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A NORMAL HIERARCHICAL MODEL AND MINIMUM

CONTRAST ESTIMATION FOR RANDOM INTERVALS

By Yan Sun∗ and Dan Ralescu†

Utah State University and University of Cincinnati

Many statistical data are imprecise due to factors such as mea-
surement errors, computation errors, and lack of information. In such
cases, data are better represented by intervals rather than by single
numbers. Existing methods for analyzing interval-valued data include
regressions in the metric space of intervals and symbolic data analysis,
the latter being proposed in a more general setting. However, there
has been a lack of literature on the distribution-based inferences for
interval-valued data. In an attempt to fill this gap, we extend the con-
cept of normality for random sets by Lyashenko (1983) and propose
a normal hierarchical model for random intervals. In addition, we
develop a minimum contrast estimator (MCE) for the model param-
eters, which we show is both consistent and asymptotically normal.
Simulation studies support our theoretical findings, and show very
promising results. Finally, we successfully apply our model and MCE
to a real dataset.

1. Introduction. In classical statistics, it is often assumed that the
outcome of an experiment is precise and the uncertainty of observations is
solely due to randomness. Under this assumption, numerical data are rep-
resented as collections of real numbers. In recent years, however, there has
been increased interest in situations when exact outcomes of the experiment
are very difficult or impossible to obtain, or to measure. The imprecise na-
ture of the data thus collected is caused by various factors such as measure-
ment errors, computational errors, loss or lack of information. Under such
circumstances and, in general, any other circumstances such as grouping
and censoring, when observations cannot be pinned down to single num-
bers, data are better represented by intervals. Practical examples include
interval-valued stock prices, oil prices, temperature data, medical records,
mechanical measurements, among many others.

The effort in the literature to analyze interval-valued data, while still at its
early stage, shows promising advances. The earliest attempt probably dates
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back to the 1990s, when Diamond published his paper on the least squares
fitting of compact set-valued data and considered interval-valued input and
output as a special case (see Diamond, 1990). Due to the embedding theo-
rems started by Brunn and Minkowski and later refined by Rȧdström (see
Rȧdström 1952) and Hörmander (see Hörmander 1954), K(Rn), the space of
all nonempty compact convex subsets of Rn, is embedded into the Banach
space of support functions. Diamond (1990) defined a L2 metric in this Ba-
nach space of support functions, and found the regression coefficients by min-
imizing the L2 metric of the sum of residuals. This idea was further studied
in Gil et al. (2002), where the L2 metric was replaced by a generalized metric
on the space of nonempty compact intervals, called “W-distance”, proposed
earlier by Körner and Nather (1998). Separately, Billard and Diday (2003)
introduced the central tendency and dispersion measures and developed the
symbolic interval data analysis based on those. (See also Carvalho et al.,
2004.) However, none of the existing literature considered distributions of
the random intervals and the corresponding statistical methods.

It is well known that normality plays an important role in classical statis-
tics. But the normal distribution for random sets remained undefined for
a long time, until the 1980s when the concept of normality was first intro-
duced for compact convex random sets in the Euclidean space by Lyashenko
(1983). It is especially useful in deriving limit theorems for random sets.
See, Puri et al. (1986), Norberg (1984), among others. Since a compact con-
vex set in R is a closed bounded interval, by the definition of Lyashenko
(1983), a normal random interval is simply a displacement of a fixed closed
bounded interval. From the point of view of statistics, this is not enough to
fully capture the randomness of a general random interval.

In this paper, we extend the definition of normality given by Lyashenko
(1983) and propose a normal hierarchical model for random intervals. With
one more degree of freedom on “shape”, our model conveniently captures the
entire randomness of random intervals via a few parameters. Therefore, it
adds to the literature the possibility of distribution-based inference methods
for interval-valued data. Especially, conditioning on the first hierarchy, our
normal hierarchical random interval is exactly the normal random interval
defined by Lyashenko (1983). This could be a very useful property in view
of the limit theorems. In addition, with certain choices of the distributions,
a linear combination of our normal hierarchical random intervals follows the
same normal hierarchical distribution. An immediate consequence of this
property is the possibility of a factor model for multi-dimensional random
intervals, based on our normal hierarchical distribution, as the “factor” will
have the same distribution as the original intervals.
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To estimate the parameters and make inferences for our Normal hierar-
chical model, we propose a minimum contrast estimator (MCE) based on
the hitting function of the random interval. We show that under certain con-
ditions the MCE satisfies a strong consistency and asymptotic normality. A
simulation study is carried out for one specific distribution, and the results
are consistent with our theorems. We apply our model to analyze a daily
temperature range data and, in this context, we have derived interesting and
promising results.

The rest of the paper is organized as follows. Section 2 formally defines
our Normal hierarchical model and discusses its statistical properties. Sec-
tion 3 introduces a minimum contrast estimator for the model parameters,
and presents its asymptotic properties. A simulation study is reported in
Section 4, and a real data application is demonstrated in Section 5. We give
concluding remarks in Section 6. Proofs of the theorems are presented in
Section 7. Useful lemmas and other proofs are deferred to the Appendix.

2. The Normal hierarchical model.

2.1. Definition. Let (Ω,L, P ) be a probability space. Denote by K the
collection of all non-empty compact subsets of Rd. A random compact set is
a Borel measurable function A : Ω → K, K being equipped with the Borel
σ-algebra induced by the Hausdorff metric. If A(ω) is convex for almost all
ω, then A is called a random compact convex set. (See Molchanov 2005,
p.21, p.102.) Denote by KC the collection of all compact convex subsets of
R
d. By Theorem 1 of Lyashenko (1983), a compact convex random set A in

the Euclidean space Rd is Gaussian if and only if A can be represented as the
Minkowski addition of a fixed compact convex set M and a d-dimensional
normal random vector ǫ, i.e.

