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Abstract

In this paper, we show that the adaptive multidimensional increment ratio estimator of the long range

memory parameter defined in Bardet and Dola (2012) satisfies a central limit theorem (CLT in the sequel)

for a large semiparametric class of Gaussian fractionally integrated processes with memory parameter

d ∈ (−0.5, 1.25). Since the asymptotic variance of this CLT can be computed, tests of stationarity or

nonstationarity distinguishing the assumptions d < 0.5 and d ≥ 0.5 are constructed. These tests are

also consistent tests of unit root. Simulations done on a large benchmark of short memory, long memory

and non stationary processes show the accuracy of the tests with respect to other usual stationarity or

nonstationarity tests (KPSS, LMC, ADF and PP tests). Finally, the estimator and tests are applied to

log-returns of famous economic data and to their absolute value power laws.

Keywords: Gaussian fractionally integrated processes; Adaptive semiparametric estimators of the meme-

ory parameter; test of long-memory; stationarity test; unit root test.

1 Introduction

Consider the set I(d) of fractionally integrated time series X = (Xk)k∈Z for −0.5 < d < 1.5 by:

Assumption I(d): X = (Xt)t∈Z is a time series if there exists a continuous function f∗ : [−π, π] → [0,∞[

satisfying:

1. if −0.5 < d < 0.5, X is a stationary process having a spectral density f satisfying

f(λ) = |λ|−2df∗(λ) for all λ ∈ (−π, 0) ∪ (0, π), with f∗(0) > 0. (1.1)

2. if 0.5 ≤ d < 1.5, U = (Ut)t∈Z = Xt−Xt−1 is a stationary process having a spectral density f satisfying

f(λ) = |λ|2−2df∗(λ) for all λ ∈ (−π, 0) ∪ (0, π), with f∗(0) > 0. (1.2)

The case d ∈ (0, 0.5) is the case of long-memory processes, while short-memory processes are considered

when −0.5 < d ≤ 0 and nonstationary processes when d ≥ 0.5. ARFIMA(p, d, q) processes (which are linear

processes) or fractional Gaussian noises (with parameter H = d+ 1/2 ∈ (0, 1)) are famous examples of pro-

cesses satisfying Assumption I(d). The purpose of this paper is twofold: firstly, we establish the consistency
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of an adaptive semiparametric estimator of d for any d ∈ (−0.5, 1.25). Secondly, we use this estimator for

building new semiparametric stationary tests.

Numerous articles have been devoted to estimate d in the case d ∈ (−0.5, 0.5). The books of Beran (1994)

or Doukhan et al. (2003) provide large surveys of such parametric (mainly maximum likelihood or Whittle

estimators) or semiparametric estimators (mainly local Whittle, log-periodogram or wavelet based estima-

tors). Here we will restrict our discussion to the case of semiparametric estimators that are best suited to

address the general case of processes satisfying Assumption I(d). Even if first versions of local Whittle, log-

periodogramm and wavelet based estimators (see for instance Robinson, 1995a and 1995b, Abry and Veitch,

1998) are only considered in the case d < 0.5, new extensions have been provided for also estimating d when

d ≥ 0.5 (see for instance Hurvich and Ray, 1995, Velasco, 1999a, Velasco and Robinson, 2000, Moulines and

Soulier, 2003, Phillips and Shimotsu, 2005, Giraitis et al., 2003 or Moulines et al., 2007,). Moreover, adap-

tive versions of these estimators have also been defined for avoiding any trimming or bandwidth parameters

generally required by these methods (see for instance Moulines and Soulier, 2003, or Veitch et al., 2003,

or Bardet et al., 2008). However there still no exists an adaptive estimator of d satisfying a central limit

theorem (for providing confidence intervals or tests) and valid for d < 0.5 but also for d ≥ 0.5. This is the

first objective of this paper and it will be achieved using multidimensional Increment Ratio (IR) statistics.

