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Abstract— Auxiliary variable methods such as
the Parallel Tempering and the cluster Monte Carlo
methods generate samples that follow a target distri-
bution by using proposal and auxiliary distributions.
In sampling from complex distributions, these algo-
rithms are highly more efficient than the standard
Markov chain Monte Carlo methods. However, their
performance strongly depends on their parameters and
determining the parameters is critical. In this paper,
we proposed an algorithm for adapting the parame-
ters during drawing samples and proved the conver-
gence theorem of the adaptive algorithm. We applied
our algorithm to the Parallel Tempering. That is, we
developed adaptive Parallel Tempering that tunes the
parameters on the fly. We confirmed the effectiveness
of our algorithm through the validation of the adap-
tive Parallel Tempering, comparing samples from the
target distribution by the adaptive Parallel Tempering
and samples by conventional algorithms.

Keywords— Adaptive Markov Chain Monte Carlo,

Auxiliary Variable Method, Parallel Tempering, Conver-

gence

1 Introduction

Markov chain Monte Carlo (MCMC) methods have
been an important algorithm in various scientific fields
(Liu 2001, Robert and Casella 2004). MCMC meth-
ods can generate samples that follow a target distri-
bution by using a simple proposal distribution. How-
ever, in sampling from complex distribution such as
multi-modal, the standard MCMC methods produce
samples theoretically converge the target distribution
but practically do not. The produced samples can be
trapped in a local mode for a extremely long period.

To cope with this localization problem, the parallel
tempering (PT) a.k.a. exchange Monte Carlo method
was proposed (Geyer 1991; Hukushima and Nemoto
1996). The PT algorithm introduces auxiliary dis-
tributions with a parameter called the temperature,
generates multiple MCMC samples from target and
auxiliary distributions in parallel, and exchanges the
positions of two samples. An auxiliary distribution is
tempered when the temperature is high and one with a
low temperature is similar to the target distribution.
This “tempering” implementation and the exchange
process help samples escape from a local mode.

Auxiliary distributions are also used in other sev-
eral algorithms. One example is the Gibbs variable se-
lection in Bayesian variable selection, where auxiliary
distributions approximate the marginal posterior dis-
tribution of coefficient parameters for sampling from

the joint posterior (Dellaportas et al. 2002). Another
is the cluster Monte Carlo methods, efficiently produce
samples by block-wise updates based on auxiliary dis-
tributions (Swendsen and Wang 1987; Higdon 1998).
These algorithms are referred to as auxiliary variable
methods (AVMs) in this paper.

The performance of an AVM depends on both the
proposal distribution and the auxiliary distributions.
Hence the parameters of the distributions have to be
chosen so that the Markov chains of the AVM mix as
faster as possible. They have been tuned by rough
methods or trial-and-error in pilot runs so far because
their relationship to the mixing speed has not been
clear.

For standard MCMC methods such as Metropolis-
Hastings algorithm (Hastings 1970), Gilks et al. (1998)
and Haario et al. (2001) proposed adaptive MCMC
algorithms that tuned the parameters of a proposal
distribution by using past samples during runs. Haario
et al. (2001) also proved the convergence theorem of
their algorithms, which was developed later (Andrieu
and Moulines 2006; Roberts and Rosenthal 2007).

In this paper, we proposed adaptive AVMs by
extending the above adaptive algorithms to general
AVMs, where the algorithms adapt the parameters of
the proposal and the auxiliary distributions of AVMs
during runs. We also proved the convergence theo-
rem of our algorithm in a similar way to Roberts and
Rosenthal (2007).

We showed the effectiveness of adaptive AVMs by
applying it to the PT algorithm and validating it nu-
merically. That is, we developed an adaptive PT algo-
rithm that tune the proposal parameters, which con-
tain the number of temperatures, and temperatures
while it runs, and showed the effectiveness of the algo-
rithm via numerical experiments. We also proved the
convergence of the adaptive PT algorithm by using the
theorem of the general adaptive AVMs.

