arXiv:1207.2812v1 [stat.ML] 12 Jul 2012

Near-Optimal Algorithms for Differentially-Private Principal
Components

Kamalika Chaudhuri* Anand D. Sarwate’ Kaushik Sinhat

July 13, 2012

Abstract

Principal components analysis (PCA) is a standard tool for identifying good low-
dimensional approximations to data sets in high dimension. Many current data sets of
interest contain private or sensitive information about individuals. Algorithms which
operate on such data should be sensitive to the privacy risks in publishing their out-
puts. Differential privacy is a framework for developing tradeoffs between privacy and
the utility of these outputs. In this paper we investigate the theory and empirical per-
formance of differentially private approximations to PCA and propose a new method
which explicitly optimizes the utility of the output. We demonstrate that on real data,
there this a large performance gap between the existing methods and our method. We
show that the sample complexity for the two procedures differs in the scaling with the
data dimension, and that our method is nearly optimal in terms of this scaling.

1 Introduction

Dimensionality reduction is a fundamental tool for understanding complex data sets that
arise in contemporary machine learning and data mining applications. Even though a single
data point can be represented by hundreds or even thousands of features, the phenomena
of interest are often intrinsically low-dimensional. By reducing the “extrinsic” dimension of
the data to its “intrinsic” dimension, analysts can discover important structural relation-
ships between features, more efficiently use the transformed data for learning tasks such
as classification or regression, and greatly reduce the space required to effectively store
the data. One of the oldest and most classical methods for dimensionality reduction is
principal components analysis (PCA), which computes a low-rank approximation to the
(positive semidefinite) second moment matrix of a set of points in R?. The rank k of the
approximation is chosen to be the intrinsic dimension of the data. We view this procedure
as specifying a k-dimensional subspace of R,

Much of today’s machine-learning is performed on the vast amounts of personal infor-
mation collected by private companies and government agencies about individuals, such as
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customers, users, and subjects. These datasets contain sensitive information about individ-
uals and typically involve a large number of features. It is therefore important to design
machine-learning algorithms which discover important structural relationships in the data
while taking into account its sensitive nature. We study approximations to PCA which guar-
antee differential privacy, a cryptographically motivated definition of privacy [Dwork et al.,
2006b| that has gained significant attention over the past few years in the machine-learning
and data-mining communities [Machanavajjhala et al., 2008, McSherry and Mironov, 2009,
McSherry, 2009} Friedman and Schuster, |2010, Mohammed et al.,[2011]. Differential privacy
measures privacy risk by a parameter « that bounds the log-likelihood ratio of output of a
(private) algorithm under two databases differing in a single individual.

There are many general tools for providing differential privacy. The sensitivity method [Dwork
et al.l 2006b| computes the desired algorithm (PCA) on the data and then adds noise pro-
portional to the maximum change than can be induced by changing a single point in the
data set. The PCA algorithm is very sensitive in this sense because the top eigenvector
can change by 90° by changing one point in the data set. Relaxations such as smoothed
sensitivity |[Nissim et al. 2007] are difficult to compute in this setting as well. The SULQ
method of Blum et al.| [2005] adds noise to the second moment matrix and then runs PCA
on the noisy matrix. As our experiments show, the amount of noise required is often quite
severe and SULQ seems impractical for data sets of moderate size.

These general methods do not take into account the quality of approximation to the
non-private PCA output. We address this by proposing a new method, PPCA, that is an
instance of the exponential mechanism of McSherry and Talwar| [2007]. This differentially
private method outputs a k-dimensional subspace; the output is biased towards subspaces
which are close to the output of PCA, and in our case corresponds to sampling from the
matrix Bingham distribution. We implement this method using a Markov Chain Monte
Carlo (MCMC) procedure due to Hoff| [2009] and show that it achieves significantly better
empirical performance.

In order to understand this gap in performance we prove sample complexity bounds
for SULQ and PPCA, as well as a general lower bound on the sample complexity for any
differentially private algorithm. We show that the sample complexity scales as Q(d3/ 2\/3)
for SULQ and as O(d) for PPCA. Furthermore, any differentially private algorithm requires
Q(d) samples, showing that PPCA is nearly optimal in terms of sample complexity. These
theoretical results suggest that our experiments exhibit the limit of how well a-differentially
private algorithms can perform.

There are several interesting open questions suggested by this work. One set of issues
is computational. Differentially privacy is a mathematical definition, but algorithms must
be implemented using finite precision machines. Privacy and computation interact in many
places, including pseudorandomness, numerical stability, optimization, and in the MCMC
procedure we use to implement PPCA. A second set of issues is theoretical — our theoretical
analysis for the sample complexity is for the special case of k = 1 in which the distance and
angles between vectors are related. For general k the measure of approximation may be
application dependent; distances between subspaces and frames may be different and lead
to different tradeoffs.



Related work

There are many different models for privacy-preserving computation [Agrawal and Srikant,
2000}, [Evfimievski et al., 2003, [Sweeneyl, 2002, Machanavajjhala et all, 2006} [Li et al., 2010
— seeFung et al|[2010] for a survey with more references. Many of these models have been
shown to be susceptible to composition attacks, which are attacks in which the adversary
exploits prior knowledge to reidentify individuals [Ganta et al [2008]. An alternative line of
privacy-preserving data-mining work |[Zhan and Matwin, [2007] is in the Secure Multiparty
Computation setting due to [1982]; one work studies privacy-preserving singular value
decomposition in this model [Han et al.,[2009]. Finally, dimension reduction through random
projection has been considered as a technique for sanitizing data prior to publication |Liul
; our work differs from this line of work in that we offer differential privacy
guarantees, and we only release the PCA subspace, not actual data.

Differential privacy was proposed by Dwork et al.| [2006b], and has been used since in
many works on privacy |[Kasiviswanathan et al., 2008, |Chaudhuri and Mishra;, 2006, Barak|
let al., 2007, [Machanavajjhala et al.| 2008, McSherry and Mironov, 2009, |[Chaudhuri et al.,
[2011), Nissim et al 2007, Blum et al.l 2008, [McSherry and Talwar| 2007, [Friedman and|
\Schuster, (2010, |Hay et al., 2009, |Williams and McSherry, 2010, Roy et al., 2010]. Dif-
ferential privacy has been shown to have strong semantic guarantees [Dwork et al. 2006b),
Kasiviswanathan and Smith, 2008] and is resistant to many attacks [Ganta et al., 2008] that
succeed against some of the other aforementioned definitions of privacy. There are several
standard approaches for designing differentially-private data-mining algorithms, including
input perturbation [Blum et al., [2005], output perturbation [Dwork et al., 2006b], the ex-
ponential mechanism [McSherry and Talwarl 2007], and objective perturbation [Chaudhuri
011)

The SULQ method [Blum et al., [2005] gave a general differentially-private input per-
turbation algorithm and showed that it could be applied to PCA. |Williams and McSherry|
described a method for inferring one-dimensional subspace from noisy measurements
using differential privacy. Our work differs from Blum et al. [2005] these by tuning the
mechanism to a utility function for PCA and from Williams and McSherry| [2010] by not
making modeling assumptions on the data. Independently of our work, Hardt and Roth|
[2012] consider the problem of differentially-private low-rank matrix reconstruction with a
view towards applications to sparse matrices; provided certain coherence conditions hold,
they provide an algorithm for constructing a rank 2k approximation B to a matrix A such
that ||[A — Bl|r is O(]]A — Ag]|) plus some additional terms which depend on d, k and n;
here A; is the best rank k approximation to A. Because of their additional assumptions,
their bounds are generally incomparable to ours; however, it can be shown that our bounds
are superior for dense matrices A.