Indeed, Surgailis et al. (2008) first defined the statistic IRN (see its definition in (2.3)) from an observed

trajectory (X1, . . . , XN). Its asymptotic behavior is studied and a central limit theorem (CLT in the sequel)

is established for d ∈ (−0.5, 0.5) ∪ (0.5, 1.25) inducing a CLT. Therefore, the estimator d̂N = Λ−1
0 (IRN ),

where d 7→ Λ0(d) is a smooth and increasing function, is a consistent estimator of d satisfying also a CLT (see

more details below). However this new estimator was not totally satisfying: firstly, it requires the knowledge

of the second order behavior of the spectral density that is clearly unknown in practice. Secondly, its nu-

merical accuracy is interesting but clearly less than the one of local Whittle or log-periodogram estimators.

As a consequence, in Bardet and Dola (2012), we built an adaptive multidimensional IR estimator d̃
(IR)
N

(see its definition in (3.2)) answering to both these points but only for −0.5 < d < 0.5. This is an adaptive

semiparametric estimator of d and its numerical performances are often better than the ones of local Whittle

or log-periodogram estimators.

Here we extend this preliminary work to the case 0.5 ≤ d < 1.25. Hence we obtain a CLT satisfied by d̃
(IR)
N

for all d ∈ (−0.5, 1.25) with an explicit asymptotic variance depending only on d and this notably allows to

obtain confidence intervals. The case d = 0.5 is now studied and this offers new interesting perspectives: our

adaptive estimator can be used for building a stationarity (or nonstationarity) test since 0.5 is the “border

number” between stationarity and nonstationarity.

There exist several famous stationarity (or nonstationarity) tests. For stationarity tests we may cite the

KPSS (Kwiotowski, Phillips, Schmidt, Shin) test (see for instance Hamilton, 1994, p. 514) and LMC test

(see Leybourne and McCabe, 2000). For nonstationarity tests we may cite the Augmented Dickey-Fuller

test (ADF test in the sequel, see Hamilton, 1994, p. 516-528) and the Philipps and Perron test (PP test in

the sequel, see for instance Elder, 2001, p. 137-146). All these tests are unit root tests, i.e. and roughly

speaking, semiparametric tests based on the model Xt = ρXt−1+ εt with |ρ| ≤ 1. A test about d = 0.5 for a

process satisfying Assumption I(d) is therefore a refinement of a basic unit root test since the case ρ = 1 is a

particular case of I(1) and the case |ρ| < 1 a particular case of I(0). Thus, a stationarity (or nonstationarity

test) based on the estimator of d provides a more sensible test than usual unit root tests.

This principle of stationarity test linked to d was also already investigated in many articles. We can no-

tably cite Robinson (1994), Tanaka (1999), Ling and Li (2001), Ling (2003) or Nielsen (2004). However, all

these papers provide parametric tests, with a specified model (for instance ARFIMA or ARFIMA-GARCH

processes). To our knowledge, such tests were not yet proposed and studied in a general semiparametric

framework.

Here we slightly restrict the general class I(d) to the Gaussian semiparametric class IG(d, β) defined below
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(see the beginning of Section 2). For processes belonging to this class, we construct a new stationarity

test S̃N which accepts the stationarity assumption when d̃
(IR)
N ≤ 0.5 + s with s a threshold depending on

the type I error test and N , while the new nonstationarity test T̃N accepts the nonstationarity assumption

when d̃
(IR)
N ≥ 0.5 − s. Note that d̃

(IR)
N ≤ s′ also provides a test for deciding between short and long range

dependency, as this is done by the V/S test (see details in Giraitis et al., 2003)

In Section 5, numerous simulations are realized on several models of time series (short and long mem-

ory processes).

First, the new multidimensional IR estimator d̃
(IR)
N is compared to the most efficient and famous semipara-

metric estimators for d ∈ [−0.4, 1.2]; the performances of d̃
(IR)
N are extremely convincing and globally better

than the other estimators.

Secondly, the new stationarity S̃N and nonstationarity T̃N tests are compared on the same benchmark of

processes to the most famous unit root tests (KPSS and LMC, ADF and PP tests). And the results are quite

surprising: even on AR[1] or ARIMA[1, 1, 0] processes, multidimensional IR S̃N and T̃N tests provide better

results than KPSS and LMC stationarity tests which are nevertheless constructed for such processes. Note

however that ADF and PP tests provide results slightly better than S̃N and T̃N tests for these processes.