(1) A = M + {ǫ} .
As pointed out in Lyashenko (1983), the Gaussian random set defined above
is especially useful in view of the limit theorems discussed earlier in Lyashenko
(1979). That is, if the conditions in those theorems are satisfied and the limit
exists, then it is Gaussian in the sense of (1). Puri et al. (1986) extended
these results to a separable Banach space.

In the following, we will restrict ourselves to compact convex random sets
in R

1, that is, bounded closed random intervals. They will be called random
intervals for ease of presentation.

According to (1), a random interval A is Gaussian if and only if A is
representable in the form

(2) A = I + {ǫ} ,
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where I is a fixed bounded closed interval and ǫ is a normal random vari-
able. Obviously, such a random interval is simply a displacement of a fixed
interval, so it is not enough to fully capture the randomness of a general
random interval. In order to model the randomness of both the location and
the “shape” (length), we propose the following Normal hierarchical model
for random intervals:

A = I + {ǫ} ,(3)

I = ηI0,(4)

where η is another random variable and I0 is a fixed interval in R. Here,
the product ηI0 is in the sense of scalar multiplication of a real number and
a set. Let λ(·) denote the Lebesgue measure of a compact convex subset of
R
d, which in the case d = 1 is the length of an interval. Then,

λ(A) = λ(ǫ+ ηI0) = λ(ηI0) = |η|λ(I0).

That is, η is the parameter that models the length of A. In particular, if
η → 0, then A reduces to a normal random variable.

An interesting property of the Normal hierarchical random interval is that
its linear combination is still a Normal hierarchical random interval. This is
seen by simply observing that

n
∑

i=1

aiAi =
n
∑

i=1

ai (ǫi + ηiI0) =
n
∑

i=1

aiǫi + I0

(

n
∑

i=1

aiηi

)

,(5)

for arbitrary constants ai, i = 1, · · · , n, where “+” denotes the Minkowski
addition. This is very useful in developing a factor model for the analysis
of multiple random intervals. Especially, if we assume ηi ∼ N(µi, σ

2
i ), i =

1, · · · , n, then the “factor”
n
∑

i=1
aiAi has exactly the same distribution as the

original random intervals. We will elaborate more on this issue in section 4.
Without loss of generality, we can assume in the model (3)-(4) that Eǫ =

0. We will make this assumption throughout the rest of the paper.

2.2. Model properties. The fundamental theory of random sets was de-
veloped in the 1960s and 1970s. See, e.g., Matheron (1967), Matheron (1975),
and Kendall (1974). According to the Choquet theorem (Molchanov 2005,
p.10), the distribution of a random closed set (and random compact convex
set as a special case) A, is completely characterized by the hitting function
T defined as:

(6) T (K) = P (K ∩A 6= ∅), ∀K ∈ KC .
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T is also called the Choquet capacity functional. For compact convex sets,
there is another functional, containment functional C(K) = P (A ⊂ K),
∀K ∈ KC , which also uniquely determines the distribution. But we are not
considering C(K) in this paper.

Writing I0 = [a0, b0] with a0 ≤ b0, the Normal hierarchical random inter-
val in (3)-(4) has the following hitting function: ∀[a, b] ∈ KC ,

TA([a, b])

= P ([a, b] ∩A 6= ∅)
= P ([a, b] ∩A 6= ∅, η ≥ 0) + P ([a, b] ∩A 6= ∅, η < 0)

= P (a− ηb0 ≤ ǫ ≤ b− ηa0, η ≥ 0) + P (a− ηa0 ≤ ǫ ≤ b− ηb0, η < 0).

The expected value of a compact convex random set A is defined by the
Aumann integral of a set-valued function (see Aumann 1965, Artstein and
Vitale 1975) as

EA = {Eξ : ξ ∈ A almost surely} .

In particular, the Aumann expectation of a random interval A is given by

(7) EA = [EAl, EAu],

where Al and Au are the lower and upper bound of A respectively. Therefore,
the Aumann expectation of the Normal hierarchical random interval A is

EA = E(ǫ+ ηI0) = Eǫ+ E(ηI0) = E(ηI0)

= E
{

[a0η, b0η]I(η≥0) + [b0η, a0η]I(η<0)

}

= E
[

a0ηI(η≥0) + b0ηI(η<0), b0ηI(η≥0) + a0ηI(η<0)

]

= [a0Eη+ + b0Eη−, b0Eη+ + a0Eη−] ,

where

η+ = ηI(η≥0),

η− = ηI(η<0).

Notice that η+ can be interpreted as the positive part of η, but η− is not
the negative part of η, as η− < 0 when η < 0.

The variance of a compact convex random set A in R
d is defined via its

support function. (See Körner 1995, 1997.) Let Sd−1 be the unit sphere in
R
d, and let µ be the normalized (d − 1)-dimensional Lebesgue measure on

Sd−1, i.e., µ(Sd−1) = 1. The support function sA(·) of A is defined as

sA(u) = sup
a∈A

< u, a >,∀u ∈ Sd−1.
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A compact convex set A corresponds uniquely to its support function sA(·).
See Schneider (1993, p.37) for example. Let ‖·‖2 denote the L2-metric in the
space of Lebesgue square integrable functions on Sd−1. The δ2 metric in KC

is defined by

δ2(A,B) = ‖sA − sB‖2 =
{

d

∫

Sd−1

|sA(u)− sB(u)|2µ(du)
} 1

2

,∀A,B ∈ KC .