In many differentially-private algorithms that use input perturbation, the magnitude of
the noise needed to guarantee differential privacy often grows linearly with the extrinsic di-
mension of the data. Examples include differentially-private means and covariances
and differentially-private PCA and k-means [Blum et al., [2005]. Another ex-
ample is linear classification; Chaudhuri et al. [2011] present linear classification algorithms
in which the magnitude of the added perturbation, as well as the sample requirement, grows
linearly with the extrinsic dimension of the dataset. To the best of our knowledge, the only




prior work which considered differentially-private PCA is SULQ [Blum et al., 2005]; SULQ
adds noise to each entry of the empirical second moment matrix, and then outputs the top
k singular vectors of this perturbed matrix. Our experiments as well as theoretical results
indicate that our solution has higher statistical efficiency, particularly when k is small com-
pared to the extrinsic data dimension. However, it has been recently shown by Hall et al.
[2012] that (c,d)-differential privacy can provide a significantly better dependence on the
dimension than a-differential privacy.

Lower bounds on the sample requirement of differentially private algorithms for statis-
tical tasks is also an active area of research. Hardt and Talwar [2010] prove lower bounds
on the amount of noise that needs to be added to a number of histogram count queries, and
Chaudhuri and Hsu [2011] show lower bounds on the sample requirement of differentially-
private classification as a function of the doubling dimension of the disagreement metric of
the hypothesis class with respect to the data distribution. Our lower bounds on the sample
requirement of any differentially-private algorithm extends ideas from these two papers.

2 Preliminaries

For an integer d, let [d] = {1,2,...,d}, let S*"! be the unit sphere in R%, and let I; be the
d x d identity matrix. The transpose of a matrix A is denoted by A”. If A is positive definite
we denote by A;(A) the i-th largest eigenvalue of A. When \;(A) has multiplicity one, we
denote by v;(A) the corresponding eigenvector. We use I; to denote the d x d identity
matrix. We will use different norms in this paper : ||A[|y = tr(AAT) is the Frobenius norm

of a matrix A and ||z|, is the Euclidean norm. We will write KL (f|lg) = [ f(x)%dm for
the Kullback-Leibler divergence between two densities f and g.

The data given to our algorithm is a set of n vectors D = {x1,x2,...,2z,} where each
x; corresponds to the private value of one individual, z; € R?, and ||z;|| < 1 for all i. Let
X = [z1,...,2,] be the matrix whose columns are the data vectors {z;}. Let A =1 X X7

denote the d x d second moment matrix of the data. The matrix A is positive semidefinite,
and has Frobenius norm at most 1.

The problem of dimensionality reduction is to find a “good” low-rank approximation
to A. A popular solution is to compute a rank-k matrix A which minimizes the norm
|4-4
theorem [Stewart| 1993, |Eckart and Young), 1936] shows that the minimizer is given by the
singular value decomposition, also known as the PCA algorithm in some areas of computer
science. Let the eigenvalues of A be A\1(A4) > A2(A) > -+ > A\g(A) > 0 and let A be a
diagonal matrix with A;; = A\;(A). The matrix A decomposes as

A=VAVT, (1)

. where k is much lower than the data dimension d. The Schmidt approximation

where V' is an orthonormal matrix of eigenvectors.

Definition 1. Suppose A is a positive semidefinite matrix whose first k eigenvalues are
distinct. The top-k subspace of A is the matriz

Vi(A) = [vg va -+ vg]. (2)

where Af-f) =XN(A) fori=1,2,...,k and AR — elsewhere, and V is given by ().

(2

4



Given the top-k subspace and the eigenvalue matrix A, we can form an approximation
to A:

AW = [Vi(A) 0] A[Vi(4) 0], 3)

In the special case k = 1 we have A = Al(A)vlvlT, where v; is the eigenvector correspond-
ing to A1(A). We refer to v as the top eigenvector of the data.

We study approximations to A that preserve the privacy of the underlying data. The
notion of privacy that we use is differential privacy, which quantifies the privacy guaranteed
by a randomized algorithm P applied to a data set D.

Definition 2. An algorithm A(B) taking values in a set T provides a-differential privacy
if

sup sup mS|1B=D)
s oo (S| B=D)

where the first supremum is over all measurable S C T, the second is over all data sets D
and D' differing in a single entry, and u(-|B) is the conditional distribution (measure) on
T induced by the output A(B) given a data set B. The ratio is interpreted to be 1 whenever
the numerator and denominator are both 0.

<ef, (4)

Definition 3. An algorithm A(B) taking values in a set T provides («, )-differential pri-
vacy if

P(A(D) € S) <P (A(D') € S) + 4, (5)
for all all measurable S C T and all data sets D and D' differing in a single entry.

Here a and § are privacy parameters, where low « and § ensure more privacy. For
more details about these definitions, see Dwork et al.| [2006b], [Wasserman and Zhou| [2010],
Dwork et al.| [2006a].

The purpose of PCA is often to approximate the data by a low dimensional subspace
that captures most of the “energy” of the data. For a d x k matrix V with orthonormal
columns, the quality of V in approximating A can be measured by

ar(V) = tr (V7 AV). (6)

The V which maximizes ¢(V) has columns equal to {v; : i € [k]}, corresponding to the top
k eigenvectors of A.

Our theoretical results apply to the special case k = 1, although they can be extended
for general k. For these results, we measure the inner product between the output vector
v1 and the true top eigenvector vq:

qa(01) = [(01,01)] - (7)
This is related to (6]). If we write 9 in the basis spanned by {v;}, then
d
gr (1) = Maa(01)* + ) Nifor, v;)?
=2

Our proof techniques use the geometric properties of ga (-).



Definition 4. A randomized algorithm A(-) is an (p,n)-close approzimation to the top
etgenvector if for all data sets D of n points,

P(qa(A(D)) 2 p) = 1 —n, (8)
where the probability is taken over A(-).

In this paper we are interested in proving results on the sample complexity of differen-
tially private algorithms that approximate PCA. That is, for a given a and p, how large
must the number of individuals n in the data set be such that it is a-differentially private
and also a (p, n)-close approximation to PCA? It is well known that as the number of indi-
viduals n grows, it is easier to guarantee the same level of privacy with relatively less noise
or perturbation, and therefore the utility of the approximation also improves. Our results
characterize how privacy and utility scale with n and the tradeoff between them for fixed
n.

3 Algorithms and main results

In this section we describe differentially private techniques for approximating . The
first is a modified version of the SULQ method [Blum et al. [2005]. Our new algorithm
for differentially-private PCA, PPCA, is an instantiation of the exponential mechanism due
to |McSherry and Talwar| [2007]. Both procedures provide differentially private approxima-
tions to the top-k subspace: SULQ provides («, d)-differential privacy and PPCA provides
a-differential privacy.

3.1 Input perturbation

The only differentially-private approximation to PCA prior to this work is the SULQ method
[Blum et al., 2005]. The SULQ method perturbs each entry of the empirical second moment
matrix A to ensure differential privacy and releases the top k eigenvectors of this perturbed
matrix. In particular, SULQ recommends adding a matrix N of i.i.d. Gaussian noise of vari-
ance &'Pfggij};l/ﬁ) and applies the PCA algorithm to A+ N. This guarantees slightly a weaker
privacy definition known as (a, d)-differential privacy. One problem with this approach is
that with probability 1 the matrix A+ N is not symmetric, so the largest eigenvalue may not
be real and the entries of the corresponding eigenvector may be complex. Thus the SULQ
algorithm is not a good candidate for practical privacy-preserving dimensionality reduction.

