Aρ′′min(nh
d
min)

1/4
≤ 1.

5.2. An Auxilliary Result

Proposition 1. Let Λ be a set of functions as in (2.4) such that HF∪Λ,ω < ∞, and let n be
sufficiently large (according to Condition 1 above). Then, for any z > 0 and any h ∈ H,

Pf∗

({
sup
λ∈Λ

[
∣∣f̂λ(x0)− f∗(x0)

∣∣ − 2

√
V(λ)Bz√
nΠh

]
≥ 3bh

}
∩
⋂

λ∈Λ

{
f̂λ ∈ Fδn

})
≤ 2|P| exp(-z),

where Bz is defined in (2.14).

Recall that λ depends on the bandwidth h, which is fixed here. We also note that the constants 2
and 3 can be replaced by o(1). Finally, if only one fixed function λ ∈ Λ is considered, the expressions
simplify considerably as we show in the following lemma:

Lemma 3. Let λ ∈ Λ be fixed, HF ,ν <∞, and let n be sufficiently large (according to Condition
1 above). Then, for any ε > 0 and any h ∈ H,

Pf∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣ ≥ 2

√
V(λ) B̆ε√
nΠh

+ 3bh, f̂λ ∈ Fδn

)
≤ 2|P| exp

(
− ε2

100 + 4ε
(nΠh)1/4

)
,

where B̆ε is defined in (2.10).

This claim can be deduced similarly as Proposition 1, but one has to choose z such that ε =
10

√
z + 2z

(nΠh)1/4
.

5.3. Proof of Theorem 1

First, we recall that supf∈F ‖f‖∞ ≤ |P|M and set

Ω :=
{
∀λ ∈ Λ, f̂λ ∈ Fδn

}
and Ωc :=

{
∃λ ∈ Λ, f̂λ /∈ Fδn

}
. (5.8)

Then, since f̂λ ∈ F and ‖f∗‖∞ ≤M , the risk can be bounded by

Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q = Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q1lΩ + Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q1lΩc

≤ Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q1lΩ + ((1 + |P|)M)qPf∗(Ωc).

Using Lemma 7, Lemma 8, the last inequality, and simple computations, we obtain

Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q

≤ Ef∗

∣∣f̂λ(x0)− f∗(x0)
∣∣q1lΩ + ((1 + |P|)M)q2|P| exp

(
− nΠh/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)

≤ 2qEf∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣ − 3bh − 2
√
V(λ)B̆0√
nΠh

)q

+

1lΩ + 2q

(
3bh +

2
√
V(λ)B̆0√
nΠh

)q

+ ((1 + |P|)M)q2|P| exp
(
− nΠh/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)
. (5.9)
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Let us now bound the first term on the right hand side of the last inequality. To do so, we use
simple computations to obtain

Ef∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣− 3bh − 2
√
V(λ)B̆0√
nΠh

)q

+

1lΩ

= q

∫ ∞

0

zq−1
Pf∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣− 3bh − 2
√
V(λ)B̆0√
nΠh

≥ z, Ω

)
dz.

Setting z =
2
√

V(λ)√
nΠh

ε in the last inequality, using the definition of B̆ε, and Corollary 3, we get

Ef∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣− 3bh − 2
√
V(λ)B̆0√
nΠh

)q

+

1lΩ

= q

(
2
√
V(λ)√
nΠh

)q ∫ ∞

0

εq−1
Pf∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣ ≥ 3bh +
2
√
V(λ)B̆ε√
nΠh

,Ω

)
dε

≤ 2q|P|
(
2
√
V(λ)√
nΠh

)q ∫ ∞

0

εq−1 exp

(
− ε2

100 + 4ε

)
dε

≤ 2q|P|
(
3bh +

2
√
V(λ)B̆0√
nΠh

)q ∫ ∞

0

εq−1 exp

(
− ε2

100 + 4ε

)
dε.

One may then check that for any a, b > 0 and any q ≥ 1

∫ ∞

0

ǫq−1e-
ǫ2

a+bǫ d ǫ ≤ 1 + (a+ b)q/2 Gamma(q), (5.10)

so that

Ef∗

(
∣∣f̂λ(x0)− f∗(x0)

∣∣− 3bh − 2
√
V(λ)B̆0√
nΠh

)q

+

1lΩ ≤ 2q|P|
(
3bh +

2
√
V(λ)B̆0√
nΠh

)q

(11.2)q Gamma(q)

where Gamma(·) is the usual Gamma function. From (5.9) and the last inequalities, the theorem
can be deduced.

5.4. Proof of Theorem 2

First, we set for all h ∈ H

∆ :=
⋂

λ∈Λ

{√
V̂(λ) ∈

[√
1− ãn
1 + ãn

√
V(λ),

√
1 + ãn
1− ãn

√
V(λ)

]}
. (5.11)

Then, we observe that, since f̂λ̂ ∈ F and ‖f̂λ̂‖∞, ‖f∗‖∞ ≤ M and supf∈F ‖f‖∞ ≤ |P|M , the risk
can be bounded by

Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q = Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q1l∆ + Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q1l∆c

≤ Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q1l∆ + ((1 + |P|)M)qPf∗(∆c).
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Using Lemma 9, Lemma 8, the last inequality, and simple computations, we obtain

Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q

≤ Ef∗

∣∣f̂λ̂(x0)− f∗(x0)
∣∣q1l∆ + ((1 + |P|)M)q

(
2n-2 + Pf∗(Ωc)

)

≤ 2qEf∗

(
∣∣f̂λ̂(x0)− f∗(x0)

∣∣− 3bh − 2an
√
V(λ∗)B0√
nΠh

)q

+

1l∆

+ 2q

(
3bh +

2an
√
V(λ∗)B0√
nΠh

)q

+ ((1 + |P|)M)q
(
2/n2 + Pf∗(Ωc)

)
. (5.12)

Let us now bound the first term on the right hand side of the last inequality. To do so, we use
simple computations to obtain

Ef∗

(
∣∣f̂λ̂(x0)− f∗(x0)

∣∣− 3bh − 2an
√
V(λ∗)B0√
nΠh

)q

+

1l∆

= q

∫ ∞

0

(z′)q−1
Pf∗

(
∣∣f̂λ̂(x0)− f∗(x0)

∣∣ − 3bh − 2an
√
V(λ∗)B0√
nΠh

≥ z′,∆

)
dz′. (5.13)

On the event ∆ and by definition of an in (5.6), it yields

√
V(λ∗) ≥ 1− ãn√

1 + ãn

√
V̂(λ∗) ≥ 1− ãn√

1 + ãn

√
V̂(λ̂) ≥ (1− ãn)

√
1− ãn

(1 + ãn)
√
1 + ãn

√
V(λ̂) = a-1n

√
V(λ̂) (5.14)

Setting z′ =
2an

√
V(λ)√

nΠh
ε in (5.13), defining Bǫ := B0 + ǫ, using the definition of Bε, the last

inequality, and Proposition 1 with ε = 10
√
z + 2z

(nΠh)1/4
, we get

Ef∗

(
∣∣f̂λ̂(x0)− f∗(x0)

∣∣− 3bh − 2an
√
V(λ∗)B0√
nΠh

)q

+

1l∆

= q

(
2an
√
V(λ∗)√
nΠh

)q ∫ ∞

0

εq−1
Pf∗

(
∣∣f̂λ̂(x0)− f∗(x0)

∣∣ ≥ 3bh +
2an
√
V(λ∗)Bε√
nΠh

,∆

)
dε

≤ q

(
2an
√
V(λ∗)√
nΠh

)q ∫ ∞

0

εq−1
Pf∗


∣∣f̂λ̂(x0)− f∗(x0)

∣∣ ≥ 3bh +
2

√
V(λ̂)Bε√
nΠh

,Ω


 dε

≤ q

(
2an
√
V(λ∗)√
nΠh

)q ∫ ∞

0

εq−1
Pf∗

(
sup
λ∈Λ

[
∣∣f̂λ(x0)− f∗(x0)

∣∣− 3bh − 2
√
V(λ)Bε√
nΠh

]
≥ 0,Ω

)
dε

≤ 2q|P|
(
2an
√
V(λ∗)√
nΠh

)q ∫ ∞

0

εq−1 exp

(
− ε2

100 + 4ε

)
dε

≤ 2q|P|
(
3bh +

2an
√
V(λ∗)B0√
nΠh

)q ∫ ∞

0

εq−1 exp

(
− ε2

100 + 4ε

)
dε

≤ 2q|P|
(
3bh +

2an
√
V(λ∗)B0√
nΠh

)q

∗ (11.2)q Gamma(q).
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The last inequality is obtained from (5.10). From (5.12) and the last inequality, the theorem can
be deduced.