Then the variance of A is defined as

(8) V ar(A) = Eδ22(A,EA),

where EA is the Aumann expectation defined in (7). In the special case
when d = 1, it is shown by straightforward calculations that

(9) V ar(A) =
1

2
V ar(Al) +

1

2
V ar(Au),

for a random interval A. See, for example, Körner (1995). For the Normal
hierarchical random interval A,

V ar(Al)

= V ar (ǫ+ a0η+ + b0η−)

= E (ǫ+ a0η+ + b0η−)
2 − [E (ǫ+ a0η+ + b0η−)]

2

= Eǫ2 + a20V ar(η+) + b20V ar(η−)

+2 (a0Eǫη+ + b0Eǫη− − a0b0Eη+Eη−) ,

and,

V ar(Au)

= V ar (ǫ+ b0η+ + a0η−)

= E (ǫ+ b0η+ + a0η−)
2 − [E (ǫ+ b0η+ + a0η−)]

2

= Eǫ2 + b20V ar(η+) + a20V ar(η−)

+2 (b0Eǫη+ + a0Eǫη− − a0b0Eη+Eη−) .

The variance of A is then found to be

V ar(A) =
1

2
V ar(Al) +

1

2
V ar(Au)

= Eǫ2 +
1

2

(

a20 + b20
)

[V ar(η+) + V ar(η−)]

+(a0 + b0)Eǫη − 2a0b0Eη+η−.
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Remark. From the discussion earlier in this section, we see that for the
Normal hierarchical model (3)-(4), ǫ and η are the “location” and “shape”
parameters respectively. Therefore, in most cases, it is sufficient to assume
that η > 0. Under this assumption, we have η+ = η and η− ≡ 0. Conse-
quently,

EA = Eη [a0, b0] ,

and

V ar(A) = Eǫ2 +
1

2
(a20 + b20)V ar(η) + (a0 + b0)Eǫη

= V ar(ǫ) +
1

2
(a20 + b20)V ar(η) + (a0 + b0)Cov(ǫ, η),

with Eǫ = 0.

3. The minimum contrast estimator.

3.1. Definitions. We study the minimum contrast estimator (MCE) of
the Normal hierarchical random interval (3)-(4), as well as its asymptotic
properties. Since d = 1, from now on we let K be the space of all non-empty
compact subsets in R restrictively, and let F be the Borel σ-algebra on K
induced by the Hausdorff metric. Let KC denote the space of all non-empty
compact convex subsets, i.e., bounded closed intervals, in R. As mentioned
in the previous section, a random interval X is a Borel measurable function
from a probability space (Ω,L, P ) to (K,F) such that X ∈ KC almost surely.

Throughout this section, we assume observing a sample of i.i.d. random
intervals X(n) = {X1,X2, · · · ,Xn}. Let θ denote a p× 1 vector containing
all the parameters in the model, which takes on a value from a parameter
space Θ ⊂ R

p. Here p is the number of parameters. Let θ0 denote the true
value of the parameter vector. Denote by Tθ(a, b) the hitting function of Xi

with respect to θ,∀[a, b] ∈ KC .
In order to introduce the MCE, we will need some extra notations. Let X

be a basic set and A be a σ-field over it. Let B denote a family of probability
measures on (X,A) and τ be a mapping from B to some topologial space T .
τ(P ) denotes the parameter value pertaining to P , ∀P ∈ B. The classical
definition of MCE given in Pfanzagl (1969) is quoted below.

Definition 1. [Pfanzagl(1969)] A family of A-measurable functions
ft : X → R, t ∈ T is a family of contrast functions if

(10) EP [ft] < ∞,
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∀t ∈ T,∀P ∈ B, and

(11) EP

[

fτ(P )

]

< EP [ft] ,

∀t ∈ T,∀P ∈ B, t 6= τ(P ).

In other words, a contrast function is a measurable function of the random
variable(s) whose expected value reaches its minimum under the probability
measure that generates the random variable(s). From the view of probability,
with the true parameters, a contract function tends to have a smaller value
than with other parameters. The contrast function is an essential concept in
classical statistics. For example, the negative log likelihood (and the negative
log density when there is one single observation) is a contrast function,
minimizing which leads to the well-known maximum likelihood estimation
(MLE).

Adopting some notations from Pfanzagl (1969), we let B denote a family
of probability measures on (KC ,F) and τ be a mapping from B to some
topologial space T . Similarly, τ(P ) denotes the parameter value pertaining
to P , ∀P ∈ B. We modify the notion of MCE in Heinrich (1993) according
to the scenario of random intervals, and give our definition of contrast func-
tion below. And then the MCE is defined as the minimizer of the contrast
function.

Definition 2. A family of Fn-measurable functions M(X(n);θ): Kn
C →

[−∞,+∞], n ∈ N, θ ∈ Θ is a family of contrast functions for B, if there
exists a function N(·, ·): Θ×Θ → R such that

(12) Pθ(
{

ω : lim
n→∞

M(X(n); ζ) = N(θ, ζ)
}

) = 1, ∀ θ, ζ ∈ Θ,

and

(13) N(θ,θ) < N(θ, ζ) ∀ θ, ζ ∈ Θ, θ 6= ζ.

Definition 3. A Fn-measurable function θ̂n: Kn
C → τ(B), which de-

pends on X(n) only, is called a minimum contrast estimator (MCE) if

(14) M(X(n); θ̂n) = inf {M(X(n);θ) : θ ∈ τ(B)} .

3.2. Theoretical results. We make the following assumptions to present
the theoretical results in this section.

Assumption 1. Θ is compact, and θ0 is an interior point of Θ.
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Assumption 2. The model is identifiable.

Assumption 3. Tθ(·, ·) is continuous with respect to θ.

Assumption 4.
∂Tθ0

∂θi
(·, ·), i = 1, ·, p, exist and are finite on a bounded

region S0 ⊂ R
2.

Assumption 5. ∂Tθ

∂θj
(·, ·), ∂2Tθ

∂θj∂θk
(·, ·), and ∂3Tθ

∂θj∂θk∂θl
(·, ·), i, j, k = 1, · · · , p,

exist and are finite on S0 for θ ∈ Θ.

Assumption 4 and 5 are essential to establish the asymptotic normality
for the MCE θ̂n. It is rather mild and can be met by a large class of capacity
functionals. For example, if S0 is closed, then each Tθ0

with continuous up
to third order partial derivatives satisfy both assumptions, as a continuous
function on a compact region is always bounded. The following theorem
gives sufficient conditions under which the minumum contrast estimator θ̂n

defined above is strongly consistent.