However, a simple modification to the basic SULQ approach does guarantee («,d) dif-
ferential privacy. Instead of adding a asymmetric Gaussian matrix, the algorithm can add
the a symmetric matrix with i.i.d. Gaussian entries N. That is, for 1 < ¢ < j < d, the
variable N;; is an independent Gaussian random variable with variance 2. Note that this
matrix is symmetric but not necessarily positive semidefinite, so some eigenvalues may be
negative but the eigenvectors are all real. A derivation for the noise variance is given in
Theorem [11



Algorithm 1: Algorithm MOD-SULQ (input pertubation)
inputs: d x n data matrix X, privacy parameter «, parameter o

outputs: d x k matrix Vj, = [0y 0 --- 0] with orthonormal columns
1 Set A=1XxxT.
Set
d+1 d? + d) 1
=——1/2lo + . 9
P nao & (52\/% van ©)

Generate a d X d symmetric random matrix N whose entries are i.i.d. drawn from
N (0,5%).
Compute Vj, = V(A + N) according to @).

3.2 Exponential mechanism

Our new method, PPCA, randomly samples a k-dimensional subspace from a distribution
that ensures differential privacy and is biased towards high utility. The distribution from
which our released subspace is sampled is known in the statistics literature as the matrix
Bingham distribution [Bingham), 1974} |Chikuse, 2003, which we denote by BMF(B). The
algorithm is in terms of general k < d but our theoretical results focus on the special case
k = 1 where we wish to release a one-dimensional approximation to the data covariance
matrix. The matrix Bingham distribution takes values on the set of all k-dimensional
subspaces of R¢ and has a density equal to

1

= exp(tr(VTBY)), (10)
1F1 (3k. 3, B)

fV)

where V is a d x k matrix whose columns are orthonormal and | F (3, d, B) is a confluent
hypergeometric function [Chikuse, 2003} p.33]. Numerical approximations of this constant
can be calculated using a variety of techniques [Butler and Wood|, 2002, Koev and Edelman),
2006).

Algorithm 2: Algorithm PPCA (exponential mechanism)

inputs: d x n data matrix X, privacy parameter «, dimension k
outputs: d x k matrix Vj = [0; D2 --- 0] with orthonormal columns
Set A=1xXxT

Sample V, = BMF (n%A)

By combining results on the exponential mechanism [McSherry and Talwar, 2007] along
with properties of PCA algorithm, we can show that this procedure is differentially private.
In many cases, sampling from the distribution specified by the exponential mechanism dis-
tribution may be difficult computationally, especially for continuous-valued outputs. We
implement PPCA using a recently-proposed Gibbs sampler due to [Hoff] [2009]. Gibbs sam-
pling is a popular Markov Chain Monte Carlo (MCMC) technique in which samples are



generated according to a Markov chain whose stationary distribution is the density in ([10)).
Assessing the “burn-in time” and other factors for this procedure is an interesting question
in its own right; further details are in Section [6.2

3.3 Other approaches

There are other general algorithmic strategies for guaranteeing differential privacy. The
sensitivity method [Dwork et al., 2006b] adds noise proportional to the maximum change
that can be induced by changing a single point in the data set. Consider a data set D with
m-+1 copies of a unit vector u and m copies of a unit vector v’ with v L «' and let D’ have m
copies of u and m + 1 copies of u/. Then v1(D) = u but v1(D') =/, so ||v1(D) — v1(D)|| =
V2. Thus the global sensitivity does not scale with the number of data points, so as n
increases the variance of the noise required by the Laplace mechanism |[Dwork et al., [2006b]
will not decrease. An alternative to global sensitivity is smooth sensitivity [Nissim et al.,
2007]; except for special cases, such as the sample median, smooth sensitivity is difficult
to compute for general functions. A third method for computing private, approximate
solutions to high-dimensional optimization problems is objective perturbation [Chaudhuri
et al., 2011]; to apply this method, we require the optimization problems to have certain
properties (namely, strong convexity and bounded norms of gradients), which do not apply
to PCA.

3.4 Main results

Our theoretical results are sample complexity bounds for PPCA and MOD-SULQ as well as
a general lower bound on the sample complexity for any a-differentially private algorithm.
These results show that the PPCA is nearly optimal in terms the scaling of the sample
complexity with respect to the data dimension d, privacy parameter o, and correlation p.
We further show that MOD-SULQ requires more samples as a function of d, despite having
a slightly weaker privacy guarantee.

Even though both algorithms can output the top-k PCA subspace for general k < d,
we prove results for the case £ = 1. Proving analogous results for general k would require
significantly more analysis and calculations, whereas for £ = 1 the scaling behavior is cleaner
to elucidate. Finding the scaling behavior of the sample complexity with k is an interesting
open problem that we leave for future work.

The fact that these two algorithms are differentially private follows from some simple
calculations.

Theorem 1. For the 8 in (9)), the MOD-SULQ algorithm is (c, ) differentially private.
Theorem 2. Algorithm PPCA is a-differentially private.

Our first sample complexity result provides an upper bound on the number of samples
required by PPCA to guarantee a certain level of privacy and accuracy. The sample com-
plexity of PPCA n grows linearly with the dimension d, inversely with «, and inversely with
the correlation gap (1 — p) and eigenvalue gap A1(A) — A2(A).



Theorem 3 (Sample complexity of PPCA). If

d log(1/n) 4\
”>a<1—p><A1—A2>< d “0g<1—p2><A1—Az>>’ (1D

then the top PCA direction v1 and the output of PPCA 01 with privacy parameter o satisfy:

Pr(|(v1,01)] > p) 2 1 —1n.
That is, PPCA is a (p,n)-close approximation to PCA.

Our second result shows a lower bound on the number of samples required by any a-
differentially-private algorithm to guarantee a certain level of accuracy for a large class of
datasets.

Theorem 4 (Sample complexity lower bound). There are absolute constants ¢ and ¢ such
that if

R S SN S
a(l—p) a(l—p)’

then for any a-differentially private algorithm A which computes an approzimation v1 to

n<c (12)

the top PCA direction, there exists a data set for which Ay — Ao > %, and yet
Ea[[{v1, 01)l] < p-
Theorem (3| shows that if n scales like ﬁ then PPCA produces an approximation

01 that has correlation p with v, whereas Theorem E shows that n must scale like ﬁ
for any a-differentially private algorithm. In terms of scaling with d and « the upper and
lower bounds match, and they also match up to logarithmic factors with respect to the
correlation. By contrast, the following lower bound on the number of samples required by
MOD-SULQ to ensure a certain level of accuracy shows that MOD-SULQ has a less favorable

scaling with dimension.

Theorem 5 (Sample complexity lower bound for MOD-SULQ). There are constants ¢ and
c such that if

Cw(l — c’(l -0)),

then there exists a dataset of size n in dimension d, such that the top PCA direction v and
the output 0 of MOD-SULQ satisfy

n <

E[|(01,v1)]] < p.

Notice that the dependence on n grows as d*2 in SULQ as opposed to d in PPCA.
Dimensionality reduction via PCA is often used in applications where the data points occupy
a low dimensional space but are presented in high dimensions. These bounds suggest that
PPCA is better suited to such applications than MOD-SULQ. We next turn to validating
this intuition on real data. In the next two section we provide proofs of these results.



4 Analysis of PPCA

In this section we provide theoretical guarantees on the performance of PPCA. The proof of
Theorem [2| follows from the results on the exponential mechanism [McSherry and Talwar,
2007]. To find the sample complexity of PPCA we bound the density of the Bingham
distribution, leading to a sample complexity for k& = 1 that depends on the gap A1 — Ao
between the top two eigenvalues. We close with a general lower bound on the sample
complexity that holds for any a-differentially private algorithm. The lower bound matches
our upper bound up to log factors, showing that PPCA is nearly optimal in terms of the
scaling with dimension, privacy «, and utility ga(-).