For long-memory processes (such as ARFIMA processes), the results are clear: S̃N and T̃N tests are efficient

tests of (non)stationarity while KPSS, LMC, ADF and PP tests are not relevant at all.

Finally, we studied the stationarity and long range dependency properties of Econometric data. We chose to

apply estimators and tests to the log-returns of daily closing value of 5 classical Stocks and Exchange Rate

Markets. After cutting the series in 3 stages using an algorithm of change detection, we found again this well

known result: the log-returns are stationary and short memory processes while absolute values or powers

of absolute values of log-returns are generally stationary and long memory processes. Classical stationarity

or nonstationarity tests are not able to lead to such conclusions. We also remarked that these time series

during the “last” (and third) stages (after 1997 for almost all) are generally closer to nonstationary processes

than during the previous stages with a long memory parameter close to 0.5.

The forthcoming Section 2 is devoted to the definition and asymptotic behavior of the adaptive multidi-

mensional IR estimator of d. The stationarity and nonstationarity tests are presented in Section 4 while

Section 5 provides the results of simulations and application on econometric data. Finally Section 6 contains

the proofs of main results.

2 The multidimensional increment ratio statistic

In this paper we consider a semiparametric class IG(d, β): for 0 ≤ d < 1.5 and β > 0 define:

Assumption IG(d, β): X = (Xt)t∈Z is a Gaussian time series such that there exist ǫ > 0, c0 > 0,

c′0 > 0 and c1 ∈ R satisfying:

1. if d < 0.5, X is a stationary process having a spectral density f satisfying for all λ ∈ (−π, 0) ∪ (0, π)

f(λ) = c0|λ|−2d + c1|λ|−2d+β +O
(
|λ|−2d+β+ǫ

)
and |f ′(λ)| ≤ c′0 λ

−2d−1. (2.1)

2. if 0.5 ≤ d < 1.5, U = (Ut)t∈Z = Xt−Xt−1 is a stationary process having a spectral density f satisfying

for all λ ∈ (−π, 0) ∪ (0, π)

f(λ) = c0|λ|2−2d + c1|λ|2−2d+β +O
(
|λ|2−2d+β+ǫ

)
and |f ′(λ)| ≤ c′0 λ

−2d+1. (2.2)

Note that Assumption IG(d, β) is a particular (but still general) case of the more usual set I(d) of fractionally

integrated processes defined above.
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Remark 1. We considered here only Gaussian processes. In Surgailis et al. (2008) and Bardet and Dola

(2012), simulations exhibited that the obtained limit theorems should be also valid for linear processes. How-

ever a theoretical proof of such result would require limit theorems for functionals of multidimensional linear

processes difficult to be established.

In this section, under Assumption IG(d, β), we establish central limit theorems which extend to the case

d ∈ [0.5, 1.25) those already obtained in Bardet and Dola (2012) for d ∈ (−0.5, 0.5).

Let X = (Xk)k∈N be a process satisfying Assumption IG(d, β) and (X1, · · · , XN ) be a path of X . For any

ℓ ∈ N∗ define

IRN (ℓ) :=
1

N − 3ℓ

N−3ℓ−1∑

k=0

∣∣∣(
k+ℓ∑

t=k+1

Xt+ℓ −
k+ℓ∑

t=k+1

Xt) + (

k+2ℓ∑

t=k+ℓ+1

Xt+ℓ −
k+2ℓ∑

t=k+ℓ+1

Xt)
∣∣∣

∣∣∣(
k+ℓ∑

t=k+1

Xt+ℓ −
k+ℓ∑

t=k+1

Xt)
∣∣∣+

∣∣∣(
k+2ℓ∑

t=k+ℓ+1

Xt+ℓ −
k+2ℓ∑

t=k+ℓ+1

Xt)
∣∣∣
. (2.3)

The statistic IRN was first defined in Surgailis et al. (2008) as a way to estimate the memory parameter.

In Bardet and Surgailis (2011) a simple version of IR-statistic was also introduced to measure the roughness

of continuous time processes. The main interest of such a statistic is to be very robust to additional or

multiplicative trends.

