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Modification of Tukey’s Additivity Test
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Abstract

In this paper we discuss testing for an interaction in the two–way ANOVA with just
one observation per cell. The known results are reviewed and a simulation study is
performed to evaluate type I and type II risks of the tests. It is shown that the Tukey
and Mandel additivity tests have very low power in case of more general interaction
scheme. A modification of Tukey’s test is developed to resolve this issue. All tests
mentioned in the paper have been implemented in R package AdditivityTests.
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1 Introduction

In many applications of statistical methods, it is assumed that the response
variable is a sum of several factors and a random noise. In a real world this may
not be an appropriate model. For example, some patients may react differently
to the same drug treatment or the influence of fertilizer may be influenced
by the type of a soil. There might exist an interaction between factors. A
testing for such interaction will be referred here as testing of additivity
hypothesis.

If there is more than one observation per cell then standard ANOVA tech-
niques may be applied. Unfortunately, in many cases it is infeasible to get
more than one observation taken under the same conditions. For instance, it
is not logical to ask the same student the same question twice.
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We restrict ourselves to a case of two factors, i.e. two–array model, when the
response in ith row and jth column is modeled as

yij = µ+ αi + βj + γij + ǫij , i = 1, . . . , a, j = 1, . . . , b, (1)

where
∑

i

αi =
∑

j

βj =
∑

i

γij =
∑

j

γij = 0

and the ǫij are normally distributed independent random variables with zero
mean and variance σ2.

To test the additivity hypothesis

H0: γij = 0 i = 1, . . . , a, j = 1, . . . , b, (2)

a number of tests have been developed. The Section 2 recollects the known
additivity tests, see also Alin and Kurt (2006) and Boik (1993a).

In Section 3 the power of the tests described in Section 2 is compared by
means of simulation. While Tukey test has relatively good power when the
interaction is a product of the main effects, i.e. when γij = kαiβj (k is a real
constant), its power for more general interaction is very poor.

It should be reminded that Tukey (1949) did not originally propose his test
for any particular type of interaction. Actually after a small modification de-
rived in Section 4 the power of the test improves dramatically. There exist
some issues when a sample size is not large enough that may be resolve by
a permutation test or bootstrap.

2 Additivity Tests

This section recalls the known additivity tests of hypothesis (2) in model (1).
Let ȳ

··
denotes the overall mean, ȳi· the i

th row’s mean and ȳ
·j the j

th column’s
mean. The matrix R = [rij ] will stand for a residual matrix with respect to
the main effects

rij = yij − ȳi· − ȳ
·j + ȳ

··

The decreasingly ordered list of eigenvalues of RRT will be denoted by κ1 >
κ2 > . . . > κmin(a,b)−1, and its scaled versions equal

ωi =
κi

∑

k κk

, i = 1, 2, . . . ,min(a, b)− 1.
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If the interaction is present we may expect that some of ωi coefficients will be
substantially higher than others.

Tukey test: Introduced in Tukey (1949). Tukey test first estimates row and
column effects and then tests for the interaction of a type γij = kαiβj (k = 0
implies no interaction). Tukey test statistic ST equals

ST = MSint/MSerror,

where

MSint =

(

∑

i

∑

j yij(ȳi· − ȳ
··
)(ȳ

·j − ȳ
··
)
)2

∑

i(ȳi· − ȳ
··
)2

∑

j(ȳ·j − ȳ
··
)2

and

MSerror =

∑

i

∑

j(yij − ȳ
··
)2 − a

∑

j(ȳ·j − ȳ
··
)2 − b

∑

i(ȳi· − ȳ
··
)2 −MSint

(a− 1)(b− 1)− 1
.

Under the additivity hypothesis ST is F -distributed with 1 and (a−1)(b−1)−1
degrees of freedom.

Mandel test: Introduced in Mandel (1961). Mandel test statistic SM equals

SM =

∑

i(zi − 1)2
∑

j(ȳ·j − ȳ
··
)2

a− 1
/

∑

i

∑

j ((yij − ȳi·)− zi(ȳ·j − ȳ
··
))2

(a− 1)(b− 2)
,

where

zi :=

∑

j yij(ȳ·j − ȳ
··
)

∑

j(ȳ·j − ȳ
··
)2

.

Under the additivity hypothesis SM is F -distributed with a− 1 and (a− 1) ·
(b− 1) degrees of freedom.

Definitions of the three later tests slightly differ from their original versions.
For a, b fixed, a simulation may be used to get the critical values.

Johnson – Graybill test: Introduced in Johnson and Graybill (1972). John-
son – Graybill test statistic is just SJ = ω1. The additivity hypothesis is
rejected if SJ is high.

Locally best invariant (LBI) test: See Boik (1993b). LBI test statistic
equals (up to a monotonic transformation)

SL =
min(a,b)−1

∑

i=1

ω2
i .