4.1 Privacy guarantee

Proof of Theorem[d Let X be a data matrix whose i-th column is z; and A = %XXT. The
PP-PCA algorithm is the exponential mechanism of McSherry and Talwar| [2007] applied to
the score function

qr(X,v) =n vl Av

Consider X' = [z1 2 -+ 2,1 ] differ from X in a single column and let A" = %X’X’T.
We have

max lgr (X', v) — qr(X,v)| < ‘vT(x;lx;LT - mna:g)v}

veSd—

< [l = [
<1.

The result then follows immediately from the results of McSherry and Talwar| [2007, Theo-
rem 6). O

4.2 Upper bound on utility

The results of McSherry and Talwar| [2007] bound the gap between the value of the function
qr(01) = n - f)lTAﬁl evaluated at the output 97 of the mechanism and the optimal value
q(v1) = n-A1. We derive a bound on the correlation ga(01) = |(01,v1)| via geometric
arguments. To do this we need the a lower bound on the area of a circular cap.

Lemma 6 (Lemmas 2.2 and 2.3 of [Ball, [1997]). Let p be the uniform measure on the unit
sphere ST, For any x € S ! and 0 < c < 1

%exp (—d ; ! log ] 3 c> < ({v e STt (v, z) > c}) < exp (—dc?/2). (13)

Proof of Theorem[3. Fix a privacy level «, target correlation p, and probability n. Let X
be the data matrix and B = (a/2)X X T and

Uy = {u: |(u,00)] = p}.

10



be the union of the two spherical caps centered at +v;. Let U p denote the complement of
U, in Sé-1,

An output vector 91 is “good” if it is in U,. We first give some bounds on the score
function gp(u) on the boundary between U, and U,, where (u,v1) = p. The function
gr(u) is maximized when w is a linear combination of v; and wve, the top two eigenvectors
of A. It minimized when w is a linear combination of v; and vg. Therefore

ar(uw) < PN+ (1= p)h)  uell, (14)
ar(u) = 5 (PM+ (L= pPAa)  weld, (15)

Let pu(-) denote the uniform measure on the unit sphere. Then fixing an 0 < b < 1,

using , , and the fact that Ay > 0,

) 5
- W Ja, exp (u” Bu) dp
W Jui, exp (T Bu) du
exp (n(a/2) (0*M + (1 = p*)2)) - pu (Uy)
—oexp(n(a/2) (PM + (L=0?)Aa)) nUs)
< exp (—% (M — (PP + (1 - PQ))\z))> : /;EZ:; ~ (16)

Applying the lower bound from Lemma |§| to the denominator of and the upper bound
p(U,) <1 yields

1 no d—1 2

log —=— < — (¢2\1 — (PP M1 + (1 = pH)N2)) — 1 : 1
Og]P)(up)— 2 (U 1 (p 1+( p)2)) 9 Ogl—O’ (7)
We must choose a 02 > p? to make the exponent positive, but more precisely,
A
o> pr+(1-pH) 2
A1
1-0%<(1-p? <1—A2)
A1

For simplicity, choose

P N T N
10—2(1 p)1>\1.

A — (PP 4 (1= p*) o) = (1= p*)A1 — (1 —0?)A — (1 — p*) Ao
= (1= ) (3= 500 - 20~ %)

= 30= A0 - ),

So that

11



and

Setting greater than log(1/n) yields

no 1 d-—
- 1= P) (A1 = Ag) > logg +

Since 1 — p < 1 — p?, if we choose

d <log(1/77) 4\ > ,

al-pn )\ d BT 200 )

then the output of PPCA will produce a 07 such that

n >

P ([(01,v1)| < p) <.
]

The bound proved in the preceding theorem may be a little loose. It is difficult to
measure the area on the unit sphere of the set {z : 27 Az > 1—~}. In the case where A = I
this is just a spherical cap, but for general A it can have a more irregular shape. This is
an artifact of the proof technique. A direct bound seems difficult because explicit bounds
on the confluent hypergeometric function with matrix argument are not readily applicable;
numerical approximation is still an open research question [Butler and Wood, [2002], Koev
and Edelman) 2006].

4.3 Lower bound on utility

We now turn to a general lower bound on the sample complexity for any differentially private
approximation to PCA. We construct K databases which differ in a small number of points
whose top eigenvectors are not too far from each other; yet the gap Ay — A2 between the top
two eigenvalues is at least % For such a collection, Lemmashows that for any differentially
private mechanism, the average correlation over the collection cannot be too large. That is,
even if the eigengap between the first two eigenvalues is large, any a-differentially private
mechanism cannot have high utility on all K data sets. The remainder of the argument is
to construct these K data sets.

The proof uses some simple eigenvalue and eigenvector computations. A matrix of

positive entries
a b
(o) )

det(A — XI) = A2 — (a + &)\ + (ac — b?)

has characteristic polynomial

12



and eigenvalues

A= %(a—l—c) + %\/(a—i—c)2 — 4(ac —b?)

:%(a—i—c):l:% (a — c)? + 4b2. (19)
The eigenvectors are in the directions (b, —(a — \))7.

Lemma 7. Let D1,Ds, ..., Dk be K databases which differ in the value of at most w

points, and let uy, ..., ug be the top eigenvectors of D1, Do, ..., Dk. If A is any a-differentially
private algorithm, then,

s 1
> EAAD) )l < K (1= fol1 —maxl i) ).

Proof. Let
t=min(|lui — ujll, [Jui + uyl]),
i#j

and G; be the cap around +u; of radius ¢/2:
Gi={u:|lu—ul| <t/2} U{u: |lu+ul| <t/2}.

We claim that

K

S PAAD) ¢ Gi) >

=1

(K —1). (20)

[N

The proof is by contradiction. Suppose the claim is false. Because all of the caps G; are
disjoint, and applying the definition of differential privacy,

K
%(K -1)> ZP_A(A(Di) ¢ G)
7,;(1
> Z ZIPA(A(DZ) € Gy)
i=1 i i
K
23D e VR (A(Dy) € Gy)
P
) K
> (K — 1) . ﬁ ZZ;]P)A(A(Dz) € Gl)
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which is a contradiction, so holds. Therefore by the Markov inequality

K
>~ Ea [min(lAD:) = wll”, JAD:) +wl)| > ZP G)

=1
> 1(K 1)t?
-8

Rewriting the norms in terms of inner products shows

K
2K 23 BAll(AD), ul] 2 (K —1) (2~ 2ma | )
=1
a 1K —
> EA A 0] < K (1= g (0 = max () )
=1
<K <1 - 1—16(1 - max|<uz,uj)|)) .

O]

Proof of Theorem[J} Let y = egq, the d-th coordinate vector, and let ¢ € ((2rd)~/2, 1)

Lemma shows that there exists a packing W = {wy,ws, ..., wg} of the sphere S¥—2

spanned by {ey, ez, ...,e4_1} such that max;; |(w;, w;)| < ¢, where

1 (d—
K = §(1 —9) (d-2)/2

Let B = ln(K D Fori=1,2,...,K let the data set D; contain

e n(1 — ) copies of y
e nf3 copies of z; = /By + /1 — Bw;.

The second moment matrix A; of D; is

=1 -8+ B)yy" +B8VB — B2 (wly +yw!) + (1 - Bww] .

By choosing an basis containing y and w;, we can write this as
1-B+5* BB -2
Ai=| ByB—-p* B1-B) O
0

0 0

This is in the form (I8), with a = 1 — 8+ 8%, b = /B8 — 2, and ¢ = (1 — B). The top

eigenvector is therefore

U; = + w
b2—|—(a—/\)2y b2+ (a — \)?