5.5. Proof of Theorem 3

For ease of exposition, we set k := hiso and k̂ := ĥiso. Then, one may verify that the oracle
bandwidth

k∗ := arg min
k∈Hiso

{
Ldβ-1kβ + 2

√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))

d
√
nkd

}

is well defined. Moreover, let us introduce the element k∗ǫ of the net Hiso
ǫ such that k∗ǫ ≤ k∗ ≤ ǫ-1k∗ǫ .

Furthermore, from Condition 3 on n and Lemmas 7 and 9 with h = (k, . . . , k), it follows that

Pf∗

(
∃k ∈ Hiso

ǫ : f̂k
iso /∈ Fδn

)
≤ 2|P|

∑

k∈Hiso
ǫ

exp

(
− nhdmin/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)
≤ 2|P|n-1 (5.15)

and

∑

k∈Hiso
ǫ

Pf∗ (∆c) ≤
∑

k∈Hiso
ǫ

2

n|Hiso
ǫ | + 2|P|

∑

k∈Hiso
ǫ

exp

(
− nhdmin/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)

≤4|P|n-1, (5.16)

where hmin and ∆ are defined in (2.3) and (5.11), respectively. Thus, we may restrict our consid-

erations in the following to the event
⋂

k∈Hiso
ǫ

{
f̂k
iso ∈ Fδn

}
∩∆.

Control of the risk on the event {k∗ǫ ≤ k̂}. With the triangular inequality and Lemma 8, we
obtain

Ef∗

[∣∣f̂ k̂
iso(x0)− f∗(x0)

∣∣q1lk∗
ǫ≤k̂

]

≤ 2q−1
Ef∗

[∣∣f̂ k̂
iso(x0)− f̂

k∗
ǫ

iso(x0)
∣∣q1lk∗

ǫ≤k̂

]
+ 2q−1

Ef∗

∣∣f̂k∗
ǫ

iso(x0)− f∗(x0)
∣∣q. (5.17)

The first term on the right hand side of the last inequality is controlled by the construction of the
procedure (3.7), and thus

Ef∗

[∣∣f̂ k̂
iso(x0)− f̂

k∗
ǫ

iso(x0)
∣∣q1lk∗

ǫ≤k̂

]
≤ Ef∗


20

√
V̂max(ρ̄, K̄)(B0 + isoǫ(n))√

n(k∗ǫ )
d



q

.

On the event
⋂

k∈Hiso
ǫ

∆, we get similarly as in (5.14)

Ef∗

[∣∣f̂ k̂
iso(x0)− f̂

k∗
ǫ

iso(x0)
∣∣q1lk∗

ǫ≤k̂

]
≤
(
20

√
1 + ãn
1− ãn

√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k∗ǫ )
d

)q

,

where ãn is defined above (5.6). Recall that, by the definitions of the Hölder classes (Definition 4),
we can control the bias for any β ∈]0, b] and any k > 0 by

bk ≤ sup
x∈Vk

|P(f∗)(x− x0)− f∗(x)| ≤ Ldkβ , (5.18)
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where P(f∗)(x− x0) is the Taylor Polynomial of f∗ at x0. So we can deduce finally from Theorem
2 with h = (k, . . . , k) and bh = bk a bound for the second term in (5.17):

Ef∗

∣∣f̂k∗
ǫ

iso(x0)− f∗(x0)
∣∣q ≤ 2Cq

(
Ld(k∗ǫ )

β +

√
Vmax(ρ̄∗, K̄∗)B0√

n(k∗ǫ )
d

)q

+ o(1/n).

Using (5.17) and the last two inequalities, and invoking Condition 2 in Section 5.1, we have a

control of the risk on the event {k∗ǫ ≤ k̂}:

Ef∗

[∣∣f̂ k̂
iso(x0)− f∗(x0)

∣∣q1lk∗
ǫ≤k̂

]

≤ 2q−1 [40q + 2Cq]

(
Ld(k∗ǫ )

β +

√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k∗ǫ )
d

)q

+ o(1/n). (5.19)

Control of the risk on the event {k∗ǫ > k̂}. In order to control the risk on the complementary
event, we observe that

Ef∗

[∣∣f̂ k̂
iso(x0)− f∗(x0)

∣∣q1lk∗
ǫ>k̂

]
≤ ((1 + |P|)M)qPf∗(k∗ǫ > k̂). (5.20)

We now show that the probability Pf∗(k∗ǫ > k̂) is small. According to the construction of the
procedure (3.7), we have

Pf∗(k∗ǫ > k̂) ≤ Pf∗


∃k′ ∈ H, k′ < k∗ǫ :

∣∣∣f̂k∗
ǫ

iso(x0)− f̂k′

iso(x0)
∣∣∣ > 20

√
V̂max(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d




≤ 2
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

Pf∗



∣∣∣f̂k′

iso(x0)− f∗(x0)
∣∣∣ > 20

2

√
V̂max(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d


 .

On the event
⋂

k∈Hiso
ǫ

∆, we get similarly as in (5.14)

Pf∗(k∗ǫ > k̂) ≤ 2
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

Pf∗

(∣∣∣f̂k′

iso(x0)− f∗(x0)
∣∣∣ > 10

√
1− ãn
1 + ãn

√
Vmax(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d

)
,

where ãn is defined above (5.6). According to Condition 2 in Section 5.1, we have ãn ≤ 1/3.
Consequently,

Pf∗(k∗ǫ > k̂) ≤ 2
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

Pf∗

(∣∣∣f̂k′

iso(x0)− f∗(x0)
∣∣∣ > 5

√
Vmax(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d

)
. (5.21)

By definition, the oracle bandwidth k∗ is the one which gives the best trade-off, so that for all
k′ ≤ k∗ǫ ≤ k∗

Ld(k∗)β ≤ Ld(k∗ǫ )
β =

√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k∗ǫ )
d

≤
√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k∗)d

≤
√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k′)d

≤
√
Vmax(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d
.
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From (5.18), (5.21) and the last inequality, we get

Pf∗(k∗ǫ > k̂)

≤ 2
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

Pf∗

(∣∣∣f̂k′

iso(x0)− f∗(x0)
∣∣∣ > 2

√
Vmax(ρ̄, K̄)(B0 + isoǫ(n))√

n(k′)d
+ 3bk

)

≤ 2
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

Pf∗

(
sup
ρ,K

[∣∣∣f̂k′

iso(x0)− f∗(x0)
∣∣∣− 2

√
Vmax(ρ,K)(B0 + isoǫ(n))√

n(k′)d

]
> 3bk

)
.

Using isoǫ(n)/(n(k
′)d)1/4 ≤ 1 (see Condition 3 on n), the definition of isoǫ(n), Proposition 1 with

h = (k′, . . . , k′), V(λ) = Vmax(ρ,K) and z such that Bz = (B0 + isoǫ(n)), we obtain

Pf∗(k∗ǫ > k̂) ≤ 4|P|
∑

k′∈Hiso
ǫ : k′≤k∗

ǫ

exp

(
− (isoǫ(n))

2

100 + 4 isoǫ(n)/(n(k′)d)1/4

)
≤ 4|P|n-1.

Then, in view to the last inequality, (5.15), (5.16), (5.19), and (5.20), we conclude

Ef∗

∣∣f̂ ĥ(x0)− f∗(x0)
∣∣q ≤ 2q−1 [40q + 2Cq]

(
Ld(k∗ǫ )

β +

√
Vmax(ρ̄∗, K̄∗)(B0 + isoǫ(n))√

n(k∗ǫ )
d

)q

+ o(1/n).

By definition of k∗ and k∗ǫ in the beginning of the proof, the theorem is proved.