As in Bardet and Dola (2012), let mj = j m, j = 1, · · · , p with p ∈ N∗ and m ∈ N∗, and define the random

vector (IRN (mj))1≤j≤p. In the sequel we naturally extend the results obtained for m ∈ N∗ to m ∈ (0,∞)

by the convention: (IRN (j m))1≤j≤p = (IRN (j [m]))1≤j≤p (which change nothing to the asymptotic results).

For H ∈ (0, 1), let BH = (BH(t))t∈R be a standard fractional Brownian motion, i.e. a centered Gaus-

sian process having stationary increments and such as Cov
(
BH(t) , BH(s)

)
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Now for d ∈ (−0.5, 0.5)∪ (0.5, 1.25) and j ∈ N∗, define for τ ∈ R,

Z
(j)
d (τ) :=





√
2d(2d+ 1)√
|4d+0.5 − 4|

∫ 1

0

(
Bd−0.5(τ + s+ j)−Bd−0.5(τ + s)

)
ds if d ∈ (0.5, 1.25)

1√
|4d+0.5 − 4|

(
Bd+0.5(τ + 2j)− 2Bd+0.5(τ + j) +Bd+0.5(τ)

)
if d ∈ (−0.5, 05)

. (2.4)

Note that
(
Z

(j)
d (τ)

)
τ
is a stationary Gaussian process for any d ∈ (−0.5, 0.5) ∪ (0.5, 1.25). When d =

0.5, such definition does not hold. However for p ∈ N∗, a definition of the multidimensional process(
Z

(1)
0.5(τ), . . . , Z

(p)
0.5(τ)

)
τ∈R

can be obtained by continuous extension when d → 0.5 of the covariance of
(
Z

(i)
d (0), Z

(j)
d (τ)

)
. Therefore for τ ∈ R, we define

(
Z

(1)
0.5(τ), . . . , Z

(p)
0.5 (τ)

)
τ
as a centered stationary Gaus-

sian multidimensional process satisfying:

Cov
(
Z

(i)
0.5(0), Z

(j)
0.5(τ)

)
:=

1

4 log 2

(
− h(τ + i− j) + h(τ + i) + h(τ − j)− h(τ)

)
for τ ∈ R,

with h(x) = 1
2

(
|x − 1|2 log |x − 1| + |x + 1|2 log |x + 1| − 2|x|2 log |x|

)
for x ∈ R, using the convention

0× log 0 = 0. Now, we establish a multidimensional central limit theorem satisfied by (IRN (j m))1≤j≤p for

all d ∈ (−0.5, 1.25):

Proposition 1. Assume that Assumption IG(d, β) holds with −0.5 ≤ d < 1.25 and β > 0. Then
√
N

m

(
IRN (j m)− E

[
IRN (j m)

])
1≤j≤p

L−→
[N/m]∧m→∞

N (0,Γp(d)) (2.5)

with Γp(d) = (σi,j(d))1≤i,j≤p where for i, j ∈ {1, . . . , p},

σi,j(d) : =

∫ ∞

−∞

Cov
( |Z(i)

d (0) + Z
(i)
d (i)|

|Z(i)
d (0)|+ |Z(i)

d (i)|
|Z(j)

d (τ) + Z
(j)
d (τ + j)|

|Z(j)
d (τ)|+ |Z(j)

d (τ + j)|

)
dτ. (2.6)
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The proof of this proposition as well as all the other proofs is given in Section 6. As numerical experiments

seem to show, we will assume in the sequel that Γp(d) is a definite positive matrix for all d ∈ (−0.5, 1.25).

Now, this central limit theorem can be used for estimating d. To begin with,

Property 2.1. Let X satisfying Assumption IG(d, β) with 0.5 ≤ d < 1.5 and 0 < β ≤ 2. Then, there exists

a non-vanishing constant K(d, β) depending only on d and β such that for m large enough,

E
[
IRN (m)

]
=

{
Λ0(d) +K(d, β)×m−β

(
1 + o(1)

)
if β < 1 + 2d

Λ0(d) +K(0.5, β)×m−2 logm
(
1 + o(1)