14



where A is given by . We observe that the gap between the top two eigenvalues is:

Via— e v 4% = /(1260 B + 4556 — %) > 5
Therefore
b2 (a—\)? o
rgnguz,u]H < b2+ (CL— )\)2 + b2 4 (CL—)\)2 I?%XKwﬂw]H
— )2
s1- lﬂ(f(a—))\)Q(l —9)-
To continue the upper bound we compute A:
A= %(a—l—c)—i—% (a —c)? + 4b?
= (1+ VA 2B 2P A )
% (1+ V14482 + 464 — 45 + 452 — 843 + 433 —454)
1

<1ﬁ-y/1—-4ﬂ—%852 16%)

=5 (1+ V=10 - 57).
A Taylor series expansion of /1 — z implies that for z < 1,
l—z<Vi—z<1- g

Applying this equation on A, we get:
1-28(1-8)?<A<1-p(1-p)%

Note that

1 1
A > (a+c)+ (a —c)? =a,

2
so (a — \)? is maximized when ) is as large as possible. Therefore

(=A< (1=B+p5 =1+ 8(1-B)")
= (-B(1-B) +B(1 - B)*)?
=51 - p)%
Moreover,
bt = BB —B%) = B°(1 - B).
Since for v > 0, z/(v + ) is monotonically increasing in =, we have
(a=N? g1 - p)?
B+ (a=X? = B - 5P+ 1)
__Ba-5)
T 1+ -9)
< B.

15
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Combining this with Equation we get:

ngﬂwmwﬂﬁl—ﬁﬂ—¢)

(T}

Applying Lemma [7] shows that for at least one database i

E [[(AD:), ui)] < 1— = (1— (1 - B(1 - ¢)))

16
p
=1——(1-2¢).
1-9)
Setting the left side equal to some target expected correlation p,
B
1—p)>—(1-—
(1-p) 2 L(1-9)
In(K —1)
e Ay
Thus
1 1—¢ 1 1
> dl —1 —logl6 ) ).
" al=p) ( 16 ( BVTo Bi-e ® ))
Setting ¢ as some constant close to 1 shows that there exist constants ¢’ and ¢” such that
n > C/L - 1

a(l—p) — a(l-p)

5 Analysis of MOD-SULQ

In this section we provide theoretical guarantees on the performance of the MOD-SULQ
algorithm. Theorem (1| shows that MOD-SULQ is («, d)-differentially private. Theorem
provides a lower bound on the distance between the vector released by MOD-SULQ and
the true top eigenvector in terms of the privacy parameters o and § and the number of
points n in the data set. This implicitly gives a lower bound on the sample complexity of
MOD-SULQ. We provide some graphical illustration of this tradeoff.

The following upper bound will be useful for future calculations : for two unit vectors
x and y,

Z (.Z‘Z'J:’j — yiyj)z S 2. (23)

1<i<j<d

Note that this upper bound is achievable by setting x and y to be orthogonal elementary
vectors.
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5.1 Privacy guarantee

We first justify the choice of 32 in the MOD-SULQ algorithm.

Proof of Theorem[1. Let B and B be two independent symmetric random matrices where
{Bij : 1 <i < j<d} and {3” 1 < i < j < d} are each sets of i.i.d. Gaussian
random variables with mean 0 and variance ﬂz Consider two data sets D = {z; : i € [n]}
and D = Dy U {Zn} \ {zn} and let A and A denote their second moment matrices. Let
G =A+ B and G = A+ B. We first calculate the log ratio of the densities of G and G at
a point H:

H 1 L i
log ;zEHs — Z <—252(Hij - Ay)* + TﬁZ(H” - Aij)2>

1<i<j<d
1 2 o 1
= o3 > (n(Hz‘j = Aij)(@nitng = Tnidng) + 5 (Enidng = ﬂcn,z‘xn,j)Q) :

1<i<j<d

From the last term is upper bounded by 2/n?. To upper bound the first term,

Z |Zpi&n — TniTnj| <2 max1 Z a;a;
1<i<j<d lall<1) =<d
<2-Z(d*+4d)-=
= 2( +d) d
=d+1.

Note that this bound is not too loose — by taking & = d=1/21 and 2z = (1,0,..., O)T, this
term is still linear in d.
Then for any measurable set S of matrices,

P(GeS) <exp <252 ( (d+ 1)y + 3))]?(@68) +P(B;; > v for alli,j). (24)

To handle the last term, use a union bound over the (d? + d)/2 variables {B;;} together
with the tail bound, which holds for v > 5:

1 2 /932
P(B.; > < /287
( ) ry)— m

Thus setting P (B;; > v for some 7, j) = ¢ yields the condition

d +d —42/282

0=
2V 27r

Rearranging to solve for ~y gives
d? 4 d d? + d>
= ma; , 2log | —— = 2log | ——
7 * <6 5\/ & <52\/27r)> ﬁ\/ & <52\/27r
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for d > 1 and § < 3/v/2me. This then gives an expression for o to make (24]) imply (e, 9)
differential privacy:

1 2 2

1 2 d2+d 2
= 35 (n(d+ l)ﬁ\/2log (52\/%> + n2) )

Solving for £ using the quadratic formula yields a particularly messy expression:

d+1 d2+d> 1 ( ) <d2+d> )1/2
=——/21 + 2(d+1)71 +4
p 2na \/ ©8 (62\/27r 2na ( J*log 02+/2m “

2
<d+1 d®+d 1

21 + .
- no 08 (52#2%) Vvan

(25)

5.2 Lower bound on utility

The main tool in our lower bound is a generalization by [Yu [1997] of an information-theoretic
inequality due to Fano.

Theorem 8 (Fano’s inequality [Yu, [1997]). Let R be a set and © be a parameter space
with a pseudo-metric d(-). Let F be a set of r densities {f1,..., fr} on R corresponding
to parameter values {61,...,0,} in ©. Let X have distribution f € F with corresponding
parameter 6 and let é(X) be an estimate of 0. If, for all i and j

d(0;,0;) > 7 (26)
and
KL (fill ;) <, (27)
then
max E;[d(8,0;)] > — <1 - WW) (28)
J 2 log r

where E;[-] denotes the expectation with respect to distribution f;.

To use this inequality, we will construct a set of densities on the set of covariance
matrices corresponding distribution of the random matrix in the MOD-SULQ algorithm
under different inputs. These inputs will be chosen using a set of unit vectors which are a
packing on the surface of the unit sphere.

18



5.3 A packing lemma

The proof of this lemma is relatively straightforward. The following is a slight refinement
of a lemma due to Csiszar and Narayan| [1988] (See also |Csiszar and Narayan [1991]).

Lemma 9. Let Z1,Zs,...,ZN be arbitrary random variables and let fi(Z1,...,Z;) be ar-
bitrary with 0 < f; <1,i=1,2,...,N. Then the condition

E[fi(Zl,...,Z¢)|Z1,...,Zi,1] §ai a.s., i:1,2,...,N (29)
implies that

1 N N
P (N ;fi(zl, L Z) > t) < exp (—Nt(log 2) + Zai> . (30)

=1

Proof. First apply Markov’s inequality:

N
P <;Zfl(zl,,zz) > t)
=1
=P (22-5\/:1 fi(Z1,..,Z;) > 2Nt)
< 2—NtE [225\;1 fi(z1,...,zi)i|
< 9N [QZﬁzlfi(zl,...,zi)E [QfN(Zl,...,ZN)|Zh L ZNflﬂ '

Now note that for b € [0, 1] we have 2° <1+ b, so

E 2fN(Z17--.7ZN)|Z1"‘_’ZN_11| <E[l+fN(Z1,..-,ZN)|Zl,---,ZN—I]

< (1 + CLN)
< exp(an).