5.6. Proof of Theorem 4

One may verify that the oracle bandwidth

h∗ := argmin
h∈H



L

d∑

j=1

β-1
j (hj)

βj + 2

√
V(ρ∗,K∗)(B0 + aniǫ(n))

d
√
nΠh





is well defined. Moreover, define the element h∗ǫ of Hǫ such that for all j = 1, . . . , d, h∗ǫ,j ≤ h∗j ≤
ǫ-1h∗ǫ,j . We then note that the estimator f̂h is a constant function and f0 ≡ f∗(x0) since we only
consider locally constant functions (|P| = 1). To stress the importance of the bandwidth, we set
for any h ∈ H

D̃h(·) := D̃λ̃h
(·) = n-1

∑

i

ρ̂′(Yi − ·)K̂h(Xi)

and

Dh(·) := P
[
D̃λ̃h

(·)
]
=

∫
K̂h(x)

∫
ρ̂′
(
σz + f∗(x) − ·

)
G(z)dzdx. (5.22)

Here, λ̃h(x, y, f) := ρ̂(y − f(x))K̂h(x), G(·) := 1
n

∑n
i=1 gi(·), and (ρ̂, K̂) and D̃λ(·) are defined

in (3.12) and (5.3), respectively. Next, for uniform designs and homoscedastic noise levels, the
quantity cλh

simplifies for any λh to

cλh
= cρ :=

∫
ρ′′(σz)G(z)dz. (5.23)
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Moreover, according to Lemma 10, we have for any two constant functions f, f̃ ∈ Fδn

|f − f̃ | ≤ (1 + 2
√
bhmax + δn) inf

h∈H
c-1ρ̂ |Dh(f)−Dh(f̃)|. (5.24)

Furthermore, from Condition 3 on n, Lemma 7, and Lemma 9, it follows that

Pf∗

(
∃h ∈ Hǫ : f̂h /∈ Fδn

)
≤ 2

∑

h∈Hǫ

exp

(
− nΠh/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)
≤ 2n-1 (5.25)

and

Pf∗ (∆c) ≤ 2

n2
+ 2 exp

(
− nhdmin/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)
≤ 4n-1, (5.26)

where ∆ is defined in (5.11). Thus, we restrict our considerations in the following to the event{
f̂h ∈ Fδn for all h ∈ Hǫ

}
∩∆. Moreover, we work on the eventA := {h∗ǫ � ĥ} and its complement

Ac separately. For this, we decompose the risk into RA
(
f̂h, f∗

)
:= Ef∗

[∣∣f̂h(x0)− f∗(x0)
∣∣q1l{A}

]

and RAc

(
f̂h, f∗

)
:= Ef∗

[∣∣f̂h(x0)− f∗(x0)
∣∣q1l{Ac}

]
.

Control of the risk on the event A. With the triangular inequality and Lemma 8, we obtain

RA
(
f̂ ĥ, f∗

)
≤ 3q−1

[
RA

(
f̂h∗

ǫ ,ĥ, f̂ ĥ
)
+RA

(
f̂ ĥ,h∗

ǫ , f̂h∗
ǫ

)
+RA

(
f̂h∗

ǫ , f∗
)]
. (5.27)

Let us now control the first term on the right hand side of the last inequality. First, we observe
that

RA
(
f̂h∗

ǫ ,ĥ, f̂ ĥ
)
≤ Ef∗ sup

h∈H : h�h∗
ǫ

∣∣f̂h∗
ǫ ,h(x0)− f̂h(x0)

∣∣q1lA. (5.28)

To simplify the presentation, we introduce the notation τn := (1 + 2
√
bhmax + δn). Using (5.24)

and taking f = f̂h∗
ǫ ,h and f̃ = f̂h, we then have

∣∣f̂h∗
ǫ ,h(x0)− f̂h(x0)

∣∣ ≤ τnc
-1
ρ̂

∣∣∣Dh

(
f̂h∗

ǫ ,h
)
−Dh

(
f̂h
)∣∣∣ .

Recall that, by definition, D̃h(f̂
h) = 0 for all h ∈ H. We then obtain from the last inequality for

any h ∈ H
∣∣f̂h∗

ǫ ,h(x0)− f̂h(x0)
∣∣ ≤ τnc

-1
ρ̂

(∣∣∣Dh

(
f̂h∗

ǫ ,h
)
−Dh∗

ǫ∨h

(
f̂h∗

ǫ ,h
)∣∣∣

+
∣∣∣Dh∗

ǫ∨h

(
f̂h∗

ǫ ,h
)
− D̃h∗

ǫ∨h

(
f̂h∗

ǫ ,h
)∣∣∣+

∣∣∣D̃h

(
f̂h
)
−Dh

(
f̂h
)∣∣∣
)
. (5.29)

Using the last inequality and (5.28), we have

RA
(
f̂ ĥ,h∗

ǫ , f̂ ĥ
)
≤2q−1τqnEf∗c-qρ̂ sup

h∈Hǫ

sup
f∈Fδn

∣∣Dh(f)−Dh∗
ǫ∨h(f)

∣∣q

+ 2qτqn
∑

h∈Hǫ : h�h∗
ǫ

Ef∗c-qρ̂ sup
f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣
q

.

Using Lemma 11 and Lemma 12 with h′ = h∗ǫ and ρ = ρ̂, we get

RA
(
f̂ ĥ,h∗

ǫ , f̂ ĥ
)
≤ 2q−1τ2qn


L

d∑

j=1

(h∗ǫ,j)
βj




q

+ 2qτqnC̄q

(
an
√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ

)q

.
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According to Conditions 1 and 2 in Section 5.1, we have τn ≤ 2 and an ≤ 2
√
2. Thus,

RA
(
f̂ ĥ,h∗

ǫ , f̂ ĥ
)
≤ 24qC̄q


L

d∑

j=1

(h∗ǫ,j)
βj +

√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ




q

. (5.30)

The second term on the right hand side of (5.27) is controlled by the construction of the procedure
(3.14), thus

RA
(
f̂ ĥ,h∗

ǫ , f̂h∗
ǫ

)
≤ Ef∗


16

√
V̂(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh∗
ǫ



q

1lA.

On the event ∆,

RA
(
f̂ ĥ,h∗

ǫ , f̂h∗
ǫ

)
≤
(
16

√
1 + ãn
1− ãn

√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ

)q

, (5.31)

where ãn is defined above (5.6). By the definition of the Hölder class (Definition 4) and bh (Defi-

nition (2.9)), we can control the bias for any ~β : ⌊β⌋ ≤ b and for any h ∈ H:

bh ≤ sup
x∈Vh

|P(f∗)(x− x0)− f∗(x)| ≤ L

d∑

j=1

h
βj

j ,

where P(f∗)(x− x0) is the Taylor Polynomial of f∗ at x0. Finally, with Theorem 2, we can bound
the third term in (5.27):

RA
(
f̂h∗

ǫ , f∗
)
≤ 2Cq


L

d∑

j=1

(h∗ǫ,j)
βj +

√
V(ρ∗,K∗)B0√

nΠh∗
ǫ




q

+ o(1/n).

Using (5.27), (5.30), (5.31), and the last inequality, and invoking to Condition 2 in Section 5.1, we
have a control of the risk on the event A:

RA
(
f̂ ĥ, f∗

)

≤ 3q−1
[
24qC̄q + 32q + 2Cq

]

L

d∑

j=1

(h∗ǫ,j)
βj +

√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ




q

+ o(1/n). (5.32)

Control of the risk on the event Ac. In order to control the risk on the complementary event
Ac, we observe that

RAc

(
f̂ ĥ, f∗

)
≤ (2M)qPf∗(Ac). (5.33)

We now show that the probability Pf∗(Ac) is small. According to the construction of the procedure
(3.14), the event Ac implies that there exists a h′ ∈ H such that h′ � h∗ǫ and

∣∣∣f̂h∗
ǫ ,h

′

(x0)− f̂h′

(x0)
∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.

Using (5.24) and taking f = f̂h∗
ǫ ,h

′

and f̃ = fh′

, we have on the event Ac

τnc
-1
ρ̂

∣∣∣Dh′

(
f̂h∗

ǫ ,h
′)−Dh′

(
f̂h′)∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.
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From the last inequality, we obtain (cf. (5.29))

τnc
-1
ρ̂ sup

f∈Fδn

∣∣Dh′(f)−Dh∗
ǫ∨h′(f)

∣∣ + 2τnc
-1
ρ̂ sup

f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.

Together with Lemma 12, this yields

τ2nL

d∑

j=1

(h∗ǫ,j)
βj + 2τnc

-1
ρ̂ sup

f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
V̂(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.

On the event
⋂

h∈Hǫ
∆, we get similarly as in (5.14)

τ2nL

d∑

j=1

(h∗ǫ,j)
βj + 2τnc

-1
ρ̂ sup

f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

√
1− ãn
1 + ãn

√
V(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

,

where ãn is defined above (5.6). According to Conditions 1 and 2 in Section 5.1, we have τn ≤ 2
and ãn ≤ 1/3. Consequently,

c-1ρ̂ sup
f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ > 16

8

√
V(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

− L
d∑

j=1

(h∗ǫ,j)
βj .

By definition, the oracle bandwidth h∗ǫ is the one which gives the best trade-off, then for all
h′ � h∗ǫ � h∗

L

d∑

j=1

(h∗j )
βj ≤ L

d∑

j=1

(h∗ǫ,j)
βj =

√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ

≤
√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗

≤
√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh′

≤

√
V(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.