)
if β = 2 and d = 0.5

with Λ0(d) := Λ(ρ(d)) where ρ(d) :=





4d+1.5 − 9d+0.5 − 7

2(4− 4d+0.5)
for 0.5 < d < 1.5

9 log(3)

8 log(2)
− 2 for d = 0.5

(2.7)

and Λ(r) :=
2

π
arctan

√
1 + r

1− r
+

1

π

√
1 + r

1− r
log(

2

1 + r
) for |r| ≤ 1. (2.8)

Therefore by choosing m and N such as
(√

N/m
)
m−β logm → 0 when m,N → ∞, the term E

[
IR(jm)

]

can be replaced by Λ0(d) in Proposition 1. Then, using the Delta-method with the function (xi)1≤i≤p 7→
(Λ−1

0 (xi))1≤i≤p (the function d ∈ (−0.5, 1.5) → Λ0(d) is a C∞ increasing function), we obtain:

Theorem 1. Let d̂N (j m) := Λ−1
0

(
IRN (j m)

)
for 1 ≤ j ≤ p. Assume that Assumption IG(d, β) holds with

0.5 ≤ d < 1.25 and 0 < β ≤ 2. Then if m ∼ C Nα with C > 0 and (1 + 2β)−1 < α < 1,

√
N

m

(
d̂N (j m)− d

)
1≤j≤p

L−→
N→∞

N
(
0, (Λ′

0(d))
−2 Γp(d)

)
. (2.9)

This result is an extension to the case 0.5 ≤ d ≤ 1.25 from the case −0.5 < d < 0.5 already obtained in

Bardet and Dola (2012). Note that the consistency of d̂N (j m) is ensured when 1.25 ≤ d < 1.5 but the

previous CLT does not hold (the asymptotic variance of
√

N
m d̂N (j m) diverges to ∞ when d → 1.25, see

Surgailis et al., 2008).

Now define

Σ̂N (m) := (Λ′
0(d̂N (m))−2 Γp(d̂N (m)). (2.10)

The function d ∈ (−0.5, 1.5) 7→ σ(d)/Λ′(d) is C∞ and therefore, under assumptions of Theorem 1,

Σ̂N (m)
P−→

N→∞
(Λ′

0(d))
−2 Γp(d).

Thus, a pseudo-generalized least square estimation (LSE) of d ican be defined by

d̃N (m) :=
(
J ′
p

(
Σ̂N (m)

)−1
Jp

)−1
J ′
p

(
Σ̂N(m)

)−1(
d̂N (mi)

)
1≤i≤p

with Jp := (1)1≤j≤p and denoting J ′
p its transpose. From Gauss-Markov Theorem, the asymptotic variance

of d̃N (m) is smaller than the one of d̂N (jm), j = 1, . . . , p. Hence, we obtain under the assumptions of

Theorem 1:
√
N

m

(
d̃N (m)− d

) L−→
N→∞

N
(
0 , Λ′

0(d)
−2

(
J ′
p Γ

−1
p (d)Jp

)−1
)
. (2.11)

3 The adaptive version of the estimator

Theorem 1 and CLT (2.11) require the knowledge of β to be applied. But in practice β is unknown. The

procedure defined in Bardet et al. (2008) or Bardet and Dola (2012) can be used for obtaining a data-driven
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selection of an optimal sequence (m̃N ) derived from an estimation of β. Since the case d ∈ (−0.5, 0.5) was

studied in Bardet and Dola (2012) we consider here d ∈ [0.5, 1.25) and for α ∈ (0, 1), define

QN (α, d) :=
(
d̂N (j Nα)− d̃N (Nα)

)′
1≤j≤p

(
Σ̂N (Nα)

)−1(
d̂N (j Nα)− d̃N (Nα)

)
1≤j≤p

, (3.1)

which corresponds to the sum of the pseudo-generalized squared distance between the points (d̂N (j Nα))j and

PGLS estimate of d. Note that by the previous convention, d̂N (j Nα) = d̂N (j [Nα]) and d̃N (Nα) = d̃N ([Nα]).

Then Q̂N(α) can be minimized on a discretization of (0, 1) and define:

α̂N := Argminα∈AN
Q̂N(α) with AN =

{ 2

logN
,

3

logN
, . . . ,

log[N/p]

logN

}
.