The rest of the paper is organized as follows. the
conventional PT algorithm is briefly shown in Section
2 and an adaptive PT algorithm is proposed in Sec-
tion 3. Experimental properties of our algorithm are
examined in Section 4. In section 5, the proposed al-
gorithm is extended to general AVMs and the conver-
gence theorems of our algorithms are proved in Section
6. Finally, we give a conclusion in Section 7.

2 Parallel Tempering Algorithm

The PT algorithm is a typical algorithm that uses
auxiliary distributions, πtl(dxl), l = 2, ..., L, where
1 = t1 > t2 > · · · > tL > 0. The density of the
lth auxiliary distribution is parametrized by the in-
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verse temperature tl as πtl(x) ∝ π(x)tl or πtl(x) ∝
π(x)tlp(x)1−tl , where π(x) is the density of the target
distribution and p(x) is the density of a simple distri-
bution that mix fast by using a conventional MCMC
method. In other words, the inverse temperature tl
tempers the multi-modality of the target distribution
π(dx) so that the auxiliary densities, πtl(xl), gradually
connect the target density π(x) to a simple density
p(x) or the uniform distribution.

The PT algorithm executes either of the parallel
step and the exchange step at time n, with probability
αr and 1−αr, respectively. The parallel step generates

the L samples, x
(n)
l , l = 1, . . . , L, according to πtl(dxl)

for each by using a standard MCMC method. Note
that we employed the Metropolis algorithm with the
proposal variance γl in this paper. The exchange step

randomly chooses a sample x
(n)
l from the L−1 samples,

x
(n)
l , l = 1, . . . , L− 1, and exchange x

(n)
l for x

(n)
l+1 with

probability

min

(

1,
πtl(x

(n)
l+1)πtl+1

(x
(n)
l )

πtl(x
(n)
l )πtl+1

(x
(n)
l+1)

)

. (1)

The performance of the PT algorithm strongly de-
pends on the inverse temperatures, more specifically,
their intervals and their number. The interval of two
adjacent inverse temperatures determines both the
similarity of the two distributions and the acceptance
probability of an exchange as seen in Eq. (1). The
acceptance ratio for the exchanges, which is referred
to as exchange ratio in this paper, should not take ex-
treme value. For example, Liu (2001) said a preferable
value is a half at any interval. To avoid extreme values
and lead to homogeneous exchange ratios, Hukushima
(1999) updated temperatures using a recursive formula
through preliminary runs and Goswami and Liu (2007)
tuned the intervals by iteratively estimating the ex-
pected exchange probability through preliminary runs.

Jasra (2007) treated the intervals as a sequence and
experimentally compared three inverse-temperature
sequences, equal space, logarithmic decay and power
decay. The results showed the last was best. Nagata
and Watanabe (2008) proved in the low temperature
limit when the sequence of inverse temperatures is a
geometric progression the exchange ratios are homo-
geneous. However, the above methods only discussed
the intervals and did not take into account the pro-
posal distributions, on which the mixing of samples
and the estimation of exchange ratio also depend. In
our setting, for example, the Metropolis algorithm has
a parameter to be determined, that is, the proposal
variance γl. It is necessary to re-set the proposal vari-
ance when the inverse temperatures are changed a lot,
because the appropriate proposal variances obviously
depend on the shape of auxiliary distributions.

The more auxiliary distributions the PT algorithm
has, the faster the samples are mixed because flat-
ter auxiliary distributions are available but the more
computational complexity is required. To solve the
trade-off and determine an appropriate number of dis-
tributions, Goswami and Liu (2007) proposed to select

the maximum temperature using statistical tests. The
tests should be done in an off-line manner, that is, they
need preliminary experiments in advance.

3 Adaptive PT Algorithm
We propose an adaptive PT algorithm that adapts

the inverse temperatures, the parameters of proposal
distribution, and the minimum inverse temperature
while the algorithm is running. The three adaptation
algorithms are described below.