Theorem 1. Let M(X(n);θ) be a contrast function as in Definition 2
and let θ̂n be the corresponding MCE. Under the hypothesis of Assumption
1 and in addition if M(X(n);θ) is equicontinuous w.r.t. θ for all X(n), n =
1, 2, · · · , then,

θ̂n → θ0 a.s., as n → ∞.

Let [a, b] ∈ KC . Define an empirical estimator T̂ (a, b;X(n)) for T (a, b) as:

(15) T̂ (a, b;X(n)) =
# {Xi : [a, b] ∩Xi 6= ∅, i = 1, · · · , n}

n
.

Extending the contrast function defined in Heinrich (1993) (for parameters
in the Boolean model), we construct a family of functions:

(16) H(X(n);θ) =

∫∫

S

[

Tθ(a, b)− T̂ (a, b;X(n))
]2

W (a, b)dadb,

for θ ∈ Θ, where S ⊂ S0 ⊂ R
2, and W (a, b) is a weight function on [a, b]

satisfying 0 < W (a, b) < C, ∀[a, b] ∈ KC .
We show in the next Proposition that H(X(n);θ), θ ∈ Θ defined in

(16) is a family of contrast functions for θ. This, together with Theorem
1, immediately yields the strong consistency of the associated MCE. This
result is summarized in Corollary 1.
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Proposition 1. Consider that Assumption 2 and Assumption 3 are
satisfied. Then H(X(n);θ), θ ∈ Θ, as defined in (16), is a family of contrast
functions with limiting function

(17) N(θ, ζ) =

∫∫

S

[Tθ(a, b) − Tζ(a, b)]
2 W (a, b)dadb.

In addition, H(X(n);θ) is equicontinuous w.r.t. θ.

Corollary 1. Consider that Assumption 1, Assumption 2, and As-
sumption 3 are satisfied. Let H(X(n);θ) be defined as in (16), and

(18) θH
n = argmin

θ∈Θ
H (X(n);θ) .

Then
θH
n → θ0, a.s.,

as n → ∞.

Next, we show the asymptotic normality for θH
n . As a preparation, we

first prove the following proposition. The central limit theorem for θH
n is

then presented afterwards.

Proposition 2. Assume the conditions of Lemma 1 (in the Appendix).
Define

∂H

∂θ
(X(n);θ) :=

[

∂H

∂θ1
(X(n);θ) , · · · , ∂H

∂θp
(X(n);θ)

]T

,

as the p× 1 gradient vector of H (X(n);θ) w.r.t. θ. Then,

√
n

[

∂H

∂θ
(X(n);θ0)

]

D→ N (0,Ξ) ,

where Ξ is the p× p symmetric matrix with the (i, j)th component

Ξ(i, j) = 4

∫∫∫∫

S×S

{P (X1 ∩ [a, b] 6= ∅,X1 ∩ [c, d] 6= ∅)− Tθ0
(a, b)Tθ0

(c, d)}

∂Tθ0

∂θi
(a, b)

∂Tθ0

∂θj
(c, d)W (a, b)W (c, d)dadbdcdd.(19)
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Theorem 2. Let H(X(n);θ) be defined in (16) and θH
n be defined in

(18). Assume the conditions of Corollary 1. If additionally Assumption 5 is
satisfied, then

(20)
√
n
(

θH
n − θ0

) D→ N
(

0, C(Tθ0
)−1ΞC(Tθ0

)−1
)

,

where C(Tθ0
) = 2

∫∫

S

(

∂Tθ0

∂θ

)(

∂Tθ0

∂θ

)T

(a, b)W (a, b)dadb, and Ξ is defined in

(19).

4. Simulation. We carry out a small simulation to investigate the per-
formance of the MCE introduced in Definition 3. Assume, in the Normal
hierarchical model (3)-(4), that

(21)

[

ǫ

η

]

∼ BVN

([

0
µ

]

,Σ =

[

σ2
1 σ12

σ12 σ2
2

])

,

and

(22) b0 = a0 + 1.

The bivariate normal distribution conveniently takes care of the variances
and covariance of the location parameter ǫ and the shape parameter η. In
addition, as seen in (5) in section 2, it is one distribution that makes the
“factors” identically distributed as the observed random intervals in a factor
model for multiple random intervals. The removal of the freedom of b0 is
for model identifiability purposes; it is seen that the hitting function TA is
defined via ηa0 and ηb0 only. For the simulation, we assign the following
parameter values:

a0 = 1, µ = 20,Σ =

[

10 1
1 10

]

.

According to these values, P (η < 0) = 1.2698×10−10 . Therefore the hitting
function is approximately:

Tθ([a, b])

= P (a− ηb0 ≤ ǫ ≤ b− ηa0, η ≥ 0) + P (a− ηa0 ≤ ǫ ≤ b− ηb0, η < 0)

< P (a− ηb0 ≤ ǫ ≤ b− ηa0, η ≥ 0) + P (η < 0)

< P (a− ηb0 ≤ ǫ ≤ b− ηa0, η ≥ 0) + 10−10

≈ P (a− ηb0 ≤ ǫ ≤ b− ηa0)

= P

([

1 a0
−1 −a0 − 1

] [

ǫ

η

]

≤
[

b

−a

])

= Φ

([

b

−a

]

;D

[

0
µ

]

,DΣD
′

)

,
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where Φ (x;µ,Ω) is the bivariate normal cdf with mean µ and covariance

Ω, and D =

[

1 a0
−1 −a0 − 1

]

. This is another convenience offered by the

bivariate normal distribution.
We simulate a random sample of size n from model (3)-(4) with the as-

signed parameter values, and then compute the MCE’s for the model pa-
rameters based on the simulated sample. The process is repeated 10 times
independently for each n, and we let n = 100, 200, 300, 400, 500, successively,
to study the consistency and efficiency of the MCE’s. The minimization is
carried out in Matlab 2011a using the function fminsearch.m. Figure 1 shows
one random sample of 100 observations generated from the model. We show
the average biases and standard errors of the estimates as functions of the
sample size in Figure 2 . Here, the average bias and standard error of the
estimates of Σ are the L2 norms of the average bias and standard error ma-
trices, respectively. As expected from Corollary 1 and Theorem 2, both the
bias and the standard error reduce to 0 as sample size grows to infinity. The
numerical results are summarized in Table 1.