Remark 2. The choice of the set of discretization AN is implied by our proof of convergence of α̂N to

α∗. If the interval (0, 1) is stepped in N c points, with c > 0, the used proof cannot attest this convergence.

However logN may be replaced in the previous expression of AN by any negligible function of N compared

to functions N c with c > 0 (for instance, (logN)a or a logN with a > 0 can be used).

From the central limit theorem (2.9) one deduces the following limit theorem:

Proposition 2. Assume that Assumption IG(d, β) holds with 0.5 ≤ d < 1.25 and 0 < β ≤ 2. Then,

α̂N
P−→

N→∞
α∗ =

1

(1 + 2β)
.

Finally define

m̃N := N α̃N with α̃N := α̂N +
6 α̂N

(p− 2)(1− α̂N )
· log logN

logN
.

and the estimator

d̃
(IR)
N := d̃N (m̃N ) = d̃N (N α̃N ). (3.2)

(the definition and use of α̃N instead of α̂N are explained just before Theorem 2 in Bardet and Dola, 2012).

The following theorem provides the asymptotic behavior of the estimator d̃
(IR)
N :

Theorem 2. Under assumptions of Proposition 2,

√
N

N α̃N

(
d̃
(IR)
N − d

) L−→
N→∞

N
(
0 ; Λ′

0(d)
−2

(
J ′
p Γ

−1
p (d)Jp

)−1
)
. (3.3)

Moreover, ∀ρ > 2(1 + 3β)

(p− 2)β
,

N
β

1+2β

(logN)ρ
·
∣∣d̃(IR)

N − d
∣∣ P−→

N→∞
0.

The convergence rate of d̃
(IR)
N is the same (up to a multiplicative logarithm factor) than the one of minimax

estimator of d in this semiparametric frame (see Giraitis et al., 1997). The supplementary advantage of

d̃
(IR)
N with respected to other adaptive estimators of d (see for instance Moulines and Soulier, 2003, for

an overview about frequency domain estimators of d) is the central limit theorem (3.3) satisfied by d̃
(IR)
N .

Moreover d̃
(IR)
N can be used for d ∈ (−0.5, 1.25), i.e. as well for stationary and non-stationary processes,

without modifications in its definition. Both this advantages allow to defined a stationarity test based on

d̃
(IR)
N .

4 New stationarity and nonstationarity tests

Assume that (X1, . . . , XN) is an observed trajectory of a process X = (Xk)k∈Z. We define here new

stationarity and nonstationarity tests for X based on d̃
(IR)
N .
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4.1 A new stationarity test

There exist many stationarity and nonstationarity test. The most famous stationarity tests are certainly the

following unit root tests:

• The KPSS (Kwiotowski, Phillips, Schmidt, Shin) test (see for instance Hamilton, 1994, p. 514);

• The LMC (Leybourne, McCabe) test which is a generalization of the KPSS test (see for instance

Leybourne and McCabe, 1994 and 1999)

Here, we consider the following problem of test:

• H0: X is a stationary process.

• H1: X is not a stationary process.

We use a test based on d̃
(IR)
N for deciding between these hypothesis. Hence from the previous CLT 3.3 and

with a type I error α, define

S̃N := 1
d̃
(IR)
N >0.5+σp(0.5) q1−α N(α̃N−1)/2 , (4.1)

where σp(0.5) =
(
Λ′
0(0.5)

−2
(
J ′
p Γ

−1
p (0.5)Jp

)−1
)1/2

(see (3.3)) and q1−α is the (1− α) quantile of a standard

Gaussian random variable N (0, 1).

Then we define the following rules of decision:

• H0 is accepted (or equivalently X is a stationary process) when S̃N = 0.

• H0 is rejected (or equivalently X is a nonstationary process) when S̃N = 1.

From previous results, it is clear that:

Property 1. If X satisfies Assumption IG(d, β) with d < 0.5 and β ∈ (0, 2] (stationary process), the

asymptotic type I error of the test S̃N is α and the test power tends to 1 if X ∈ IG(d, β) with d ≥ 0.5 and

β ∈ (0, 2].