The exchange ratio should take a moderate value.
To converge the exchange ratio for xl−1 and xl to a
specific value, α ∈ (0, 1), typically a half, the log in-
verse temperature, ζl = log(tl), is updated as

ζ
(n+1)
l ← ζ

(n)
l − aln(ER

(n)
l−1,l − α), (2)

where ER
(n)
l−1,l is a variable that takes one if the ex-

change occurs between the samples, x
(n)
l−1 and x

(n)
l , at

time n, and zero otherwise. The learning coefficient,
aln, is a decreasing random variable with n that satis-
fies limn→∞ aln = 0 almost sure.

The proposal distribution of the Metropolis algo-
rithm for a target and auxiliary distribution should
have an appropriate variance, which is an average
of the variances of all modes. To control the pro-
posal distribution of the Metropolis algorithm for the
distribution πtl(dxl) on R

p, the the variance γl =
(γl1, ..., γlp) ∈ R

p and the auxiliary mean parameter
µl = (µl1, ..., µlp) ∈ R

p are updated as

µ
(n+1)
lj ← µ

(n)
lj + bn(x

(n+1)
lj − µ

(n)
lj ),

γ
(n+1)
lj ← γ

(n)
lj + bn

(

(x
(n+1)
lj − µ

(n+1)
lj )2 − γ

(n)
lj

)

,
(3)

where x
(n+1)
lj is the jth element of x

(n+1)
l ∈ R

p. When

x
(n)
l is updated to x

(n+1)
l by exchanging to x

(n)
l−1 or

x
(n)
l+1, the µ

(n)
l jumps to the exchanged value, that is,

µ
(n+1)
l ← x

(n+1)
l . The learning coefficient, bn, is a

decreasing function of n that satisfies limn→∞ bn = 0.
The auxiliary distribution with the minimum in-

verse temperature should be so flat that Metropolis
samples can frequently move from one mode to an-
other while the total number of auxiliary distributions
should be as small as possible. To determine an ap-
propriate value for the minimum inverse temperature,
the auxiliary distributions πtl(dxl) with l > l∗ are re-
moved where l∗ is the smallest number that satisfies

p
∏

j=1

γ
(n)
lj ≥

p
∏

j=1

V (n)(xlj), (4)

where V (n)(xlj) is the sample variance of xlj at time n.
This check is done at time n = m, 2m, . . ., where m is
a large number (e.g. 104). To improve the reliability,
when inequality (4) holds a few times d (e.g. 3) in
succession the auxiliary distribution is determined to
be enough flat.

Inequality (4) shows the relationship between the
sample variance and the proposal variance. Due to



Eq. (3), the latter converges to the variance of local
region and hence it is smaller than the sample vari-
ance if Metropolis samples are localized in a mode.
Otherwise, the auxiliary distribution is flat enough.

A pseudo code of the adaptive PT algorithm is
given in the following.

Algorithm Adaptive PT algorithm

Initialize x
(0)
l , ζ

(0)
l , γ

(0)
l , µ

(0)
l and cl = 0 ,l =

1, ..., L. (ζ
(0)
1 =0, constant).

for n = 0 to N − 1 do
u ∼ U [0, 1] (where U [0, 1] is a uniform distribu-
tion of the interval (0,1)).
if u ≤ αr then

for l = 1 to L do
(parallel sampling step)

Generate x
(n+1)
l via Metropolis Algorithm for

π
t
(n)
l

(dxl), which has the proposal variances

γ
(n)
l .

(proposal parameter learning step)

Update (γ
(n)
l , µ

(n)
l ) to (γ

(n+1)
l , µ

(n+1)
l ) by the

Eq. (3).
end for

else
(exchange step)

Randomly Choose a neighboring pair, x
(n)
l and

x
(n)
l+1, and exchange them with the probability

Eq. (1).
(inverse temperature learning step)

Update ζ
(n)
l+1 to ζ

(n+1)
l+1 by Eq. (2).

if the exchange is accepted, then

µ
(n+1)
k ← x

(n+1)
k , for k = l, l+ 1.

end if
end if
( minimum inverse temperature decision step)
if (n mod m) == 0 then

for l = 1 to L do
If Eq. (4) hold, then cl ← cl + 1.

end for
L← min{l|cl ≥ d, l = 1, . . . , L}, if {} 6= ∅.

end if
end for

The adaptive PT algorithm converges. The proof
will be given later as a special case of adaptive MCMC
algorithms for general auxiliary variable methods.