From last two inequalities, we obtain on the event Ac

c-1ρ̂ sup
f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣ >

√
V(ρ̂, K̂)(B0 + aniǫ(n))√

nΠh′

.

Then, we have a control of the following probability

Pf∗(Ac) ≤
∑

h′∈Hǫ : h′�h∗
ǫ

Pf∗


sup

ρ,K
sup

f∈Fδn

∣∣∣D̃h′(f)−Dh′(f)
∣∣∣

cρ
√
V(ρ,K)

>
B0 + aniǫ(n)√

nΠh′


 .

Using aniǫ(n)/(nΠh′)1/4 ≤ 1 (see Condition 3 on n) Lemma 6 with z such that Bz = B0+aniǫ(n),
we deduce that

Pf∗(Ac) ≤
∑

h′∈Hǫ : h′�h∗
ǫ

exp

(
− (aniǫ(n))

2

100 + 4 aniǫ(n)/(nΠh′)1/4

)

≤ n-1.
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From (5.33) and the last inequality, we obtain a control of the risk on the event Ac:

RAc

(
f̂ ĥ, f∗

)
≤ (2M)qn-1.

Then, in view of the last inequality, (5.25), (5.26), and (5.32), we conclude that

Ef∗

∣∣f̂ ĥ(x0)− f∗(x0)
∣∣q

≤ 3q−1
[
24qC̄q + 32q + 2Cq

]

L

d∑

j=1

(h∗ǫ,j)
βj +

√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh∗
ǫ




q

+ o(1/n).

With the definition of h∗ and h∗ǫ in the beginning of the proof, the theorem can be deduced.

6. Appendix

6.1. A Entropy Calculations

First, let us give a bound for the entropy HF ,ν (defined below (2.10)) and its Dudley’s integral.
For this, we recall that the metric entropy of a set is the logarithm of the minimal number of balls
(with respect to the corresponding metric) needed to cover the set (see, for example, [31]). For any
v ∈]0, 1], we then have

HF ,ν(v) ≤ |P| ln
(
2M

v2

)
and

∫ 1

0

√
HF ,ν

(
u
)
∧ ndu ≤

√
|P| ln(2M)+

√
|P|
∫ ∞

1

√
ln(v)/(2v3)dv.

We now give a bound for the entropy HF∪Λ,ω, that is, (defined below (2.14)) for the special set
of Huber contrasts indexed by the scale γ,ΥH := {ρ = ρH,γ : γ ∈ [γmin, γmax]} . Here, the positive
constants are chosen such that γmin ≤ 1 and γmax ≥ 1. In this example, we do not consider the
choice of the kernel, we just take the indicator function as kernel and K =

{
1l[-1/2,1/2]d(·)

}
. In this

case, we have Λ = ΥH. For v ∈]0, 1], we finally give the following bound

HF∪ΥH,ω(v) ≤ (1 + |P|) ln
(
16
[
12 ∨ g∞

]
[
2M ∨ γmax

]
γ2max

γ4minv
2

)

and

∫ 1

0

√
HF∪ΥH,ν

(
u
)
∧ ndu ≤

√
(1 + |P|) ln

(
16
[
12 ∨ g∞

][
2M ∨ γmax

]γ2max

γ4min

)

+
√
1 + |P|

∫ ∞

1

√
ln(v)/(2v3)dv.

Here, g∞ := supi=1,...,n ‖gi‖∞ where (gi)i are the noise densities in the model (2.1).

6.2. B Proof of the Auxilliary Result

Proof of Proposition 1. The definitions of f̂λ and f0 (see (2.5) and (5.1), respectively) imply
that

∣∣f̂λ(x0)− f∗(x0)
∣∣ =

∣∣(t̂λ
)
0,...,0

− t00,...,0
∣∣ ≤ ‖t̂λ − t0

∥∥
ℓ∞
.
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Using f̂λ ∈ Fδn , Lemma 4, and the last inequality, we have

∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ (1 −

√
δn)

-1c-1λ ‖P 0
[
D̃λ(f̂λ)

]
− P 0

[
D̃λ(f

0)
]
‖ℓ∞ .

Recall that by definition D̃λ(f̂λ) = 0 and P 0
[
D̃λ(f

0)
]
= 0. Thus, for all λ ∈ Λ such that f̂λ ∈ Fδn ,

the last inequality implies

∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ (1−

√
δn)

-1c-1λ

(
‖D̃λ(f̂λ)− P

[
D̃λ(f̂λ)

]
‖ℓ∞ + ‖P

[
D̃λ(f̂λ)

]
− P 0

[
D̃λ(f̂λ)

]
‖ℓ∞

)
.

From Lemma 5 and the last display, we obtain

∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ (1−

√
δn)

-1c-1λ

(
‖D̃λ(f̂λ)− P

[
D̃λ(f̂λ)

]
‖ℓ∞ + (1 +

√
bh + δn)cλbh

)

≤ 1 +
√
bh + δn

1−
√
δn

bh + (1−
√
δn)

-1 sup
f∈Fδn ,λ∈Λ

c-1λ ‖D̃λ(f)− P
[
D̃λ(f)

]
‖ℓ∞ .

As
√
bh + δn ≤ 1/2 according to Condition 1, this yields

∣∣f̂λ(x0)− f∗(x0)
∣∣ ≤ 3bh + 2 sup

f∈Fδn ,λ∈Λ
c-1λ ‖D̃λ(f)− P

[
D̃λ(f)

]
‖ℓ∞ .

From the last inequality and the definitions of V(·) and cλ introduced in (2.6) and (5.7), respectively,
we deduce

Pf∗

({
sup
λ∈Λ

[
∣∣f̂λ(x0)− f∗(x0)

∣∣− 2

√
V(λ) Bz√
nΠh

]
≥ 3bh

}
∩
⋂

λ∈Λ

{
f̂λ ∈ Fδn

})

≤ Pf∗

(
sup

f∈Fδn ,λ∈Λ

[
2c-1λ ‖D̃λ(f)− P

[
D̃λ(f)

]
‖ℓ∞ − 2

√
V(λ)Bz√
nΠh

]
≥ 0

)

≤ Pf∗


 sup

f∈Fδn ,λ∈Λ

‖D̃λ(f)− P
[
D̃λ(f)

]
‖ℓ∞

√
Πh

√
P [λ′(f∗)]2 + λ′∞/(nΠh)1/4

≥ Bz√
nΠh


 .

Using Lemma 6 and the last inequality, we finally obtain

Pf∗

({
sup
λ∈Λ

[
∣∣f̂λ(x0)− f∗(x0)

∣∣ − 2

√
V(λ)Bz√
nΠh

]
≥ 3bh

}
∩
⋂

λ∈Λ

{
f̂λ ∈ Fδn

})
≤ 2|P|e−z.

6.3. C Technical Lemmas

We first give a result for the deterministic criterion P 0
[
D̃λ(·)

]
defined in (5.4):

Lemma 4. For any λ ∈ Λ and any h ∈ H, and for n sufficiently large (see Condition 2 in Section
5.1), the following holds:

1. P 0
[
D̃λ(f

0)
]
= 0, and the function P 0

[
D̃λ(f)

]
is bijective as function of Fδn (see Defini-

tion (5.2)) on the corresponding image.
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2. For any f, f̃ ∈ Fδn,

‖t− t̃‖ℓ∞ ≤ (1−
√
δn)

-1c-1λ ‖P 0
[
D̃λ(f)

]
− P 0

[
D̃λ(f̃)

]
‖ℓ∞ ,

where f = Pt and f̃ = Pt̃.

Next, we consider the bias:

Lemma 5. For any h ∈ H and any λ ∈ Λ, if n is sufficiently large (see Condition 2 in Section
5.1), it holds that

sup
f∈Fδn

∥∥P 0
[
D̃λ(f)

]
− P

[
D̃λ(f)

]∥∥
ℓ∞

≤ (1 +
√
bh + δn)cλbh.

The following lemma allows us to control the deviations of the process D̃λ(·):

Lemma 6. For any h ∈ H, it holds that

Pf∗


 sup

f∈Fδn ,λ∈Λ

‖D̃λ(f)− P
[
D̃λ(f)

]
‖ℓ∞

√
Πh

√
P [λ′(f∗)]2 + λ′∞/(nΠh)1/4

≥ Bz√
nΠh


 ≤ 2|P| exp(-z).

Now, we bound the probability of the event “the λ-LPA estimator does not belong to the ball
centered on t0 with radius δn”.

Lemma 7. For any h ∈ H, if n is sufficiently large (according to Condition 1 in Section 5.1), it
holds that

Pf∗ (Ωc) ≤ 2|P| exp
(
− nΠh/(4 ln

2 n)

98γ2maxK2
max + 4γmaxKmax

)
,

where Ωc :=
{
∃λ ∈ Λ, f̂λ /∈ Fδn

}
, and γmax and Kmax are defined in Section 2.