Therefore
41 - N-1
; ./ < — im1 fi(Z,Zi) |
1@( z;fz(ZL L Z;) >t> < exp(—Nt(log?2) + ay)E {22 1 }

Continuing in the same way yields

1 N N
P (N;fi(zl,...,zi) > t) < exp (—Nt(log2) + Zai> .

i=1
O
The second technical lemma [Csiszar and Narayan, [1991, Lemma 2] is a basic result
about the distribution of inner product between a randomly chosen unit vector and any

other fixed vector. It is a consequence of a result of |[Shannon| [1959] on the distribution of
the angle between a uniformly distributed unit vector and a fixed unit vector.
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Lemma 10 (Lemma 2 of |[Csiszar and Narayan, 1991]). Let U be uniformly distributed
on the unit sphere S¥ 1 in R4 Then for every unit vector u on this sphere and any ¢ €
[(2md)~1/2,1), the following inequality holds:

P((U,u) > ¢) < (1 - ¢*) V72, (31)

Lemma 11 (Packing set on the unit sphere). Let a dimension d and ¢ € [(2rnd)~/%,1) be
given. For N and t satisfying

—Nt(log2) + N(N — 1)(1 — ¢?)@=D/2 < 1, (32)
there exists a set of K = |(1 —t)N| unit vectors C such that for all distinct pairs p,v € C,
[, v)| < ¢ (33)

Proof. The goal is to generate a set of N unit vectors on the surface of the sphere S¢~! such
that they have large pairwise distances, or correspondingly small pairwise inner products.
To that end, define Z;,Zo, ..., Zy i.i.d. uniformly distributed on S4~! and

fz(Zl,,ZZ):l(KZZ,ZJH >¢, ]<Z) (34)

That is, f; = 1 if Z; has large inner product with any Z; for j < ¢. The conditional
expectation, by a union bound and Lemma is

E([fi(Zy1,...,Z)|Zy, ..., Zi1] < 2(i —1)(1 — ¢?)\@=D/2, (35)

Let a; = (i — 1)(1 — ¢$)@1/2, Then

N
D ai=N(N —1)(1—¢?)1/2 (36)
i=1
Then Lemma [9 shows
N
1 2\(d—1)/2
— (Z1,...,Z; < - - - .
P <N ;fz(zl, \Z) > t) < exp ( Nt(log2) + N(N — 1)(1 — a?) ) (37)
This inequality implies that as long as

—Nt(log2) + N(N —1)(1 — ¢?)\@=D/2 < 1, (38)

then there is a finite probability that {Z;} contains a subset {Z}} of size |(1 — ¢)N| such

that ‘(Z;, Z})| < ¢ for all (4, j). Therefore such a set exists. O

A simple setting of the parameters gives the following packing.

Lemma 12 (Simple packing set). For ¢ € [(2rnd)~/?,1), there exists a set of

1 1
K = g &xp ((d —1)log m) (39)

vectors C in S~ such that for any pair p,v € C, the inner product between them satisfies

(s )] < ¢ (40)
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Proof. Applying Lemma (11| yields a set of K vectors C satisfying and . To get a
simple bound that’s easy to work with, we can set

—Nt(log2) + N(N —1)(1 — ¢*)4=D/2 _1 =, (41)

and find an N close to this. Setting ¢ = (1 — q§2)(d*1)/ 2 the quadratic formula solving for
N yields

N = <t10g2+1/1+ ((tlog2+ ) +4¢)1/2)

- &=

>@.

Now setting K = % and t = 1/2 gives . So there exists a set of K vectors on S9!

whose pairwise inner products are smaller than ¢. ]

The maximum set of points that can be selected on a sphere of dimension d such that
their pairwise inner products are bounded by ¢ is an open question. These sets are some-
times referred to as spherical codes [Conway and Sloane, |1998] because they correspond to
a set of signaling points of dimension d that can be perfectly decoded over a channel with
bounded noise. The bounds here are from a probabilistic construction and can be tightened
for smaller d. However, in terms of scaling with d this construction is essentially optimal
[Shannon, [1959).

5.4 Lower bounds for input perturbation

Lemma 13. Let ¥ be a positive definite matriz and let f denote the density N'(a, %) and
g denote the density N'(b,X). Then KL (f|lg) = (a —b)TS7 (a —b).

Proof. This is a simple calculation:

KL (f[lg) = Eooy |~ 2 (2 — a)7S7 @ — a) + = (¢ — b)S "}z — b)

2 2
1

=5 (@S a—a" ¥ - 02 e + 0757 T)
1

= i(a —b)Is"(a—-b).

O

The next theorem is a lower bound on the expected distance between the vector output
by MOD-SULQ and the true top eigenvector. In order to get this lower bound, we construct
a class of data sets and use Fano’s inequality to derive a bound on the minimax error over
the class.

Theorem 14 (Utility bound for MOD-SULQ). Let d, n, and o > 0 be given and let B be
given by @D so that the output of MOD-SULQ is (v, 0)-differentially private for all data sets
in R® with n elements. Then there exists a data set with n elements such that if 01 denotes
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the output of MOD-SULQ and vy is the top eigenvector of the empirical covariance matriz
of the data set, the expected correlation (01,v1) is upper bounded:

2
A (0= L/5" + log?
E(l{on, vl < mim { 1= —— | 1 - (d~1)log e ~log(8) )

where

1 21og(8d) 2/B2 + log(256)
@E[max{m,\/lexp<d_l>,\/lexp< 11 >},1>. (43)

Proof. For ¢ € [(2rd)~'/2,1), Lemma [12| shows there exists a set of K unit vectors C such
that for p, v € C, the inner product between them satisfies |(u, )| < ¢, where K is given by
. Note that for small ¢ this setting of K is loose, but any orthonormal basis provides d
unit vectors which are orthogonal, setting K = d and solving for ¢ yields

(- (22))”

Setting the lower bound on ¢ to the maximum of these two yields the set of ¢ and K which
we will consider in .
For any unit vector u, let

A(p) = pu” + N, (44)

where N is a d x d symmetric random matrix such that {N;; : 1 < i < j < d} are
i.i.d. N(0, %), where 32 is the noise variance used in the MOD-SULQ algorithm. Due to
symmetry, the matrix A(u) can be thought of as a jointly Gaussian random vector on the
d(d +1)/2 variables {A;;(u) : 1 <i < j < d}. The mean of this vector is

_ T
o= ({3, i3, - - s 1y 112y A3 - - - fd—11d) (45)

and the covariance is 62]d(d+1) /2. Let f,, denote the density of this vector.
For pu,v € C, the divergence between f, and f, can be calculated using Lemma

KL (f,llf,) = 5 (5= 9)"57 (- 7)

I 2
TIBQH/’L_VH

< 1
= @
The last line follows from the fact that the vectors in C are unit norm.

For any two vectors u,v € C, lower bound the Euclidean distance between them using
the upper bound on the inner product:

I = vl = V21 = ¢). (47)

(46)
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Let © = S9! with the Euclidean norm and R be the set of distributions {A(u) : u € ©}.
From (7)) and (46), the set C satisfies the conditions of Theorem [§] with F = {f, : p € C},
r=K, 7= +21-¢), and v = % The conclusion of the Theorem shows that for
MOD-SULQ,

E, (|6 — pl] > 4
max By, [|[0 = pll} = (48)

2(1-9) 1_ 1/B8% +log2
2 log K ’

This lower bound is vacuous when the term inside the parenthesis is negative, which imposes
further conditions on ¢. Setting log K = 1/32 + log2, we can solve to find another lower
bound on ¢:

¢ > \/1 — exp <—2/52 ;io§(256)>. (49)

This yields the third term in . Note that for larger n this term will dominate the others.
Using Jensen’s inequality on the the left side of :

_ 1//32+1og2>2

maxEy, [2(1 — [0, w)])] > (1_2@ <1 log K

nec

So there exists a p € C such that

Ep, [[(0,m)]] <1 - (50)

(1-9¢) <1 _ 1/52+1og2>2
4 log K '

Consider the data set consisting of n copies of u. The corresponding covariance matrix is
pup with top eigenvector vy = . The output of the algorithm MOD-SULQ applied to this
data set is an estimator of p and hence satisfies . Minimizing over ¢ gives the desired
bound. O

The minimization over ¢ in does not lead to analytically pretty results, but numeri-
cal optimization can give some insight into these bounds. In all experiments we set 6 = 0.01.
Figure [l shows the correlation as a function of n for different dimensions and different val-
ues of . In high dimension, the lower bound is shows that the expected performance of
MOD-SULQ is poor when there are a small number of data points. This limitation may be
particularly acute when the data lies in a very low dimensional subspace but is presented
in very high dimension. In such “sparse” settings, perturbing the input as in MOD-SULQ is
not a good approach. However, in lower dimensions and data-rich regimes, the performance
may be more favorable.