Finally, we point out that the choice of the region of integration S is
important. A larger S usually leads to more accurate estimates, but could
also result in more computational complexity. We do not investigate this
issue in this paper. However, based on our simulation experience, an S that
covers most of the points (a, b) ∈ R

2 such that [a, b] hits some of the ob-
served intervals, is a good choice as a rule of thumb. In our simulation,
E(A) ≈ [20, 40], by ignoring a small probability P (η < 0). Therefore, we
choose S = {(x− y, x+ y) : 20 ≤ x ≤ 40, 0 ≤ y ≤ 10}, and the estimates are
satisfactory.

0 20 40 60 80 100
0

10

20

30

40

50

60
A simulated random sample of Model (1)−(3)

Fig 1. Plot of a simulated sample from model (3)-(4) with n = 100.
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Fig 2. Average bias and standard error of the MCE’s for a0 (top left), µ (top right), and
Σ (bottom), as a function of the sample size n.

5. A real data application. In this section, we apply our Normal
hierarchical model and minimum contrast estimator to analyze the daily
temperature range data. We consider two data sets containing ten years of
daily minimum and maximum temperatures in January, in Granite Falls,
Minnesota (latitude 44.81241, longitude 95.51389) from 1901 to 1910, and
from 2001 to 2010, respectively. Each data set, therefore, is constituted of
310 observations of the form: [minimum temperature, maximum tempera-
ture] . We obtained these data from the National Weather Service, and all
observations are in Fahrenheit. The plot of the data is shown in Figure 3

Same as in the simulation, we assume a bivariate normal distribution for
(ǫ, η) and I0 = [a0, a0 + 1] has length 1. The minimum contrast estimates
for the model parameters are:

• Data set 1 (1901-1910):

â0,1 = 0.2495, µ̂1 = 19.8573, Σ̂1 =

[

207.1454 −44.8547
−44.8547 102.5263

]

,

• Data set 2 (2001-2010):

â0,2 = 0.2614, µ̂2 = 20.4722, Σ̂2 =

[

318.9283 −84.0892
−84.0892 68.4783

]

.



14 Y. SUN AND D. RALESCU

Table 1

Average biases and standard errors of the MCE’s of the model parameters in the
simulation study.

n a0=1 µ=20 Σ

bias ste bias ste bias ste

100 0.0683 0.1289 1.1648 1.7784 4.1166 5.7951
200 0.0387 0.0457 0.4569 0.5924 3.8581 4.0558
300 0.0274 0.0326 0.1831 0.2598 3.0317 3.9042
400 0.0157 0.0227 0.1575 0.2044 2.8210 3.5128
500 0.0128 0.0161 0.1197 0.1790 2.1494 2.4973
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Fig 3. Plots of daily January temperature range 1901-1910 (left) and 2001-2010 (right).
The estimated mean is the interval between the two horizontal black lines, on each plot.

Denote by A1 and A2 respectively the random intervals from which the
two data sets are drawn. The estimated mean and variance for A1 and A2

are found to be:

E(A1) = [4.8590, 24.9071] , V ar(A1) = 221.2313;

E(A2) = [5.3335, 25.8416] , V ar(A2) = 247.3275.

Both mean and variance of the recent data are larger than those of the
data 100 years ago. The two estimated means are also shown on the data
plots in Figure 3. In addition, the correlation coefficient of (ǫ, η) is −0.3078
for data set 1 and −0.5690 for data set 2, suggesting a negative correlation
between the location and the length for the January temperature range data
in general. That is, colder days tend to have larger temperature ranges, and,
this relationship is stronger in the more recent data.
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6. Conclusion. In this paper we introduced a new model of random
sets (specifically for random intervals). In many practical situations data
are not completely known, or are only known with some margins of error,
and it is a very important issue to consider a model which extends normality
for ordinary (numerical) data. Our hierarchical normal model extends nor-
mality for point-valued random variables, and is quite flexible in the sense
that it is well suited for both theoretical investigations and for simulations
and real data analysis. To these goals we have defined a minimum contrast
estimator for the model parameters, and we have proved its consistency and
asymptotic normality. Our main contribution is: distribution-based estima-
tion (as opposed to distance-based, metric space approach). We carry out
simulation experiments, and, finally we apply our model to a real data set
(daily temperature range data obtained from the National Weather Service).
Our approach is suitable for extensions to models in higher dimensions, e.g.,
a factor model for multiple random intervals, or more general random sets,
including possible extensions to spherical random sets.

7. Proofs.

7.1. Proof of Theorem 1. Assume by contradiction that θ̂n does not con-
verge to θ0 almost surely. Then, there exists an ǫ > 0 such that

P (

{

ω : lim sup
n→∞

∥

∥

∥θ̂n(ω)− θ0

∥

∥

∥ ≥ ǫ

}

) > 0.