The additivity hypothesis is rejected if SL is high.
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Tusell test: See Tusell (1990). Tusell test statistic equals (up to a constant)

SU =
min(a,b)−1

∏

i=1

ωi.

The additivity hypothesis is rejected if SU is low.

As will be verified in the next section, Tukey and Mandel tests are appropriate
if γij = kαiβj while Johnson – Graybill, LBI and Tusell omnibus tests are
suitable in cases of more complexed interactions.

3 Simulation Study

In this section simulation results about power of the additivity tests are pre-
sented. According to Šimečková and Rasch (2008) the type-I-risk of the tests
mentioned in Section 2 is not touched even when one of the effects in (1) is con-
sidered as random. The mixed effects model used for the simulation study is
as (1) where µ, αi are constants, and βj are independent normally distributed
random variables with zero mean and variance σ2

β .

Two possible interaction schemes were under inspection:

A) γij = kαiβj where k is a real constant.
B) γij = kαiδj where δj are independent normally distributed random variables

with zero mean and variance σ2
β , independent of βj and ǫij , and k a real

constant.

The ǫij are independent normally distributed random variables with zero
mean, µ = 0, and unit variance, σ2 = 1.

The other parameters are equal to µ = 0, σ2
β = 2, σ2 = 1, a = 10,

(α1, . . . , α10) = (−2.03,−1.92,−1.27,−0.70, 0.46, 0.61, 0.84, 0.94, 1.07, 2.00).

Two possibilities are considered for the b, either b = 10 or b = 50, and 10 dif-
ferent values between 0 and 12 are considered for the interaction parameter k.

For each combination of parameters’ values a dataset was generated based on
the model (1), the tests of additivity were done and their results were noted
down. The step was repeated 10 000 times. The estimated power of the test
is the percentage of the positive results. All tests were done on α̃ = 5% level.

The dependence of the power on k is visualized in Figure 1. As we can see,
while Tukey and Mandel tests outperformed omnibus tests for interaction A
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Fig. 1. Power dependence on k, b (b = 10 left, b = 50 right) and interaction type
(A up, B down). Tukey test solid line, Mandel test dashed line, Johnson – Graybill
test dotted line, LBI test dot-dash line, Tusell test long dash line.

and low k and b, they completely fail to detect the interaction B even for a
large value of k and b = 50. Therefore, it is desirable to develop a test which
is able to detect a spectrum of practically relevant alternatives while still has
the power comparable to the Tukey and Mandel tests for the most common
interaction scheme A.

4 Modification of Tukey Test

In Tukey test a model (1)

yij = µ+ αi + βj + γij + ǫij = µ+ αi + βj + kαiβj + ǫij (3)

is tested against a submodel (2) yij = µ + αi + βj + ǫij . The estimators of

row effects α̂i = ȳi· − ȳ
··
and column effects β̂j = ȳ

·j − ȳ
··
are calculated in the
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same way in both models although the dependency of yij on these parameters
is not linear for the full model.

The main idea behind a presented modification is that the full model (3) is
fitted by a nonlinear regression and tested against a submodel yij = µ+ αi +
βj + ǫij by a likelihood ratio test. The estimates of row and column effects
therefore differ for each model.

4.1 Non-adjusted test

Under additivity hypothesis the maximum likelihood estimators of parameters
can be calculated simply as µ̂ = ȳ

··
, α̂i = ȳi· − ȳ

··
and β̂j = ȳ

·j − ȳ
··
. Residual

sum of squares equals

RSS0 =
∑

i

∑

j

(

yij − µ̂− α̂i − β̂j

)2
=

∑

i

∑

j

(yij − ȳi· − ȳ
·j + ȳ

··
)2 .

In the full model (3) the parameters’ estimates are computed iteratively. Let

us first take α̂
(0)
i = α̂i = ȳi· − ȳ

··
, β̂

(0)
j = β̂j = ȳ

·j − ȳ
··
and

k̂(0) =

∑

i

∑

j

(

yij − α̂
(0)
i − β̂

(0)
j − µ̂

)

· α̂
(0)
i · β̂

(0)
j

∑

i

∑

j

(

α̂
(0)
i

)2
·

(

β̂
(0)
j

)2 .

The k̂(0) is equal to the estimator of k in the classical Tukey test.

The iteration procedure continues by updating estimates one by one (while
the rest of parameters are fixed):

• α̂
(n)
i =

∑

j

(

yij−µ̂−β̂
(n−1)
j

)

·

(

1+k̂(n−1)
·β̂

(n−1)
j

)

∑

j

(

1+k̂(n−1)
·β̂

(n−1)
j

)2

• β̂
(n)
j =

∑

i

(

yij−µ̂−α̂
(n−1)
i

)

·

(

1+k̂(n−1)
·α̂

(n−1)
i

)

∑

i

(

1+k̂(n−1)
·α̂

(n−1)
i

)2

• k̂(n) =

∑

i

∑

j

(

yij−α̂
(n−1)
i

−β̂
(n−1)
j

−µ̂

)

·α̂
(n−1)
i

·β̂
(n−1)
j

∑

i

∑

j

(

α̂
(n−1)
i

)2

·

(

β̂
(n−1)
j

)2

Surprisingly, it seems that one iteration is just enough to converge in a vast
majority of cases. Therefore, for a simplicity reason let us define

RSS =
∑

i

∑

j

(

yij − µ̂− α̂
(1)
i − β̂

(1)
j − k(1)α̂

(1)
i β̂

(1)
j

)2
.
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The likelihood ratio statistic of the modified Tukey test, i.e. a difference of
twice log-likelihoods, equals

RSS0 − RSS

σ2

and is asymptotically χ2-distributed with 1 degree of freedom.