A little calculation yields the sample complexity bound.

Proof of Theorem [5. Suppose E [|(v1,v1)|] = p. Then a little algebra shows

1/82 + log 2
(S

d—1)log T log(8)
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Correlation versus alpha for different n
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Figure 1: Upper bound on the correlation between |(v1, v1)| for MOD-SULQ. The horizontal
axis is the size of the data set n, and the vertical axis is the correlation. The four panels
correspond to values of d = 64, 128, 256, and 1024.

Set ¢ such that (d — 1) log 117& —log(8) = 2(1/8% + log 2) to get

4/1-p>/1-¢.

Since we are concerned with the scaling behavior for large d and n,

log

L (!
Ny <ﬁ2d>

oo (-0 5)
(/)

Lower bound S in @ to get for some constant ¢,

SO

2
52>C1

—— log(d/9).

Substituting this we get for some constant ¢y that

n?a?

(I—ex(1—-p)) < “ Blog(d)s)

24



Now solving for n shows

> cdg/Q— v/log(d/9) (1 — c’(l — p)) .

n =z
0!

6 Implementation and Experiments

We implemented MOD-SULQ and PPCA in order to test our theoretical results. Implement-
ing PPCA involved using a Gibbs sampling procedure [Hoff, 2009]. A crucial parameter in
MCMC procedures is the burn-in time, which is how long the chain must be run for it to
reach its stationary distribution. Theoretically, chains reach their stationary distribution
only in the limit; however, in practice MCMC users must sample after some finite time.
In order to use this procedure appropriately, we determined a burn-in time using our data
sets. The interaction of MCMC procedures and differential privacy is a rich area for future
research.

6.1 Data and preprocessing

We report on the performance of our algorithm on some real datasets. We chose four
datasets from four different domains — kddcup99 [Hettich and Bayl, [1999], which includes
features of 494,021 network connections, census [Asuncion and Newman, [2007], a demo-
graphic data set on 199,523 individuals, localization [Kaluza et al. 2010], a medical
dataset with 164,860 instances of sensor readings on individuals engaged in different activ-
ities, and insurance [van der Putten and van Someren, 2000, a dataset on product usage
and demographics of 9,822 individuals.

These datasets contain a mix of continuous and categorical features. We preprocessed
each dataset by converting a feature with ¢ discrete values to a vector in {0, 1}9; after pre-
processing, the datasets kddcup99, census, localization and insurance have dimensions
116, 513, 44 and 150 respectively. We also normalized each row so that each entry has
maximum value 1, and normalize each column such that the maximum (Euclidean) column
norm is 1. We choose k = 4 for kddcup, k = 8 for census, k£ = 10 for localization and
k = 11 for insurance; in each case, the utility ¢p(Uy) of the top-k PCA subspace of the
data matrix accounts for at least 80% of ||Al|p. Thus, all four datasets, although fairly high
dimensional, have good low-dimensional representations. The properties of each dataset are
summarized in Table [6.11

6.2 Implementation of Gibbs sampling

The theoretical analysis of PPCA uses properties of the Bingham distribution BMF(-) given
in . To implement this algorithm for experiments we use a Gibbs sampler due to [Hoff
[2009]. The Gibbs sampling scheme induces a Markov Chain, the stationary distribution of
which is the density in . Gibbs sampling and other MCMC procedures are widely used
in statistics, scientific modeling, and machine learning to estimate properties of complex
distributions Brooks [1998].
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Dataset #instances | #dimensions | k | qr(U)/ ||Allp
kddcup 494,021 116 4 0.96
census 199,523 513 8 0.81
localization 164,860 44 10 0.81
insurance 9,822 150 11 0.81

Table 1: Parameters of each dataset. The second column is the number of dimensions
after preprocessing. k is the dimensionality of the PCA, and the fourth column contains
qr(U)/ ||Allp where U is the top k PCA subspace.

Finding the speed of convergence of MCMC methods is still an open area of research.
There has been much theoretical work on estimating convegence times [Jones and Hobart),
2004, [Douc et al., [2004), Jones and Hobart, [2001], Roberts| (1999, [Roberts and Sahul, [2001,
Roberts, (1999, Roberts and Sahu, 2001} [Rosenthal, 1995, [Kolasay, 1999, [2000], but unfor-
tunately, most theoretical guarantees are available only in special cases and are often too
weak for practical use. In lieu of theoretical guarantees, users of MCMC methods em-
pirically estimate the burn-in time, or the number of iterations after which the chain is
sufficiently close to its stationary distribution. Statisticians employ a range of diagnostic
methods and statistical tests to empirically determine if the Markov chain is close to sta-
tionarity [Cowles and Carlin) 1996, Brooks and Roberts, [1998| Brooks and Gelman), (1998
El Adlouni et al., |2006]. These tests do not provide a sufficient guarantee of stationarity,
and there is no “best test” to use. In practice, the convergence of derived statistics is used
to estimate an appropriate the burn-in time. In the case of the Bingham distribution, [Hott
[2009] performs qualitative measures of convergence. Developing a better characterization
of the convergence of this Gibbs sampler is also an important question for future work.

To choose an appropriate burn-in time, we examined the time series trace of the Markov
Chain. We ran [ copies of the chain, starting from [ different initial locations drawn uni-
formly from the set of all d x k matrices with orthonormal columns. Let X*(t) be the output
of the i-th copy at iteration ¢, and let U be the top k PCA subspace of the data. For each
i, we plot the magnitude of the projection of X*(t) onto U. After a number of iterations,
the projections should converge to the same value.

For each copy, we also plot the following statistic as a function of iteration 71"

1
T;X(t)

where || - || is the Frobenius norm. The matrix Bingham distribution has mean 0, and
hence with increasing 7', the statistic F{(T") should converge to 0.

In our simulations, we observed that the Gibbs sampler converges to Fi(t) < 0.01 at
t = 20,000 when run on data with a few hundred dimensions and with k between 5 and 10;
we thus chose to run the Gibbs sampler for T' = 20,000 timesteps for all the datasets. We
show log F}/(T') as a function of iteration T for datasets insurance and kddcup in Figures
and 2] respectively; the plots are over 5 trajectories of the Markov Chain, which are initialized
at 5 locations drawn uniformly from the set of all d x k matrices with orthonormal columns.
The plots show that Flz(T) decreases rapidly after a few thousand iterations, and is less

)

, 1
Fi(T) = —
k \/E .
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Figure 2: Plot of log Fi(T') for kK = 4 as a  Figure 3: Plot of log Fy(T) for k = 11 as a
function of iteration 7' for 40,000 iterations  function of iteration 1" for 40,000 iterations of
of the Gibbs sampler for the kddcup dataset. the Gibbs sampler for the insurance dataset.

than 0.01 after 7" = 20,000 in both cases. log F,z(T) also appears to have a larger variance
for kddcup than for insurance; this is explained by the fact that the kddcup dataset has
a much larger number of samples, which makes its stationary distribution farther from the
initial distribution of the sampler.