Let F :=
{

ω : lim supn→∞

∥

∥

∥
θ̂n(ω)− θ0

∥

∥

∥
≥ ǫ
}

and Λ := Θ∩{θ : ‖θ − θ0‖ ≥ ǫ}.
By the compactness of Λ, for every ω ∈ F , there exists a convergent subse-

quence
{

θ̂ni
(ω)
}

of
{

θ̂n(ω)
}

such that

θ̂ni
(ω) → θ̃ ∈ Λ,
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as i → ∞. Observe that

lim inf
i→∞

M(X(ni);θ0)

≥ lim inf
i→∞

M(X(ni); θ̂ni
)

= lim inf
i→∞

{

M(X(ni); θ̂ni
)−M(X(ni); θ̃) +M(X(ni); θ̃)

}

≥ lim inf
i→∞

{

M(X(ni); θ̂ni
)−M(X(ni); θ̃)

}

+ lim inf
i→∞

{

M(X(ni); θ̃)
}

= lim inf
i→∞

{

M(X(ni); θ̃)
}

(23)

= lim
n→∞

{

M(X(ni); θ̃)
}

= N(θ̃;θ0).

Equation (23) follows from the equicontinuity of M(X(n);θ).
On the other hand,

lim inf
i→∞

M(X(ni);θ0) = lim
n→∞

M(X(ni);θ0) = N(θ0,θ0).

Therefore,

(24) P (
{

ω : N(θ0,θ0) ≥ N(θ̃(ω),θ0)
}

) > 0,

where θ̃ ∈ Λ and consequently θ̃ 6= θ0. But from the assumptions,N(θ0,θ0) <
N(θ̃(ω),θ0),∀ω. This contradicts (24), and therefore completes the proof.

7.2. Proof of Theorem 2. From Taylor’s Theorem, we have

∂H

∂θi

(

X (n) ;θH
n

)

= 0

=
∂H

∂θi
(X (n) ;θ0) +

p
∑

j=1

(

θHn,j − θ0,j
) ∂2H

∂θj∂θi
(X (n) ;θ0)

+
1

2





p
∑

j=1

(

θHn,j − θ0,j
) ∂

∂θj





2

∂H

∂θi
(X (n) ; ǫn)

=
∂H

∂θi
(X (n) ;θ0)

+

p
∑

j=1

(

θHn,j − θ0,j
)

[

∂2H

∂θj∂θi
(X(n);θ0) +

1

2

p
∑

l=1

(

θHn,l − θ0,l
) ∂3H

∂θl∂θj∂θi
(X (n) ; ǫn)

]

,
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for i = 1, · · · , p, where ǫn lies between θ0 and θH
n . Writing the above equa-

tions in matrix form, we get

∂H

∂θ
(X(n);θ0)

+





∂2H

∂θ2 (X(n);θ0) +
1

2

p
∑

j=1

(

θHn,j − θ0,j
)

(

∂

∂θj

(

∂2H

∂θ

)

(X(n); ǫn)

)





(

θH
n − θ0

)

= 0.(25)

Observe, by taking derivatives under the integral sign, that ∀i, j,

∂2H

∂θj∂θi
(X(n);θ0)

=
∂2H

∂θj∂θi

∫∫

S

[

Tθ(a, b) − T̂ (a, b;X(n))
]2

W (a, b)dadb,

=
∂

∂θj
2

∫∫

S

[

Tθ(a, b)− T̂ (a, b;X(n))
] ∂Tθ0

∂θi
(a, b)W (a, b)dadb,

= 2

∫∫

S

[

Tθ(a, b) − T̂ (a, b;X(n))
] ∂2Tθ0

∂θj∂θi
(a, b)W (a, b)dadb

+2

∫∫

S

(

∂Tθ0

∂θj

∂Tθ0

∂θi

)

(a, b)W (a, b)dadb

:= I + II.

The first term is

I = 2

∫∫

S

(

Tθ0
(a, b)− 1

n

n
∑

k=1

Yk (a, b)

)

∂2Tθ0

∂θj∂θi
(a, b)W (a, b)dadb

=
2

n

n
∑

k=1

∫∫

S

[Tθ0
(a, b)− Yk (a, b)]

∂2Tθ0

∂θj∂θi
(a, b)W (a, b)dadb

= oP (1),

according to the strong law of large numbers for i.i.d. random variables.
Therefore,

∂2H

∂θj∂θi
(X(n);θ0) = oP (1) + 2

∫∫

S

(

∂Tθ0

∂θj

∂Tθ0

∂θi

)

(a, b)W (a, b)dadb,
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∀i, j. In matrix form,

(26)
∂2H

∂θ2 (X(n);θ0) = oP (1)+2

∫∫

S

(

∂Tθ0

∂θ

)(

∂Tθ0

∂θ

)T

(a, b)W (a, b)dadb.

Observe again that ∀j, k, l,
∣

∣

∣

∣

∂3H(X(n); ǫn)

∂θj∂θk∂θl

∣

∣

∣

∣

≤ 2

∫∫

S

∣

∣

∣

∣

[

Tǫn(a, b)− T̂ (a, b;X(n))
] ∂3Tǫn

∂θj∂θk∂θl
(a, b)W (a, b)dadb

∣

∣

∣

∣

+2

∣

∣

∣

∣

∣

∣

∫∫

S

[(

∂Tǫn

∂θj

∂2Tǫn

∂θk∂θl

)

+

(

∂2Tǫn

∂θj∂θk

∂Tǫn

∂θl

)

+

(

∂2Tǫn

∂θj∂θl

∂Tǫn

∂θk

)]

(a, b)W (a, b)dadb

∣

∣

∣

∣

∣

∣

≤ 4

∫∫

S

∣

∣

∣

∣

∂3Tǫn

∂θj∂θk∂θl
(a, b)W (a, b)dadb

∣

∣

∣

∣

+2

∣

∣

∣

∣

∣

∣

∫∫

S

[(

∂Tǫn

∂θj

∂2Tǫn

∂θk∂θl

)

+

(

∂2Tǫn

∂θj∂θk

∂Tǫn

∂θl

)

+

(

∂2Tǫn

∂θj∂θl

∂Tǫn

∂θk

)]

(a, b)W (a, b)dadb

∣

∣

∣

∣

∣

∣

:= C1(ǫn) ≤ C2,

∀ǫn ∈ Θ, by the compactness of Θ. This, together with the strong consistency
of θH

n , gives

1

2

p
∑

j=1

(

θHn,j − θ0,j
)

(

∂

∂θj

(

∂2H

∂θk∂θl

)

(X(n); ǫn)

)

=
1

2

p
∑

j=1

oP (1)
∂3H(X(n); ǫn)

∂θj∂θk∂θl

= oP (1),

∀k, l. Equivalently, in matrix form,

(27)
1

2

p
∑

j=1

(

θHn,j − θ0,j
)

(

∂

∂θj

(

∂2H

∂θ

)

(X(n); ǫn)

)

= oP (1).