Next, we do some simple algebra.

Lemma 8. For any x, y ∈ R
+
0 , it holds that

xq ≤ 2q[x− y]q+ + 2qyq.

Moreover, for any l, q ∈ N∗ and x1, . . . , xl ≥ 0, it holds that

(
l∑

i=1

xi

)q

≤ lq−1

(
l∑

i=1

xqi

)
.

The following lemma allows us to get our hands on the estimator V̂(·).

Lemma 9. For any h ∈ H, if n is sufficiently large according to Condition 2 in Section 5.1, it
holds that

Pf∗ (∆) ≥ 1− 2/n2 − Pf∗(Ωc),

where ∆ :=
⋂

λ∈Λ

{√
V̂(λ) ∈

[√
1−ãn

1+ãn

√
V(λ),

√
1+ãn

1−ãn

√
V(λ)

]}
, Ωc is defined in Lemma 7, and ãn

is defined in (5.6).



30 Chichignoud & Lederer

We now consider functions near the target f∗.

Lemma 10. Let Dh(·) : [-M,M ] → R and cρ̂ be as defined in the proof of Theorem 4 and assume

f∗ ∈ Hd(~β, L,M) and n sufficiently large (according to Condition 1 in Section 5.1). Then, for any
t, t̃ ∈ [f∗(x0)− δn, f

∗(x0) + δn], it holds that

|t− t̃| ≤ (1 + 2
√
bhmax + δn) inf

h∈H
c-1ρ̂ |Dh(t)−Dh(t̃)|.

Next, we controll the distance of D̃h(f) to Dh(f) for appropirate bandwidth h and functions f :

Lemma 11. For n sufficiently large (see Condition 3 in Section 5.1), it holds for any h ∈ H that

Ef∗c-qρ̂ sup
f∈Fδn

∣∣∣D̃h(f)− Dh(f)
∣∣∣
q

≤ C̄q

n|Hǫ|

(
an
√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh

)q

for a constant C̄q (C̄q = 4q24q Gamma(q) works). The functionals D̃ and D are defined in the
proof of Theorem 4, Gamma(q) is the classical Gamma function, V(ρ∗,K∗) is defined in (3.9) and
(3.10), aniǫ(n) is defined in Section (3.2), and an is defined in (5.6).

Eventually, we look at the distance to Dh′∨h(f) to Dh(f) for appropirate bandwidths h and h′

and functions f :

Lemma 12. For any h′ ∈ H, any f∗ ∈ Hd(~β, L,M) such that ~β ∈]0, 1]d, and for n sufficiently
large (according to Condition 2 in Section 5.1), it holds that

sup
h∈H

sup
f∈Fδn

∣∣Dh′∨h(f)−Dh(f)
∣∣ ≤ (1 +

√
δn + bhmax)cρ̂L

d∑

j=1

(h′j)
βj ,

where Dh and cρ̂ are defined in (5.22) and (5.23) in the proof of Theorem 4.

6.4. D Proofs of the Technical Lemmas

Proof of Lemma 4. Let us proof the first claim. For this, we note that the components of
P 0
[
D̃λ(f)

]
are given by

P 0
[
D̃p

λ(f)
]
=

∫ (
x− x0
h

)p

µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x) − f(x)

) 1

n

n∑

i=1

gi(z)dz dx.

Since ρ and
∑

i gi(·) are symmetric, it holds that
∫
ρ′(z)

∑
i gi(z)dz = 0 and P 0

[
D̃p

λ(f
0)
]
= 0.

We now show that P 0
[
D̃p

λ(·)
]
is injective on the image of Fδn exploiting further the symmetry of

ρ(·) and ∑i gi(·). Consider f, f̃ ∈ Fδn such that P 0
[
D̃λ(f)

]
= P 0

[
D̃λ(f̃)

]
. We have to show that

f = f̃ . For this, we first note that

∑

p∈P
(tp − t̃p)

(
P 0
[
D̃p

λ(Pt)
]
− P 0

[
D̃p

λ(Pt̃)
])

= 0,

where t and t̃ are such that Pt = f and Pt̃ = f̃ . To simplify the presentation, we introduce the
notation u(·) := (f−f0)(·), ũ(·) := (f̃−f0)(·), and G(·) := n-1

∑n
i=1 gi(·). Since G(·) is symmetric,
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K is nonnegative, and ρ′ is odd and positive on R∗
+, the last display implies

∫
Kh(x)µ(x)

[
u(x)− ũ(x)

] ∫ [
ρ′
(
σ(x)z − u(x)

)
− ρ′

(
σ(x)z − ũ(x)

)]
G(z) dz dx = 0

⇔
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣
∫ ∣∣ρ′

(
σ(x)z − u(x)

)
− ρ′

(
σ(x)z − ũ(x)

)∣∣ G(z) dz dx = 0.

As f, f̃ ∈ Fδn , it holds that supx∈Vh
|u(x)| ∨ |ũ(x)| ≤ δn. Moreover, using the mean value theorem,

the P-continuity of ρ′′, Assumption (2.2), infz∈[-γmin,γmin] ρ
′′(z) > 0 and

√
δn ≤ 1

2 ∧
Aρ′′

min

2Lρ′′
, we obtain

∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣
∫ ∣∣ρ′

(
σ(x)z − u(x)

)
− ρ′

(
σ(x)z − ũ(x)

)∣∣ G(z) dz dx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 inf

s:|s|≤δn

∫
ρ′′
(
σ(x)z − s)G(z)dzdx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2 inf

s:|s|≤δn

∫
ρ′′
(
σ(x)z − s)G(z)dzdx

≥
∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2dx

[∫
ρ′′
(
σ(x)z)G(z)dz − δnLρ′′

]

≥ Aρ′′min

2

∫
Kh(x)µ(x)

∣∣u(x)− ũ(x)
∣∣2dx,

where A, γmin > 0 are introduced in Assumption (2.2) and ρ′′min in Definition 1. The last display
and the positivity of K over its support yield supx∈V

∣∣u(x)− ũ(x)
∣∣ = 0. As u and ũ are polynomials

with finite degree, we finally obtain that f = f̃ , and the first claim is proved.

Let us now turn to the second claim. We set D(·) := P 0
[
D̃λ(·)

]
and note that D(·) is differen-

tiable and injective on Fδn (the latter according to the first claim). We can consequently find an
inverse of the function D on the image of D on Fδn . We then obtain, denoting the matrix ℓ∞-norm
by ||| · |||∞ and the inverse of D by D-1, for all f ∈ Fδn

|||JD−1(f)|||∞ = |||J−1
D (f)|||∞ = |||JD(f)|||−1

∞ ≤ [JD(f)]−1
0,0 =

[
Pλ′′(f)

]−1 ≤ (1 −
√
δn)

−1c−1
λ .

The constant cλ is defined in (5.7) and the last inequality is obtained by the P -continuity of ρ′′ and
the condition on δn. The mean value theorem and the last inequality then imply for any f, f̃ ∈ Fδn

and the associated coefficients t and t̃

‖t− t̃‖ℓ∞ =
∥∥∥D−1 ◦D(f)−D−1 ◦D(f̃)

∥∥∥
ℓ∞

≤ (1−
√
δn)

−1c−1
λ

∥∥∥D(f)−D(f̃)
∥∥∥
ℓ∞
.

This proves the second claim.

Proof of Lemma 5. By the definitions of P
[
D̃p

λ(·)
]
and P 0

[
D̃p

λ(·)
]
in (5.4), we have for any

f ∈ Fδn , any λ ∈ Λ , and any p ∈ P
∣∣P 0
[
D̃p

λ(f)
]
− P

[
D̃p

λ(f)
]∣∣

≤
∫
µ(x)Kh(x)

∫ ∣∣ρ′
(
σ(x)z + f0(x) − f(x)

)
− ρ′

(
σ(x)z + f∗(x) − f(x)

)∣∣ G(z)dz dx.(6.1)
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It additionally holds for all f ∈ Fδn that supx∈Vh
|f0(x)− f(x)| ≤ δn. Together with the definition

of f0 in (5.1), this implies for any f ∈ Fδn

sup
x∈Vh

|f∗(x) − f(x)| ≤ sup
x∈Vh

|f∗(x)− f0(x)| + sup
x∈Vh

|f0(x) − f(x)| ≤ bh + δn.