Moreover, this test can be used as a unit root test. Indeed, define the following typical problem of unit

root test. Let Xt = at + b + εt, with (a, b) ∈ R2, and εt an ARIMA(p, d, q) with d = 0 or d = 1. Then, a

(simplified) problem of a unit root test is to decide between:

• HUR
0 : d = 0 and (εt) is a stationary ARMA(p, q) process.

• HUR
1 : d = 1 and (εt − εt−1)t is a stationary ARMA(p, q) process.

Then,

Property 2. Under assumption HUR
0 , the type I error of this unit root test problem using S̃N decreases to

0 when N → ∞ and the test power tends to 1.

4.2 A new nonstationarity test

Famous unit root tests are more often nonstationarity test. For instance, between the most famous tests,

• The Augmented Dickey-Fuller test (see Hamilton, 1994, p. 516-528 for details);

• The Philipps and Perron test (a generalization of the ADF test with more lags) (see for instance Elder,

2001, p. 137-146).

Using the statistic d̃
(IR)
N we propose a new nonstationarity test T̃N for deciding between:
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• H ′
0: X is a nonstationary process when T̃N = 1;

• H ′
1: X is a stationary process when T̃N = 0,

where

T̃N := 1
d̃
(IR)
N <0.5−σp(0.5) q1−α N(α̃N−1)/2 . (4.2)

Then as previously

Property 3. If X satisfies Assumption IG(d, β) with d ≥ 0.5 and β ∈ (0, 2] (nonstationary process), the

asymptotic type I error of the test T̃N is α and the test power tends to 1 if X ∈ IG(d, β) with d < 0.5 and

β ∈ (0, 2].

As previously, this test can also be used as a unit root test where Xt = at+ b + εt, with (a, b) ∈ R2, and

εt an ARIMA(p, d, q) with d = 0 or d = 1. We consider here a “second” simplified problem of unit root test

which is to decide between:

• HUR′

0 : d = 1 and (εt − εt−1)t is a stationary ARMA(p, q) process.

• HUR′

1 : d = 0 and (εt)t is a stationary ARMA(p, q) process..

Then,

Property 4. Under assumption HUR′

0 , the type I error of the unit root test problem using T̃N decreases to

0 when N → ∞ and the test power tends to 1.

5 Results of simulations and application to Econometric and Fi-

nancial data

5.1 Numerical procedure for computing the estimator and tests

First of all, softwares used in this Section are available on http://samm.univ-paris1.fr/-Jean-Marc-Bardet

with a free access on (in Matlab language) as well as classical estimators or tests.

The concrete procedure for applying our MIR-test of stationarity is the following:

1. using additional simulations (realized on ARMA, ARFIMA, FGN processes and not presented here

for avoiding too much expansions), we have observed that the value of the parameter p is not really

important with respect to the accuracy of the test (less than 10% on the value of d̃
(IR)
N ). However, for

optimizing our procedure we chose p as a stepwise function of n:

p = 5× 1{n<120} + 10× 1{120≤n<800} + 15× 1{800≤n<10000} + 20× 1{n≥10000}

and σ5(0.5) ≃ 0.9082; σ10(0.5) ≃ 0.8289; σ15(0.5) ≃ 0.8016 and σ20(0.5) ≃ 0.7861.

2. then using the computation of m̃N presented in Section 3, the adaptive estimator d̃
(IR)
N (defined in

(3.2)) and the test statistics S̃N (defined in (4.1)) and T̃N (defined in (4.2)) are computed.

5.2 Monte-Carlo experiments on several time series

In the sequel the results are obtained from 300 generated independent samples of each process defined below.

The concrete procedures of generation of these processes are obtained from the circulant matrix method, as

detailed in Doukhan et al. (2003). The simulations are realized for different values of d and N and processes

which satisfy Assumption IG(d, β):
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1. the usual ARIMA(p, d, q) processes with respectively d = 0 or d = 1 and an innovation process which

is a Gaussian white noise. Such processes satisfy Assumption IG(0, 2) or IG(1, 2) holds (respectively);

2. the ARFIMA(p, d, q) processes with parameter d such that d ∈ (−0.5, 1.25) and an innovation process

which is a Gaussian white noise. Such ARFIMA(p, d, q) processes satisfy Assumption IG(d, 2) (note

that ARIMA processes are particular cases of ARFIMA processes).