4 Experiments

To confirm the effectiveness of our algorithm, the
following two computer experiments were carried out:

1. A mixture of four normal distributions.

2. The posterior of a mixture of six normal distri-
butions.

In each of the experiments, the burn-in period was
a half of the total number of iterations and sample
sets, which are used in an estimation and a scat-
ter plot, are chosen from every 50 samples in post

burn-in. The proposal distribution of the Metropo-
lis algorithm was an independent normal distribu-
tion. Other parameters were α = 0.5, αr = 0.5,

aln = 1/(1 + n/(20 + 10l)) ∗ log(exp(−ζ(n)l ) + 1),
bn = 1/(5 + 0.1n), m = 104 and d = 3. L = 25
and the intervals of inverse temperatures are equal,
that is t(0) = (1, 24/25, 23/25, . . . , 1/25), at the initial
condition. Note that these values are invariant for the
each above distribution, i.e., a tuning of these values
was not necessary in these experiments.

4.1 A mixture of four normal distributions

To see and visualize the properties of our adap-
tive PT algorithm, we chose a mixture of four normal
distributions in two dimensional space as the target
distribution (Fig. 1(a)):

g(x) =

4
∑

i=1

1

4

1

2π2det(Σi)1/2
exp

(

−1

2
(x− µi)

TΣ−1
i (x− µi)

)

,

where the parameters of the normal distributions are

µ1 = (0, 44), µ2 = (44, 0),

µ3 = (0,−44), µ4 = (0,−44),
Σ1 = diag(1, 72), Σ2 = diag(72, 1),

Σ3 = diag(1, 72), Σ4 = diag(72, 1).

These normal distributions have quite different vari-
ances (1 and 72), where the proposal variance learning
is difficult.

The adaptive PT algorithm ran for 3 × 105 itera-
tions, where the auxiliary distributions are πtl(x) ∝
g(x)tl and the initial proposal variances are γ

(0)
lj =

3× 102.

As a result, our algorithm mixed well and obtained
samples from all possible modes (Fig. 1(b)). In fact,
the number of inverse temperatures was reduced to
five after 3× 104 iterations but the auxiliary distribu-
tion πt̂5

(dx) is flat enough (Fig. 2), where t̂5 is the t5
obtained by the adaptive PT algorithm.

The larger the variances of the auxiliary distribu-
tion became, the larger the proposal variances became.
In fact, the sums of proposal variances are (γ̂1,1 +
γ̂1,2, . . . , γ̂5,1+ γ̂5,2) = (32.26, 41.86, 245.8, 1124, 8704).

The estimated exchange ratios converged to
(0.501, 0.507, 0.499, 0.498), all of which are almost α =
0.5. Then, the inverse temperatures were (t̂2, . . . , t̂5) =
(0.328, 0.108, 0.0307, 0.00937).

t
(n)
2 and γ

(n)
2 converge quickly from even the ex-

treme starting points (Fig. 3). The others also con-
verge as fast as them.

4.2 The posterior of a mixture of six normal
distributions

In the second experiment, we estimated the average
of component specific means of given the data using
Bayesian estimation as is seen in Jasra et al. (2007).
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Figure 1: A mixture of four normal distributions. a) The target distribution. b) Samples by the Adaptive PT
algorithm.
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Figure 2: Samples by Metropolis algorithm with γ̂5
from the auxiliary distribution πt̂5

(dx). They cover
all the modes in Fig. 1.

The statistical model was a mixture of normal distri-
butions, that is,

f(y|µ,w, σ2)

=

M
∑

m=1

wm√
2πσm

exp

(

− 1

2σ2
m

(y − µm)2
)

, (5)

where wM = 1−∑M−1
m=1 wm. The priors are a normal-

inverse Gamma-Dirichlet prior as follows.