This implies, since ρ′′ exists and is continuous with respect to the measure P (see Definition 1)
and due to the mean value theorem, that for all h ∈ H, all λ ∈ Λ and for all x ∈ Vh there is a
ux ∈ R : |ux| ≤ bh + δn such that

∣∣ρ′
(
σ(x)z + f0(x)− f(x)

)
− ρ′

(
σ(x)z + f∗(x) − f(x)

)∣∣

≤ |f∗(x)− f0(x)|ρ′′
(
σ(x)z + ux

)

≤ |f∗(x)− f0(x)|
(
ρ′′
(
σ(x)z

)
+ 2Lρ′′(bh + δn)

)
.

Using
√
bh + δn ≤ Aρ′′min/(2Lρ′′), (6.1), the last inequality, and the definitions of A, bh, and cλ

defined in (2.2), (2.9) and (5.7) respectively, we obtain for any λ ∈ Λ

sup
f∈Fδn

∥∥P 0
[
D̃λ(f)

]
− P

[
D̃λ(f)

]∥∥
ℓ∞

≤
∫
µ(x)Kh(x)|f∗(x) − f0(x)|

∫ [
ρ′′
(
σ(x)z

)
+Aρ′′min

√
bh + δn

]
G(z)dz dx

≤ (1 +
√
bh + δn)cλbh.

Proof of Lemma 6. In this proof, we use a special case of a deviation inequality derived in [22,
Corollary 6.9]. Adapted to our needs, this deviation inequality reads as follows:

Massart’s Deviations Inequality: Let X1, . . . ,Xn be independent, real valued random variables
defined on a probability space (Ω,A,P). Define Sn(π) :=

∑n
i=1(π(Xi) − Eπ(Xi)) for a set of

integrable, real valued functions π ∈ Π . If for some positive constants σ̃ and b

sup
π∈Π

n-1
n∑

i=1

E
[
π2(Xi)

]
≤ σ̃2 and sup

π∈Π
‖π(·)‖∞ ≤ b̃, (6.2)

it holds for any ǫ ∈ (0, 1] and all z > 0

P

(
sup
π∈Π

Sn(π) ≥ E + 7σ̃
√
2nz + 2b̃z

)
≤ exp(-z), (6.3)

where

E := 27
√
n

∫ σ̃

0

√
H(u) ∧ ndu+ 2(b̃+ σ̃)H(σ̃),

and H(·) is the L2(P )-entropy with bracketing of Π .

Recall that the distance ω(·, ·) is defined in (2.15). We now apply Massart’s Inequality (6.3)
with

π(Xi) =

1√
Πh
ρ′(Yi − f(Xi))

(
Xi−x0

h

)p
K
(
Xi−x0

h

)

√
Πh

√
P [λ′(f∗)]2 + λ′∞(nΠh)-1/4

,
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(P [λ′(f∗)]2 is given in (2.7)) and

σ̃ = 1, b̃ =
(nΠh)

1/4

√
Πh

, H(·) = HFδn∪Λ,ω(·), and Sn(π) =
n
√
Πh

(
D̃p

λ(f)− P
[
D̃p

λ(f)
])

√
Πh

√
P [λ′(f∗)]2 + λ′∞(nΠh)-1/4

to obtain

E = 27
√
n

∫ 1

0

√
HFδn,ω∪Λ(u)) ∧ ndu+ 2

(
(nΠh)

1/4

√
Πh

+ 1

)
HFδn∪Λ,ω(1),

and

Pf∗


 sup

f∈Fδn ,λ∈Λ

‖D̃λ(f)− P
[
D̃λ(f)

]
‖ℓ∞

√
Πh

√
P [λ′(f∗)]2 + λ′∞/(nΠh)1/4

≥ E

n
√
Πh

+ 7

√
2z

nΠh
+

2z

(nΠh)3/4




≤
∑

p∈P
Pf∗


 sup

f∈Fδn ,λ∈Λ

n
√
Πh

∣∣D̃p
λ(f)− P

[
D̃p

λ(f)
]∣∣

√
Πh

√
P [λ′(f∗)]2 + λ′∞/(nΠh)1/4

≥ E + 7σ̃
√
2nz + 2b̃z




≤ 2|P| exp(-z).

Note that the factor 2 in the last inequality appears because we need to control deviations of the
absolute value of the empirical process. The claim is now deduced with simple calculations from
the last display noticing that Bz ≥ E/

√
n+ 7

√
2z + 2z(nΠh)

-1/4.

Proof of Lemma 7. First, we show that f0 is the unique solution of the equality P 0
[
D̃λ(f)

]
= 0

on F . For this, we consider f ∈ F such that P 0
[
D̃λ(f)

]
= 0. We then observe that

∑

p∈P
(t0p − tp) P

0
[
D̃p

λ(f)
]
= 0,

where t is such that Pt = f and t0 is defined in (5.1). Since G(·) := n-1
∑n

i=1 gi(·) is symmetric, K
and µ are nonnegative, and ρ′ is odd, the last equality implies

∫
Kh(x)µ(x)

[
f0(x) − f(x)

] ∫
ρ′
(
σ(x)z + f0(x) − f(x)

)
G(z) dz dx = 0

⇔
∫
Kh(x)µ(x)

∣∣f0(x)− f(x)
∣∣
∫
ρ′
(
σ(x)z + |f0(x) − f(x)|

)
G(z) dz dx = 0

⇔ Kh(x)µ(x)
∣∣f0(x)− f(x)

∣∣
∫
ρ′
(
σ(x)z + |f0(x)− f(x)|

)
G(z) dz = 0 for all x ∈ Vh.

Thus, if f 6= f0, there exists an open, nonempty set Ṽ ⊆ Vh such that

sup
x∈Ṽ

∫
ρ′
(
σ(x)z + |f0(x) − f(x)|

)
G(z) dz = 0,

since f and f0 are continuous. Recall that for any x,
∫
ρ′(σ(x)z)G(z)dz = 0. Since G(z) is a density

and therefore not translation invariant and since
∫
ρ′′(σ(x)z)G(z)dz > 0, this yields

sup
x∈Ṽ

∫
ρ′
(
σ(x)z + |f0(x)− f(x)|

)
G(z) dz = 0 =⇒ sup

x∈Ṽ
|f0(x) − f(x)| = 0.
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This contradicts f 6= f0 because f and f0 are polynomials of finite degree. In other words, f0 is
the unique solution of P 0

[
D̃λ(f)

]
= 0 on F .

We now look at the event
{
f̂λ ∈ Fδn for all λ ∈ Λ

}
. To this end, we recall that f̂λ is the solution

of equation D̃λ(·) = 0 and the following inclusions hold:
{
∃λ : f̂λ /∈ Fδn

}

⊆
{
∃λ : sup

f∈F\Fδn

∥∥D̃λ(f)− P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ inf
f∈F\Fδn

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

}

⊆
{

sup
f∈F\Fδn ,λ∈Λ

∥∥D̃λ(f)− P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ inf
f∈F\Fδn ,λ∈Λ

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

}
. (6.4)

Next, for any λ ∈ Λ, it holds that
∥∥D̃λ(f)− P 0

[
D̃λ(f)

]∥∥
ℓ1

≤
∥∥D̃λ(f)− P

[
D̃λ(f)

]∥∥
ℓ1
+
∥∥P
[
D̃λ(f)

]
− P 0

[
D̃λ(f)

]∥∥
ℓ1

≤ |P|
∥∥D̃λ(f)− P

[
D̃λ(f)

]∥∥
ℓ∞

+ |P|
∥∥P
[
D̃λ(f)

]
− P 0

[
D̃λ(f)

]∥∥
ℓ∞
. (6.5)

We then set ϑh :=
∫
µ(x)Kh(x)dx and use the continuity of ρ′ ot derive, similiarly as in Lemma

5, for any λ ∈ Λ
sup
f∈F

∥∥P
[
D̃λ(f)

]
− P 0

[
D̃λ(f)

]∥∥
ℓ∞

≤ ϑhbh. (6.6)

To control the stochastic term, we can then apply Massart’s Inequality (6.3) with π = f ,

σ̃ = 1, b̃ =
1√
Πh

, H(·) = HF∪Λ,ω(·), and Sn(π) =
n
√
Πh

γmaxKmax

(
D̃p

λ(f)− P
[
D̃p

λ(f)
])

to obtain

E = 27
√
n

∫ 1

0

√
HF∪Λ,ω(u) ∧ ndu+ 2

(
1√
Πh

+ 1

)
HF(1),

and

Pf∗

(
sup

f∈F ,λ∈Λ

∥∥D̃λ(f)− P
[
D̃λ(f)

]∥∥
ℓ∞

≥ γmaxKmax

n
√
Πh

E + 7γmaxKmax

√
2z

nΠh
+

2γmaxKmaxz

nΠh

)

≤
∑

p∈P
Pf∗

(
sup

f∈F ,λ∈Λ

n
√
Πh

γmaxKmax

∣∣D̃p
λ(f)− P

[
D̃p

λ(f)
]∣∣ ≥ E + 7σ̃

√
2nz + 2b̃z

)

≤ 2|P| exp(-z).