The consistent estimate of a residual variance σ2 equals s2 = RSS
ab−a−b

and RSS
σ2

is approximately χ2-distributed with ab−a−b degrees of freedom. Thus, using
a linear approximation of the nonlinear model (3)

RSS0 − RSS

RSS
ab−a−b

(4)

is F -distributed with 1 and ab− a− b degrees of freedom. Easy manipulation
of (4) gives the modified Tukey test which rejects the additivity hypothesis if
and only if

RSS0 > RSS

(

1 +
1

ab− a− b
F1,ab−a−b(1− α̃)

)

,

where F1,ab−a−b(1− α̃) stands for 1− α̃ quantile of F -distribution with 1 and
ab− a− b degrees of freedom.

Now we will return to the simulation study from Section 3. For interaction A
the power of the modified test is almost equal to the power of Tukey test. For
interaction B the power of the tests is compared on Figure 2, the power of
modified test is much higher than the power of Tukey test.

Theoretically, we may expect the modified test to be conservative because just
one iteration does not find precisely the maximum of model (3) likelihood.
However, as we will see in the following part a situation for a small number
of rows or columns is quite opposite.

4.2 Small sample adjustment

If the left part of Figure 2 would be magnified enough it will show that the
modified test does not work properly (type-I-risk

.
= 6%). The reason is that

the likelihood ratio test statistic converges to χ2-distribution rather slowly (see
Bartlett (1937)) and a correction for small sample size is needed. We present
two possibilities that are recommended if a number of rows or columns is
below 20 (empirical threshold based on simulations).
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Fig. 2. Power dependence on k, b (b = 10 left, b = 50 right) for interaction type B.
Tukey test solid line, Mandel test dashed line, Johnson – Graybill test dotted line,
LBI test dot-dash line, Tusell test long dash line, modified Tukey test two dash line.
The proposed modification improved Tukey test and for large k almost reach power
of omnibus tests.

One possibility to overcome this obstacle is a permutation test, i.e. generate
data as follows

y
(perm)
ij (t) = µ̂+ α̂

(0)
i + β̂

(0)
j + rπij(t), t = 1, . . . , N (perm)

where π(t) is a random permutation of indexes of R matrix. For each t the
statistic of interest S(perm)(t) = RSS0(t) − RSS(t) is computed. The critical
value equals (1− α̃) · 100% quantile of S(perm)(t), t = 1, . . . , N (perm).

The second possibility is to estimate the residual variance s2 = RSS
ab−a−b

and
then generate samples of a distribution

y
(sample)
ij (t) = µ̂+ α̂

(0)
i + β̂

(0)
j + ǫ

(NEW )
ij (t), t = 1, . . . , N (sample)

where (ǫ
(NEW )
ij )(t) are i.i.d. generated from a normal distribution with zero

mean and variance s2. This is simply parametric bootstrap on residuals.

The proposed statistic of interest is abs(k(1)) mirroring deviation from null
hypothesis k = 0. As in the permutation test the additivity hypothesis is
rejected if more than (1− α̃) ·100% of sampled statistics lie below the statistic
based on real data.

5 Conclusion

We have proposed a modification of the Tukey additivity test. The modified
test performs almost as good as Tukey test when the interaction is a product
of main effects but should be recommended if we also request reasonable power
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in case of more general interaction schemes. Problems with small sample size
may be overcome by permutation test or parametric bootstrap on residuals.

All mentioned tests are implemented in R package AdditivityTests that
may be downloaded on http://github.com/rakosnicek/additivityTests.
As far as we are informed, this is the first R implementation of additivity tests
with the exception of the Tukey test.
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Šimečková, M. and Rasch, D. (2008). Additivity tests for the mixed model
in the two-way anova with single sub-class numbers – type-I-risk. Lifestat
2008, Poster presentation.

Tukey, J. (1949). One degree of freedom for non-additivity. Biometrics, 5:232–
242.

Tusell, F. (1990). Testing for interaction in two-way anova tables with no
replication. Computational Statistics & Data Analysis, 10:29–45.

9


	1 Introduction
	2 Additivity Tests
	3 Simulation Study
	4 Modification of Tukey Test
	4.1 Non-adjusted test
	4.2 Small sample adjustment

	5 Conclusion