Our simulations indicate that the chains converge fairly rapidly, particularly when
|A — Ag||p is small so that A is a good approximation to A. Convergence is slower for
larger n when the initial state is chosen from the uniform distribution over all k£ x d matrices
with orthonormal columns; this is explained by the fact that for larger n, the stationary
distribution is farther in variation distance from the starting distribution, which results in
a longer convergence time.

6.3 Scaling with data set size

We ran three algorithms on these data sets : standard (non-private) PCA, MOD-SULQ), and
PPCA. As a sanity check, we also tried a uniformly generated random projection — since
this projection is data-independent we would expect it to have low utility. We measured
the utility ¢r(U), where U is the k-dimensional subspace output by the algorithm; ¢rU is
maximized when U is the top-k PCA subspace, and thus this reflects how close the output
subspace is to the true PCA subspace in terms of representing the data. Although our

theoretical results hold for ga(-), the “energy” ¢p(:) is more relevant in practice for larger
k.

The results for utility ¢r(U) are shown in Figures [4(a)l [4(b)} 4(c), and each plot
shows ¢r(U) as a function of sample size for the k-dimensional subspace output by PPCA,
MOD-SULQ, non-private PCA, and random projections. PPCA was run with privacy pa-
rameter o = 0.1; MOD-SULQ with o = 0.1 and § = 0.01. Each value in the figure is an
average over 5 random permutations of the data, as well as 10 random starting points of
the Gibbs sampler per permutation (for PPCA), and 100 random runs per permutation (for
MOD-SULQ and random projections).

The plots show that PPCA always outperforms MOD-SULQ, and approaches the per-
formance of non-private PCA with increasing sample size. By contrast, for most of the
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problems and sample sizes considered by our experiments, MOD-SULQ does not perform
much better than random projections. The only exception is localization, which has
much lower dimension (44). This confirms that MOD-SULQ does not scale very well with
the data dimension d. The performance of both MOD-SULQ and PPCA improve as the sam-
ple size increases; the improvement is faster for PPCA than for MOD-SULQ. However, to be
fair, MOD-SULQ is simpler and hence runs faster than PPCA. At the sample sizes in our
experiments, the performance of non-private PCA does not improve much with a further
increase in samples. Our theoretical results suggest that the performance of differentially
private PCA cannot be significantly improved over these experiments.
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Figure 4: Utility gr(U) for different data sets.

6.4 Effect of privacy on classification

A common use of a dimension reduction algorithm is as a precursor to classification or
clustering; to evaluate the effectiveness of the different algorithms, we projected the data
onto the subspace output by the algorithms, and measured the classification accuracy using
the projected data. The classification results are summarized in Table 6.4 We chose the
normal vs. all classification task in kddcup99, and the falling vs. all classification task in
localization. E| We used a linear SVM for all classification tasks, which is implemented
by 1ibSVM [Chang and Lin| 2011].

For the classification experiments, we used half of the data as a holdout set for computing
a projection subspace. We projected the classification data onto the subspace computed

'For the other two datasets, census and insurance, the classification accuracy of linear SVM after
(non-private) PCAs is as low as always predicting the majority label.
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KDDCUP | LOCALIZATION

Non-private PCA 98.97 £ 0.05 100+ 0
PPCA 98.95 £ 0.05 100+ 0
SULQ 98.18 £ 0.65 97.06 + 2.17

Random Projections | 98.23 + 0.49 96.28 + 2.34

Table 2: Classification accuracy in the k-dimensional subspaces for kddcup99(k = 4), and
localization(k = 10) in the k-dimensional subspaces reported by the different algorithms.

based on the holdout set; 10% of this data was used for training and parameter-tuning,
and the rest for testing. We repeated the classification process 5 times for 5 different
(random) projections for each algorithm, and then ran the entire procedure over 5 random
permutations of the data. Each value in the figure is thus an average over 5 x 5 = 25 rounds
of classification.

The classification results show that our algorithm performs almost as well as non-private
PCA for classification in the top k PCA subspace, while the performance of MOD-SULQ and
random projections are a little worse. The classification accuracy while using MOD-SULQ
and random projections also appears to have higher variance compared to our algorithm
and non-private PCA; this can be explained by the fact that these projections tend to be
farther from the PCA subspace, in which the data has higher classification accuracy.

6.5 Effect of the privacy requirement

To check the effect of the privacy requirement, we generated a synthetic data set of n = 5,000
points drawn from a Gaussian distribution in d = 10 with mean 0 and whose covariance
matrix had eigenvalues

{0.5,0.30,0.04, 0.03,0.02,0.01,0.004, 0.003, 0.001, 0.001}.

In this case the space spanned by the top two eigenvectors has most of the energy, so we
chose k = 2 and plotted the utility ¢gp(-) for non-private PCA, MOD-SULQ with § = 0.05,
and PPCA with a burn-in time of 7" = 1000. We drew 100 samples from each privacy-
preserving algorithm and the plot of the average utility versus « is shown in Figure [5| The
privacy requirement relaxes as « increases, and both MOD-SULQ and PPCA approach the
utility of PCA without privacy constraints. However, for moderate o« PPCA still captures
most of the utility, whereas the gap between MOD-SULQ and PPCA becomes quite large.

7 Discussion

In this paper we investigated the theoretical and empirical performance of differentially
private approximations to PCA. Empirically, we showed that MOD-SULQ and PPCA differ
markedly in how well they approximate the top-k subspace of the data. The reason for
this, theoretically, is that the sample complexity of MOD-SULQ is Q(d*/2\/logd) whereas
the sample complexity of PPCA is O(d). Because PPCA uses the exponential mechanism
with gr(-) as the utility function, it is not surprising that it performs well. However, MOD-
SULQ often had a performance comparable to random projections, indicating that the real
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Figure 5: Plot of gp(U) versus « for a synthetic data set with n = 5,000, d = 10, and k = 2.

data sets we used were too small for it to be effective. We furthermore showed that PPCA
is nearly optimal, in that any differentially private approximation to PCA must use (d)
samples. An open question is to find algorithms that guarantee weaker («, ¢)-differential
privacy in exchange for better dependence on the dimension d, analogous to Hall et al.
[2012].

Our investigation brought up many interesting issues to consider for future work. Be-
cause differential privacy is a mathematical definition, the description of differentially pri-
vate procedure makes a number of idealizations regarding computation. Some of these
idealizations are related to running the algorithm in a real environment; the designers of
differentially private systems such as Airavat Roy et al.| [2010] require additional security
assumptions that have to be verified. At a more basic level, the difference between truly
random noise and pseudorandomness [Mironov et al.| [2009], McGregor et al.| [2010] and the
effects of finite precision can lead to a gap between the theoretical ideal and practice. Fi-
nally, implementation of private algorithms can lead to further gaps between theory and
practice. For example, implementing objective perturbation Chaudhuri et al. [2011] uses
numerical optimization tools for approximate solutions to convex optimization problems,
which have complex termination conditions that are not part of the accompanying theo-
retical analysis. Our implementation of PPCA does not sample exactly from the Bingham
distribution, and we leave a theoretical investigation of the impact of approximate sampling
for future work.

Finally, more germane to the work on PCA here is to prove sample complexity results
for general k rather than the case k = 1 here. For k = 1 the utility functions ¢r(-) and ga(+)
are related, but for general k it is not immediately clear what metric best captures the idea
of “approximating” PCA. In particular, there is a difference between producing an approx-
imation to the top-k PCA subspace (the problem considered here) and an approximation
to the top k eigenvectors. Developing a framework for such approximations is of interest
more generally in machine learning.
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