µm ∼ N(ξ, κ2), m = 1, . . . ,M,

σ2
m ∼ IG(αg, βg), m = 1, . . . ,M,

wm ∼ D(̺), m = 1, . . . ,M − 1,

where D(̺) is the symmetric Dirichlet distribution
with parameter ̺. In the following, the hyper-
parameters were αg = 12, βg = 10 and ̺ = 1. The
parameters ξ and κ2 were determined by the median
and four times the variance of the given data.

The data of size 150, y1:150, were independently
identically distributed according to a mixture model
of the form (5) with parameters, M = 6, w1 = · · · =
w6 = 1/6, (µ1, . . . , µ6) = (−8,−3, 1, 4, 8, 13), σ2

1 =
σ2
6 = 1.52 and σ2

2 = · · · = σ2
5 = 0.52. In this case,

the posterior π(µ,w, σ2|y1:150) was a 17 dimensional
distribution and had 6! = 720 symmetric modes due
to the invariance against permutation of the labels of
the parameters.

The auxiliary distributions were set to

πtl(µ,w, σ
2|y1:150) ∝

(

150
∏

i=1

f(yi|µ,w, σ2)

)tl

p(µ,w, σ2),

where p(µ,w, σ2) was the prior.
Our algorithm was compared to the conventional

PT algorithm with the fixed parameters. The param-
eter values of the conventional algorithm were shifted
from the values obtained by the adaptive PT algorithm
as follows.

(a) ζl ← ζ̂l · ϕζ , for l = 1, . . . , L, (0.5 ≤ ϕζ ≤ 3).

L← L̂, γl ← γ̂l.

(b) γl ← γ̂l · ϕ2
γ , for l = 1, . . . , L, (0.1 ≤ ϕγ ≤ 3).

L← L̂, ζl ← ζ̂l.

(c) L← L̂+ ϕL, (−5 ≤ ϕL ≤ 5).

γl ← γ̂l, ζl ← ζ̂l.
(If ϕL > 0, ζl and γl were learned, for l = L̂ +
1, ..., L̂+ ϕL, to maintain the fairness.)

We ran the adaptive PT algorithm and the con-
ventional PT algorithms for 106 iterations respec-

tively. The initial condition were w
(0)
l,m = 1/6, σ

2(0)
l,m ∼

IG(αg , βg), µ
(0)
l,m ∼ U [min(y1:150),max(y1:150)] for

each run. The initial values of γ
(0)
1 , . . . , γ

(0)
L were the

sorted L random numbers from U [0.0001, 800]. The
variables of posterior were divided into four blocks,
the numbers of which are (5,4,4,4). Each Metropolis
algorithm updated for the every block.

We evaluated the estimators of µm, m = 1, . . . , 6.
The accuracy of the estimation was evaluated by the
root mean square error (RMSE). To evaluate the to-
tal error of the six estimators, RMSE takes the root
average of the errors of the six estimators, that is,

RMSE(i) =

(

1

6

6
∑

m=1

(µ̄m(i)− 2.5)2

)1/2

,

where µ̄m(i) is the estimator, which is the average of

samples µ
(n)
m , in the ith trial, and 2.5 is the true value.

As a result, our algorithm can obtain appropriate
parameters and achieve very low RMSEs. Fig. 4(a)
and (b) show the RMSEs of the adaptive PT algorithm
and the conventional PT algorithms in 50 runs were
less than those of the conventional PT algorithms with
shifted parameters. On the other hand, even if the
number of temperatures increases the RMSEs don’t
increase (Fig. 4(c)), but the computational costs of the
algorithms increase. In fact, the shifted inverse tem-
peratures could not control the exchange ratios well
(Fig. 5).

5 Generalization to Auxiliary Variable Meth-
ods

The idea of the adaptive PT algorithm is applica-
ble to general AVMs. AVMs are mathematically for-
mulated as below.