By the multivariate Slutsky’s theorem, Proposition 2, together with equation
(25), (26), and (27), yields the desired result.
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8. Appendix.

8.1. Proof of Proposition 1. Notice that T̂ (a, b;X(n)) is the sample mean
of i.i.d. random variables Yi : Ω → R defined as:

(28) Yi =

{

1, if Xi ∩ [a, b] 6= ∅,
0, otherwise.

.

Therefore, an application of the strong law of large numbers in the classical
case yields:

1

n

n
∑

i=1

Yi
a.s.→ EY1 = P (X1 ∩ [a, b] 6= ∅) = Tθ0

(a, b) , as n → ∞,

∀a, b : −∞ < a ≤ b < ∞, and assuming θ0 is the true parameter value.
That is,

T̂ (a, b;X(n))
a.s.→ Tθ0

(a, b) ,

as n → ∞. It follows immediately that

[

T̂ (a, b;X(n)) − Tθ0
(a, b)

]2
W (a, b)

a.s.→ 0.

Notice that ∀a, b : −∞ < a ≤ b < ∞,
[

T̂ (a, b;X(n)) − Tθ0
(a, b)

]2
W (a, b) is

uniformly bounded by 4C. By the bounded convergence theorem,
∫∫

S

[

T̂ (a, b;X(n)) − Tθ0
(a, b)

]2
W (a, b)dadb

a.s.→
∫∫

S

0 · dadb = 0,

given any S ⊂ R
2 with finite Lebesgue measure. This verifies that

(29) Pθ

{

ω : lim
n→∞

H (X(n);θ) = 0
}

= 1.

Similarly, we also get
(30)

Pθ







ω : lim
n→∞

H (X(n); ζ) =

∫∫

S

[Tθ(a, b)− Tζ(a, b)]
2 W (a, b)dadb







= 1,

∀θ, ζ ∈ Θ. Equations (29) and (30) together imply

(31) N(θ, ζ) =

∫∫

S

[Tθ(a, b)− Tζ(a, b)]
2 W (a, b)dadb, θ, ζ ∈ Θ.



20 Y. SUN AND D. RALESCU

By Assumption 2, Tθ(a, b) 6= Tζ(a, b), for θ 6= ζ, except on a Lebesgue set
of measure 0. This together with (31) gives

N(θ,θ) < N(θ, ζ), ∀ θ 6= ζ, θ, ζ ∈ Θ,

which proves that H(X(n);θ), θ ∈ Θ is a family of contrast functions. To
see the equicontinuity of H(X(n);θ), notice that ∀θ1,θ2 ∈ Θ, we have

|H(X(n);θ1)−H(X(n);θ2)|

= |
∫∫

S

(

Tθ1
(a, b)− T̂ (a, b;X(n))

)2
W (a, b)dadb

−
∫∫

S

(

Tθ2
(a, b) − T̂ (a, b;X(n))

)2
W (a, b)dadb|

= |
∫∫

S

(Tθ1
(a, b)− Tθ2

(a, b))
(

Tθ1
(r) + Tθ2

(a, b)− 2T̂ (a, b;X(n))
)

W (a, b)dadb|

≤ 4C

∫∫

S

|Tθ1
(a, b)− Tθ2

(a, b)| dadb.

Then the equicontinuity ofH(X(n);θ) follows from the continuity of Tθ(a, b).

8.2. Lemma 1. Let H(X(n);θ) be the contrast function defined in (16).
Under the hypothesis of Assumption 4,

√
n

[

∂H

∂θi
(X (n) ;θ0)

]

D→ N (0,∆i) , as n → ∞,

for i = 1, · · · , p, where

∆i = 4

∫∫∫∫

S×S

{P (X1 ∩ [a, b] 6= ∅,X1 ∩ [c, d] 6= ∅)− Tθ0
(a, b)Tθ0

(c, d)}

×∂Tθ0

∂θi
(a, b)

∂Tθ0

∂θi
(c, d)W (a, b)W (c, d)dadbdcdd.

Proof. We will write
∂Tθ0

(a,b)

∂θi
= T i

θ0
(a, b) to simplify notations. Ex-

changing differentiation and integration by the bounded convergence theo-
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rem, we get

∂H

∂θi
(X (n) ;θ0)(32)

=
∂

∂θi

∫∫

S

(

Tθ0
(a, b)− T̂ (a, b;X(n))

)2
W (a, b)dadb

=

∫∫

S

∂

∂θi

(

Tθ0
(a, b)− T̂ (a, b;X(n))

)2
W (a, b)dadb

=

∫∫

S

2
(

Tθ0
(a, b)− T̂ (a, b;X(n))

)

T i
θ0

(a, b)W (a, b)dadb.

Define Yi(a, b) as in (28). Then,

(32) =

∫∫

S

2

(

Tθ0
(a, b)− 1

n

n
∑

k=1

Yk (a, b)

)

T i
θ0

(a, b)W (a, b)dadb

=
2

n

∫∫

S

n
∑

k=1

(Tθ0
(a, b)− Yk (a, b))T

i
θ0

(a, b)W (a, b)dadb

=
1

n

n
∑

k=1

2

∫∫

S

(Tθ0
(a, b)− Yk (a, b))T

i
θ0

(a, b)W (a, b)dadb(33)

:=
1

n

n
∑

k=1

Rk.

Notice that Rk’s are i.i.d. random variables: Ω → R.