Setting ε := E′+7γmaxKmax

√
2z

nΠh
+

2λ′
∞z

nΠh
and E′ := γmaxKmax

n
√
Πh

E, we can rewrite the last inequality

to get

Pf∗

(
sup

f∈F ,λ∈Λ

∥∥D̃λ(f)− P
[
D̃λ(f)

]∥∥
ℓ∞

≥ ε

)
≤ 2|P| exp

(
− nΠh(ε− E′)2

98γ2maxK2
max + 4γmaxKmax(ε− E′)

)
.

Using (6.5), (6.6), and the last inequality, we then obtain for all ε > 0

Pf∗

(
sup

f∈F\Fδn ,λ∈Λ

∥∥D̃λ(f)− P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ ε |P|
)

≤ 2|P| exp
(
− nΠh(ε− E′ − ϑhbh)

2

98γ2maxK2
max + 4γmaxKmax(ε− E′ − ϑhbh)

)
. (6.7)
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Now, let us look at inff∈F\Fδn ,λ∈Λ

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

in (6.4). By the definition of D̃λ(·), we have for
any f ∈ F\Fδn and any λ ∈ Λ

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

=
∑

p∈P

∣∣∣∣
∫ (

x− x0
h

)p

µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x)− f(x)

)
G(z)dz dx

∣∣∣∣

≥
∑

p∈P

|t0p − tp|
‖t0 − t‖ℓ1

∣∣∣∣
∫ (

x− x0
h

)p

µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x) − f(x)

)
G(z)dz dx

∣∣∣∣

≥
∣∣∣∣
∫
f0(x) − f(x)

‖t0 − t‖ℓ1
µ(x)Kh(x)

∫
ρ′
(
σ(x)z + f0(x)− f(x)

)
G(z)dz dx

∣∣∣∣ ,

where t is such that f = Pt. Since G(·) is symmetric, ρ′(·) increasing (because of the convexity of
ρ), K is nonnegative, and ρ′ is odd (ρ is symmetric) and positive on R∗

+ (because of ρ′(0) = 0, the
convexity of ρ and the strict convexity around 0), the last equality implies for all f ∈ F\Fδn

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

≥
∫ ∣∣f0(x) − f(x)

∣∣
‖t0 − t‖ℓ1

µ(x)Kh(x)

∫
ρ′
(
σ(x)z +

∣∣f0(x) − f(x)
∣∣)G(z)dz dx

≥
∫ ∣∣f0(x) − f(x)

∣∣
‖t0 − t‖ℓ1

µ(x)Kh(x)

∫
ρ′
(
σ(x)z + δn

∣∣f0(x)− f(x)
∣∣

‖t0 − t‖ℓ1

)
G(z)dz dx.

Since
∣∣f0(x) − f(x)

∣∣‖t0 − t‖−1
ℓ1

≤ 1, we obtain with the mean value theorem for all f ∈ F\Fδn

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ δn

∫ ∣∣f0(x)− f(x)
∣∣2

‖t0 − t‖2ℓ1
µ(x)Kh(x) inf

u∈[0,δn]

∫
ρ′′ (σ(x)z + u) G(z)dz dx

≥ δn inf
t:‖t‖ℓ1

≥δn

∫ ∣∣Pt(x)
∣∣2

‖t‖2ℓ1
µ(x)Kh(x) inf

u∈[0,δn]

∫
ρ′′ (σ(x)z + u) G(z)dz dx.

We then derive, using that
√
δn ≤ 1

2 ∧ Aρ′′
min

2Lρ′′
, and ρ′′ is P -continuous,

inf
f∈F\Fδn

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ δnAρ
′′
min

2
inf

t:‖t‖ℓ1
≥δn

∫ ∣∣Pt(x)
∣∣2

‖t‖2ℓ1
µ(x)Kh(x) dx.

We then observe that Pt(x) = tX⊤ and thus

∫ ∣∣Pt(x)
∣∣2

‖t‖2ℓ1
µ(x)Kh(x)dx = t

[∫
X

⊤
X

‖t‖2ℓ1
µ(x)Kh(x)dx

]
t⊤.

The matrix
∫
X⊤Xµ(x)Kh(x)dx is positive definite (this follows from standart results, see, for

instance, [30], Lemma 1.6). We can thus write

t

[∫
X⊤X

‖t‖2ℓ1
µ(x)Kh(x)dx

]
t⊤ ≥ ν/|P|,

where ν is the smallest eigenvalue of the matrix
∫
X

⊤
Xµ(x)Kh(x)dx. In summary, we have

inf
f∈F\Fδn ,λ∈Λ

∥∥P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ Aρ′′minνδn
2|P| .
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With δn = 2|P|2((lnn)-1 + ϑhbh)/(Aρ
′′
minν), Inequalities (6.4) and (6.7), and the last inequality,

we obtain

Pf∗

{
∃λ ∈ Λ : f̂λ /∈ Fδn

}
≤ Pf∗

(
sup

f∈F\Fδn ,λ∈Λ

∥∥D̃λ(f)− P 0
[
D̃λ(f)

]∥∥
ℓ1

≥ Aρ′′minνδn
2|P|

)

≤ 2|P| exp
(
− nΠh((lnn)

-1 − E′)2

98γ2maxK2
max + 4γmaxKmax((lnn)-1 − E′)

)
.

Invoking Condition 1 on n in Section 5.1 and the definition of E′, the desired claim follows.

Proof of Lemma 8. For any x, y ≥ 0, we have

xq = |x− y + y|q
= |[x− y]+ + y|q1{x ≥ y}+ |y − [y − x]+|q1{x < y}
≤ (2q[x− y]q+ + 2qyq)1{x ≥ y}+ yq1{x < y}
≤ 2q[x− y]q+ + 2qyq.

For the second part, we set x := (x1, . . . , xl)
T and use Hölder’s Inequality to derive

‖x‖ℓ1 ≤ l1−1/q‖x‖ℓq

from which the proof follows.

Proof of Lemma 9. We first recall by the definition of the estimator (2.13)

√
V̂(λ) =

√
ΠhPn

[
λ′(f̂λ)

]2
+ λ′∞(nΠh)

−1/4

Pnλ′′(f̂λ)
,

where

ΠhPn

[
λ′(f̂λ)

]2
=

n∑

i=1

1

nΠh

[
ρ′(Yi − f̂λ(Xi))

]2
K2

(
Xi − x0

h

)

and

Pnλ
′′(f̂λ) =

n∑

i=1

1

nΠh
ρ′′(Yi − f̂λ(Xi))K

(
Xi − x0

h

)
.

Then, using Massart’s Inequality (given in the proof of Lemma 6) with π(Xi) =
1

γ2
maxK2

max

√
Πh

[
ρ′(Yi−

f(Xi))
]2
K2
(
Xi−x0

h

)
, σ̃ = 1, b̃ = 1√

Πh
,

H(·) = HFδn∪Λ,ω(·), z = lnn, and Sn(π) =
Π

3/2
h

γ2maxK2
max

(
Pn [λ

′(f)]
2 − P [λ′(f)]

2
)
,

we can control the deviations the process π as follows:

Pf∗

(
sup

f∈Fδn ,λ∈Λ
Πh

∣∣∣Pn [λ
′(f)]

2 − P [λ′(f)]
2
∣∣∣ ≥

γ2maxK2
maxBln(n)√
nΠh

)
≤ 2/n2, (6.8)
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where γmax, Kmax and Bz are defined in Section (2). Similarly, using Massart’s Inequality with
π(Xi) =

1
γmaxKmax

√
Πh
ρ′′(Yi − f(Xi))K

(
Xi−x0

h

)
, σ̃ = 1, b̃ = 1√

Πh
,

H(·) = HFδn∪Λ,ω(·), z = aniǫ(n), and Sn(π) =

√
Πh

γmaxKmax
(Pnλ

′′(f)− Pλ′′(f)) ,

we control the deviations of π as follows:

Pf∗

(
sup

f∈Fδn ,λ∈Λ
|Pnλ

′′(f)− Pλ′′(f)| ≥ γmaxKmaxBln(n)√
nΠh

)
≤ 2/n2. (6.9)

Then, by the continuity of ρ′ and ρ′′ almost everywhere, ρ′ ≤ γmax, ‖ρ′′‖∞ ≤ 1, γmax ≥ 1 (see
Definition 1), f, f∗ ∈ Fδn , and the mean value theorem, we have for all f ∈ Fδn

Πh

∣∣∣P [λ′(f)]
2 − P [λ′(f∗)]

2
∣∣∣ ≤ 1

nΠn

n∑

i=1

E
∣∣ρ′(Yi − f(Xi))

2 − ρ′(Yi − f∗(Xi))
2
∣∣K2

(
Xi − x0

h

)

≤ 2γmaxKmax(δn + bh).