Let π(dx) be a distribution on a state space X
with σ-algebra FX and πλ(dy|x) be a conditional dis-
tribution on a state space Y with σ-algebra FY given
FX , where λ ∈ Λ is a parameter vector. Then, the
marginal distribution on X of the joint distribution
πλ(dx, dy) = πλ(dy|x)π(dx) is π(dx) irrespective of
πλ(dy|x).

In case of MCMC methods with auxiliary vari-
ables, π(dx) corresponds to the target distribution
and πλ(dy|x) to the auxiliary distributions. We term
an MCMC method that draw samples (x′, y′) from
πλ(dx, dy) to obtain x′ an auxiliary variable method.
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In the PT algorithms, for example, the auxiliary distri-
butions are πλ(dy|x) =

∏L
l=2 πtl(dxl), λ = (t2, . . . , tL)

and the auxiliary variables y = (x2, ..., xL).
In order to introduce adaptation, we need

to consider time-varying parameters. Let
{Pθ((x, y), (dx, dy))}θ∈Θ be a family of Markov
transition kernels on X × Y with stationary distribu-
tion πλ(dx, dy), that is,

(πλPθ) (dx, dy) =

∫∫

x′,y′

πλ(dx
′, dy′)Pθ ((x

′, y′), (dx, dy))

= πλ(dx, dy),

where λ ⊆ θ. Then, the adaptive MCMC for AVM
updates the parameters θ during generating chains
(x(n), y(n)) by Pθ as the following pseudo code.

Algorithm Adaptive MCMC for AVM

Initialize (x(0), y(0)), θ(0).
for n = 0 to N − 1 do
[1] (x(n+1), y(n+1)) ∼ Pθ(n)((x(n), y(n)), (dx, dy))
[2] Update θ(n) to θ(n+1) by using the result of
step 1. such as (x(n+1), y(n+1)).

end for

In the adaptive PT algorithms, for exam-
ple, the time-varying parameter vector is θ =
(γ1, . . . , γL; t2, . . . , tL).

6 Convergence Theorem
Atchade (2011) and Fort et al. (2011) proved con-

vergence theorems of adaptive MCMC algorithms that
learn the parameters of the target distribution. The
conditions for convergence in their theorems are, how-
ever, technical and strict. For example, the stationary

distribution must converge. These conditions will con-
siderably restrict the available learning algorithms.

In this section, we show some convergence theo-
rems that our algorithm in the previous section con-
verges under weaker conditions. Here, convergence
means that an algorithm is ergodic, that is,

lim
n→∞

‖A(n)((x, y, θ), dx) − π(dx)‖ = 0,

∀(x, y) ∈ X × Y , θ ∈ Θ,

where ‖µ(dx) − ν(dx)‖ = supA∈FX
|µ(A) − ν(A)| and

A(n)((x, y, θ), BX )

= P
[

x(n) ∈ BX |x(0) = x, y(0) = y, θ(0) = θ
]

,

BX ∈ FX .

Theorem 1. The adaptive MCMC for AVM is ergodic
if the following conditions hold:

(a) Simultaneous uniform ergodicity

∀ε > 0, ∃N ∈ N s.t.

||PN
θ ((x, y), dx) − π(dx)|| ≤ ε,

∀(x, y) ∈ X × Y, θ ∈ Θ.
(6)

(b) Diminishing adaptation

limn→∞ sup
(x,y)∈X×Y

‖Pθ(n+1) ((x, y), (dx, dy)) − Pθ(n) ((x, y), (dx, dy)) ‖
= 0 in probability. (7)

Proof. See Appendix A.

The above conditions do not require that the aux-
iliary parameter λ(n) and the stationary distribution
πλ(n) converge. The condition (a) can be replaced with
more concrete condition that checks only properties of
the Markov transition kernel as follows.

(a’) (Simultaneously strongly aperiodically geometri-
cal ergodicity) There exists C ∈ FX×Y , V :
X × Y → [1,∞) , δ > 0, τ < 1, and b < ∞,
such that supCV < ∞ and the following condi-
tions hold for all θ ∈ Θ.