Let {∆s1,∆s2, · · · ,∆sm} be a partition of S, and (aj , bj) be any point in
∆sj, j = 1, · · · ,m. Let λ = max1≤j≤m {diam∆sj}. Denote by ∆σj the area
of ∆sj. By the definition of the double integral,

Rk = 2

∫∫

S

(Tθ0
(a, b)− Yk (a, b))T

i
θ0

(a, b)W (a, b)dadb

= lim
λ→0







m
∑

j=1

(Tθ0
(aj, bj)− Yk (aj, bj))T

i
θ0

(aj, bj)W (aj, bj)∆σj







.
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Therefore, by the Lebesgue dominated convergence theorem,

ERk

= 2E lim
λ→0







m
∑

j=1

(Tθ0
(aj , bj)− Yk (aj , bj))T

i
θ0

(aj , bj)W (aj , bj)∆σj







= 2 lim
λ→0







m
∑

j=1

[E (Tθ0
(aj , bj)− Yk (aj , bj))]T

i
θ0

(aj , bj)W (aj, bj)∆σj







= 2 lim
λ→0







m
∑

j=1

0







= 0.
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Moreover,

V ar(Rk) = ER2
k

= 4E







lim
λ→0







m
∑

j=1

(Tθ0
(aj, bj)− Yk (aj, bj))T

i
θ0

(aj, bj)W (aj, bj)∆σj













2

= 4E lim
λ1→0

lim
λ2→0







m1
∑

j1=1

(Tθ0
(aj1 , bj1)− Yk (aj1 , bj1))T

i
θ0

(aj1 , bj1)W (aj1 , bj1)∆σj1













m2
∑

j2=1

(Tθ0
(aj2 , bj2)− Yk (aj2 , bj2))T

i
θ0

(aj2 , bj2)W (aj2 , bj2)∆σj2







= 4E lim
λ1→0

lim
λ2→0

m1
∑

j1=1

m2
∑

j2=1

(Tθ0
(aj1 , bj1)− Yk (aj1 , bj1)) (Tθ0

(aj2 , bj2)− Yk (aj2 , bj2))

T i
θ0

(aj1 , bj1)T
i
θ0

(aj2 , bj2)W (aj1 , bj1)W (aj2 , bj2)∆σj1∆σj2

= 4 lim
λ1→0

lim
λ2→0

m1
∑

j1=1

m2
∑

j2=1

E (Tθ0
(aj1 , bj1)− Yk (aj1 , bj1)) (Tθ0

(aj2 , bj2)− Yk (aj2 , bj2))

T i
θ0

(aj1 , bj1)T
i
θ0

(aj2 , bj2)W (aj1 , bj1)W (aj2 , bj2)∆σj1∆σj2

= 4 lim
λ1→0

lim
λ2→0

m1
∑

j1=1

m2
∑

j2=1

Cov (Yk (aj1 , bj1) , Yk (aj2 , bj2))

T i
θ0

(aj1 , bj1)T
i
θ0

(aj2 , bj2)W (aj1 , bj1)W (aj2 , bj2)∆σj1∆σj2

= 4

∫∫∫∫

S×S

Cov (Yk (a, b) , Yk (c, d))T
i
θ0

(a, b)T i
θ0

(c, d)W (a, b)W (c, d)dadbdcdd

= 4

∫∫∫∫

S×S

{P (Xk ∩ [a, b] 6= ∅,Xk ∩ [c, d] 6= ∅)− Tθ0
(a, b)Tθ0

(c, d)}

T i
θ0

(a, b)T i
θ0

(c, d)W (a, b)W (c, d)dadbdcdd.

From the central limit theorem for i.i.d. random variables, the desired result
follows.

8.3. Proof of Proposition 2. By the Cramér-Wold device, it suffices to
prove

(34)
√
n

p
∑

i=1

λi
∂H

∂θi
(X(n);θ0)

D→ N



0,
∑

1≤i,j≤p

λiλjΞ(i, j)



 ,
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for arbitrary real numbers λi, i = 1, · · · , p. It is easily seen from (33) in the
proof of Lemma 1 that

p
∑

i=1

λi
∂H

∂θi
(X(n);θ0)

=
1

n

n
∑

k=1



2

p
∑

i=1

λi

∫∫

S

(Tθ0
(a, b)− Yk (a, b))

∂Tθ0

∂θi
(a, b)W (a, b)dadb





:=
1

n

n
∑

k=1

(

2

p
∑

i=1

λiQ
i
k

)

.

By Lemma 1,

E

(

2

p
∑

i=1

λiQ
i
k

)

= 2

p
∑

i=1

λi · 0 = 0.

In view of the central limit theorem for i.i.d. random variables, (34) is re-
duced to proving

(35) V ar

(

2

p
∑

i=1

λiQ
i
k

)

=
∑

1≤i,j≤p

λiλjΞ(i, j).

By a similar argument as in Lemma 1, together with some algebraic calcu-
lations, we obtain

V ar

(

2

p
∑

i=1

λiQ
i
k

)

= 4
∑

1≤i,j≤p

λiλjCov
(

Qi
k, Q

j
k

)

= 4
∑

1≤i,j≤p

λiλjE





∫∫

S

(Tθ0
(a, b)− Yk (a, b))

∂Tθ0

∂θi
(a, b)W (a, b)dadb









∫∫

S

(Tθ0
(a, b)− Yk (a, b))

∂Tθ0

∂θj
(a, b)W (a, b)dadb





= 4
∑

1≤i,j≤p

λiλj

∫∫∫∫

S×S

{P (X1 ∩ [a, b] 6= ∅,X1 ∩ [c, d] 6= ∅) − Tθ0
(a, b)Tθ0

(c, d)}

∂Tθ0

∂θi
(a, b)

∂Tθ0

∂θj
(c, d)W (a, b)W (c, d)dadbdcdd.

This validates (35), and hence finishes the proof.
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