Similarly,

sup
f∈Fδn

|Pλ′′(f)− Pλ′′(f∗)| ≤ Lρ′′K∞(δn + bh) ≤ Lρ′′γmaxKmax(δn + bh).

Denote by sn := (2 ∨ Lρ′′)γmaxKmax(δn + bh) +
γ2
maxK2

maxBln(n)√
nΠh

. Moreover, we observe (under Con-

dition 2 on n) that

sn ≤ ãn max

{
Aρ′′min

∫
Kh(x)µ(x)dx,Πh inf

λ∈Λ
P [λ′(f∗)]

2
}
,

and thus

sn ≤ ãn max

{
inf
λ∈Λ

Pλ′′(f∗),Πh inf
λ∈Λ

P [λ′(f∗)]
2
}
.

Using this, (6.8), and (6.9), we obtain for λ ∈ Λ with probability 1− 2/n2 − Pf∗(Ωc)

√
V̂(λ) ≤

√
ΠhP [λ′(f∗)]2 + sn + λ′∞(nΠh)

−1/4

Pλ′′(f∗)− sn
≤

√
1 + ãn
1− ãn

√
V(λ),

and
√
V̂(λ) ≥

√
ΠhP [λ′(f∗)]2 − sn + λ′∞(nΠh)

−1/4

Pλ′′(f∗) + sn
≥

√
1− ãn
1 + ãn

√
V(λ).

This proves the claim.

Proof of Lemma 10. We recall that

Dh(t) =

∫
K̂h(x)

∫
ρ̂′
(
σz + f∗(x)− t

)
G(z)dzdx,

and thus, with the mean value theorem, there exists a c ∈ [t, t̃] such that

Dh(t)−Dh(t̃) = (t̃− t)

∫
K̂h(x)

∫
ρ̂′′
(
σz + f∗(x)− c

)
G(z)dzdx.
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As t, t̃ ∈ [f∗(x0)− δn, f
∗(x0) + δn] and f

∗ ∈ Hd(~β, L,M), we have for any x ∈ Vh

|f∗(x)− c| ≤ |f∗(x)− f∗(x0)|+ |f∗(x0)− c| ≤ bhmax + δn. (6.10)

Using cρ̂ =
∫
ρ̂′′(σz)G(z)dz and the previous two inequalities, we obtain

|Dh(t)−Dh(t̃)|

= |t− t̃|
∣∣∣∣
∫
K̂h(x)

∫
ρ̂′′
(
σz + f∗(x)− c

)
G(z)dzdx

∣∣∣∣

= |t− t̃|
∣∣∣∣
∫
K̂h(x)

∫
ρ̂′′
(
σz + f∗(x)− c

)
G(z)dzdx−

∫
K̂h(x)

∫
ρ̂′′
(
σz
)
G(z)dzdx+ cρ̂

∣∣∣∣ .

As ρ̂′′ is Lρ̂′′−Lipschitz, we obtain with (6.10) and Condition 1 in Section 5.1
∣∣∣∣
∫
K̂h(x)

∫
ρ̂′′
(
σz + f∗(x) − c

)
G(z)dzdx−

∫
K̂h(x)

∫
ρ̂′′
(
σz
)
G(z)dzdx

∣∣∣∣

≤ Lρ̂′′

∫
K̂h(x)|f∗(x)− c|dx

≤ Lρ̂′′(bhmax + δn)

≤ cρ̂
√
bhmax + δn.

We then deduce from the last two displays that

|Dh(t)−Dh(t̃)| ≥ cρ̂(1−
√
bhmax + δn)|t− t̃|

and with Condition 1 finally

|t− t̃| ≤ (1 + 2
√
bhmax + δn)c

-1
ρ̂ |Dh(t)−Dh(t̃)|.

Proof of Lemma 11. Let us first set for any h ∈ H

τh :=
an
√
V(ρ∗,K∗)(B0 + aniǫ(n))√

nΠh

.

Thus, with Lemma 8, we obtain

Ef∗c-qρ̂ sup
f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣
q

≤ 2qEf∗

(
c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣− τh

)q

+

+ 2qτqh . (6.11)

Next, note that c-1ρ̂

∣∣∣D̃h(·) −Dh(·)
∣∣∣ ≤ 2γmaxKmax(Aρ

′′
min)

-1 =: T . Consequently,

Ef∗

(
c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣− τh

)q

+

≤ q

∫ T

0

uq−1
Pf∗

(
c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣− τh ≥ u

)
du. (6.12)
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Similarly as in (5.14), we derive on the event {∆, ∀h ∈ Hǫ}
√
V(ρ∗,K∗) ≥

√
V(λ∗h) ≥ a-1n

√
V(λ̃h),

where λ∗h(x, y, f) := ρ∗
(
y − f(x)

)
K∗

h(x) and λ̃h(x, y, f) := ρ̂
(
y − f(x)

)
K̂h(x) for all x, y ∈ R.

Setting u =
an

√
V(ρ∗,K∗)√
nΠh

ε in (6.12), using the last inequality, and Lemma 6 with z > 0 such that

B0 + aniǫ(n) + ε = Bz , we get

Ef∗

(
c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣− τh

)q

+

≤ qτqh

∫ T

0

εq−1
Pf∗


c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣ ≥

√
V(λ̃h)(B0 + aniǫ(n) + ε)

√
nΠh


 dε

≤ qτqh

∫ T

0

εq−1
Pf∗


sup

ρ,K
sup

f∈Fδn

∣∣∣D̃h(f)−Dh(f)
∣∣∣

cρ
√
V(λh)

≥ B0 + aniǫ(n) + ε√
nΠh


 dε

≤ 2qτqh

∫ T

0

εq−1 exp

(
− (ε+ aniǫ(n))

2

100 + 4(ε+ aniǫ(n))/(nΠh)1/4

)
dε

.

Using aniǫ(n)/(nΠh)
1/4 ≤ 1, (2γmaxKmax(ρ

′′
minA)

-1)/(nΠh)
1/4 ≤ 1 (Condition 3 on n in Section

5.1), and (5.10) with a = 104 and b = 4, we get

Ef∗

(
c-1ρ̂ sup

f∈Fδn

∣∣∣D̃h(f)− Dh(f)
∣∣∣− τh

)q

+

≤ 2qτqh exp

(
− (aniǫ(n))

2

108

)∫ T

0

εq−1 exp

(
− ε2

104 + 4ε

)
dε

≤ 2q

n|Hǫ|
τqh(11.4)

q Gamma(q).

From (6.11) and the last inequality, the lemma can be deduced.

Proof of Lemma 12. Recall that we consider the uniform design and the homoscedastic noise
level. By the definition of Dh and with a change of variables, we have

sup
f∈Fδn

∣∣Dh′∨h(f)−Dh(f)
∣∣

= sup
f∈Fδn

∣∣∣∣
∫
K̂(x)

∫
ρ̂′
(
σz + f∗(x0 + h ∨ h′x)− f(x0)

)
G(z)dz dx

−
∫
K̂(x)

∫
ρ̂′
(
σz + f∗(x0 + hx)− f(x0)

)
G(z)dz dx

∣∣∣∣ ,
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where G(·) = 1
n

∑n
i=1 gi(·). Using f ∈ Hd(~β, L,M), the L1-continuity of ρ′′, the last equality, and

the mean value theorem, we obtain:

sup
f∈Fδn

∣∣Dh′∨h(f)−Dh(f)
∣∣

≤ sup
|s|≤2δn+2bhmax

∫
ρ̂′′(σz + s)G(z)dz

∫
K̂(x)

∣∣f∗(x0 + h ∨ h′x)− f∗(x0 + hx)
∣∣dx

≤
(∫

ρ̂′′(σz)G(z)dz + 2Lρ′′(δn + bhmax)

)
L

d∑

j=1

|hj ∨ hj ′ − hj |βj .

With Condition 1, this yields

sup
f∈Fδn

∣∣Dh′∨h(f)−Dh(f)
∣∣ ≤ (1 +

√
δn + bhmax)cρ̂L

d∑

j=1

(h′j)
βj .
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