(i) (Strongly aperiodic minorisation condition)
There exist a probability mea-
sure νθ (dx, dy) on C such that
Pθ((x, y), (dx

′, dy′)) ≥ δνθ(dx
′, dy′) for

all x, y ∈ C.

(ii) (Geometric drift condition)

(PθV ) (x, y) ≤ τV (x, y)+b1{C}(x, y),

for all x, y ∈ X × Y,

where (PθV )(x, y)
≡

∫∫

Pθ ((x, y), (dx
′, dy′))V (x′, y′)dx′dy′,

and
1{·}(x) is the indicator function.



Theorem 2. The adaptive MCMC for AVM is ergodic
if the condition (b) in Theorem 1, the condition (a’)
and E[V (x(0), y(0))] <∞ hold.

Proof. Straightforward from Proposition 3 and the
proof of Theorem 3 in Roberts and Rosenthal (2007),
and Theorem 1.

Theorem 3 (Weak law of large numbers). Suppose
an adaptive MCMC for AVM satisfies the conditions
(a) and (b) and let g : X → R be a bounded measurable
function. Then,

1

n

n
∑

i=1

g(x(i))→
∫

g(x)π(dx) in probability

as n → ∞ for any initial values (x, y) ∈ X × Y and
θ ∈ Θ.

Proof. Straightforward from the coupling argument
(Roberts and Rosenthal 2007).

The convergence of the adaptive PT algorithm is
proved by applying Theorem 2 as below.

Theorem 4. The adaptive PT algorithm is ergodic if
the following conditions hold:

(s1) The support S of the target distribution π(dx) is
compact and the density π(x) is continuous and
positive on S.

(s2) The family of proposal densities {qγ}γ∈Γp is con-
tinuous and positive on S2×Γp, where Γ = [c, C].

Proof. See Appendix B.

It will be possible to remove the assumption that
S is compact by extending Theorem 6 of Bai et
al. (2011).

7 Conclusions

This paper proposed adaptive MCMC algorithms
to learn parameters of proposal distributions and aux-
iliary distributions simultaneously, and proved conver-
gence theorems that give weak sufficient conditions for
convergence.

We applied this framework to the Parallel Tem-
pering algorithm and showed that the adaptive PT
algorithm can adapts its parameters on the fly so that
samples mix rapidly by experiments with a mixture
model. We also presented that the performance of
the PT algorithm depends on its parameters and the
adaptive PT algorithm finds good parameters through
experiments for Bayesian estimation.

Although we discussed the PT algorithm in a real
space so far, we consider the idea of adaptation is ap-
plicable to those in a discrete space. We also consider
our adaptive framework is applicable to other auxil-
iary variable methods such as the Gibbs variable selec-
tion, the partial decoupling method (one of the cluster
Monte Carlo methods) and so on. We will extend our
theory to the new field in the future.

Appendix

A Proof of Theorem 1

Let ǫ > 0, and choose N ∈ N as in condition (a).
From condition (b) and the coupling argument in the
proof of Theorem 1 of Roberts and Rosenthal (2007),
the following result holds.

There exists n∗ ∈ N large enough so that
for K > n∗ + N , there exists a second chain
{x′(n), y′(n)}Kn=K−N , such that (x′(K−N), y′(K−N)) =

(x(K−N), y(K−N)) and
(x′(n+1), y′(n+1)) ∼ Pθ(K−N)((x′(n), y′(n)), dx, dy) for
n = K −N, ...,K − 1, and P (x(K) 6= x′(K)) ≤ 2ǫ.

Then it follows that

||P (x(K) ∈ dx)− P (x′(K) ∈ dx)|| ≤ 2ǫ, (8)

where P (x(K) ∈ dx) denotes the distribution of x(K).
(Because of ||P (y ∈ dx) − P (z ∈ dx)|| ≤ P (y 6= z).)

On the other hand, from the condition (a), for all
AX ∈ FX , we have

ǫ ≥
∣

∣

∣
E[PN

θ(K−N)((x
(K−N), y(K−N)), AX )− π(AX )]

∣

∣

∣

=
∣

∣

∣
P (x′(K) ∈ AX )− π(AX )

∣

∣

∣
.

That is,

||P (x′(K) ∈ dx)− π(dx)|| ≤ ǫ. (9)

From inequality (8) and (9), we have

||P (x(K) ∈ dx) − π(dx)|| ≤ 3ǫ. (10)

SinceK ≥ n∗+N is arbitrary, the algorithm is ergodic.

B Proof of Theorem 4

We prove the sufficient conditions of convergence
in Theorem 2 are satisfied. Firstly, we prove the con-
dition (a’) holds.

Let Borel σ-algebra on R
p be B(Rp). For x ∈ SL,

γ ∈ ΓpL, t ∈ T L and B = B1 × B2 × · · · × BL, Bl ∈
B(S), the transition kernel of the PT algorithm is

Kγ,t(x,B) = αr

L
∏

l=1

Pγl,tl(xl, Bl) + (1− αr)

L
∑

l=2

ςlkl,l−1(x,B),

(11)

where 0 ≤ ςl ≤ 1,
∑L

l=2 ςl = 1, Pγl,tl(xl, dxl) and
kl,l−1(x, dx

′) are the Metropolis transition kernel for
πtl(dxl) and the transition kernel of an exchange pro-
cess of xl and xl−1, respectively.

By condition (s1), we have d ≡ supx∈S,t∈T πt(x) <
∞. By the compactness of S and condition (s2), we
have also δ ≡ infx,x′∈S,γ∈Γp qγ(x, x

′) > 0.

For x ∈ S and t ∈ T , denote Rx,t =
{

y ∈ S|πt(y)
πt(x)

≤ 1
}

. For xl ∈ S, Bl ∈ B(S), tl ∈ T



and γl ∈ Γ, we have

Pγl,tl(xl, Bl)

=

∫

Bl

qγl
(xl, x

′
l)min

(

1,
πtl(x

′
l)

πtl(xl)

)

dx′
l

+ 1{Bl}(xl)

∫

S

qγl
(xl, x̃l)

{

1−min

(

1,
πtl(x̃l)

πtl(xl)

)}

dx̃l

=

∫

Bl∩Rxl,tl

qγl
(xl, x

′
l)
πtl(x

′
l)

πtl(xl)
dx′

l

+

∫

Bl∩Rc
xl,tl

qγl
(xl, x

′
l)dx

′
l

≥ δ

d

∫

Bl∩Rxl,tl

πtl(x
′
l)dx

′
l +

δ

d

∫

Bl∩Rc
xl,tl

πtl(x
′
l)dx

′
l

=
δ

d
πtl(Bl).

From Eq. (11), this inequality leads to

Kγ,t(x,B) ≥ αr

L
∏

l=1

Pγl,tl(xl, Bl)

≥ αr

L
∏

l=1

δ

d
πtl(Bl)

= αr
δL

dL
πt(B), (12)

where πt(B) =
∏L

l=1 πtl(Bl) is a probability measure
on SL. Since the inequality (12) holds for all B ∈
B(SL), the condition (a’)(i) follows.

Let 0 < τ < 1, V (x) = 1 if x ∈ SL, otherwise
V (x) ≡ 1/τ , and b = 1− τ . Then we have

(Kγ,tV )(x) ≤ τV (x) + b1{SL}(x), ∀x ∈ R
pL.

(13)

This inequality implies that the condition (a’)(ii) is
satisfied. Also we have E[V (x(0), y(0))] ≤ 1/τ <∞.

From Eq. (2) and (3), it follows that t
(n+1)
l −t(n)l →

0 a.s. and γ
(n+1)
l − γ

(n)
l → 0 as n → ∞. The mini-

mum inverse temperature decision process changes the
value of ςl only finite times. Thus, the condition (b)
in Theorem 1 holds.

The proof is complete.
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