3. the Gaussian stationary processes X(d,β), such as its spectral density is

f3(λ) =
1

λ2d
(1 + λβ) for λ ∈ [−π, 0) ∪ (0, π], (5.1)

with d ∈ (−0.5, 1.5) and β ∈ (0,∞). Therefore the spectral density f3 implies that Assumption

IG(d, β) holds.

Comparison of d̃
(IR)
N with other semiparametric estimators of d

Here we first compare the performance of the adaptive MIR-estimator d̃
(IR)
N with other famous semipara-

metric estimators of d:

• d̃
(MS)
N is the adaptive global log-periodogram estimator introduced by Moulines and Soulier (2003),

also called FEXP estimator, with bias-variance balance parameter κ = 2. Such an estimator was shown

to be consistent for d ∈]− 0.5, 1.25].

• d̃
(ROB)
N is the local Whittle estimator introduced by Robinson (1995b). The trimming parameter is

chosen as m = N/30 (this is not an adaptive estimator). This estimator was shown to be consistent

for d ∈] − 0.5, 1] and not consistent for d > 1 (see Phillips and Shimotsu, 2004), with normality for

d ∈]− 0.5, 0.75[ (see Velasco, 1999b), consistency and normality for d ∈]− 0.5, 1.5[ with tapering only

(see Hurvich and Chen, 2000).

• d̃
(WAV )
N is an adaptive wavelet based estimator introduced in Bardet et al. (2008) using a Lemarie-

Meyer type wavelet (another similar choice could be the adaptive wavelet estimator introduced in Veitch

et al., 2003, using a Daubechie’s wavelet, but its robustness property are slightly less interesting). The

asymptotic normality of such estimator is established for d ∈ R (when the number of vanishing moments

of the wavelet function is large enough).

Table 1, 2, 3 and 4 respectively provide the results of simulations for ARIMA(1, d, 0), ARFIMA(0, d, 0),

ARFIMA(1, d, 1) and X(d,1) processes for several values of d (or other parameters φ or θ) and N .

Conclusions of simulations: In more than 50% of cases, the estimator d̃
(IR)
N provides the smallest

√
MSE

among the 4 semiparametric estimators. The good performances of d̃
(IR)
N with respect to the other estima-

tors are particularly clear for d ∈ [0.5, 1.20]. However, we can remark that the estimator d̃
(IR)
N is slightly

less efficient for ARFIMA(1, d, 1) processes and especially X(d,1) processes, that is to say, when the spectral

density is slightly less smooth (i.e. close to a power law function).

Comparison of MIR tests S̃N and T̃N with other famous stationarity or nonstationarity tests

Monte-Carlo experiments were done for evaluating the performances of new tests S̃N and T̃N and for com-

paring them to most famous stationarity (KPSS and LMC) or nonstationarity (ADF and PP) tests (see

more details on these tests in the previous section). For these tests we selected a classical “optimal” lag

parameter k such as:

• k =
[

3
13

√
n
]
for KPSS test;

• k = 0 for LMC test;

9



• k =
[
(n− 1)1/3

]
for ADF test;

• k =
[
4
(

n
100

)1/4]
for PP test;

We also computed the results of V/S test, which is a nonparametric long-memory test (see more details

Giraitis et al., 2007). This test is useful when d < 0.5 but it can not really distinguish the stationary case

d ∈ (0, 0.5) to the nonstationary case d ≥ 0.5.

The results of these simulations with a type I error classically chosen to 0.05 are provided in Tables 5, 6, 7

and 8.

Conclusions of simulations: For ARIMA(p, d, 0) processes with d = 0 or d = 1 (notably AR(1) pro-

cess when d = 0), ADF and PP tests are more accurate than our adaptive MIR tests. This is not really a

surprise since those classical tests are unit root tests and are built from ARIMA processes. What is more

surprising is that our MIR tests provide better results than KPSS and LMC tests (for LMC only in the case

d = 1).

In case of ARFIMA or X(d,1) processes which are stationary long-memory processes when 0 < d < 0.5 and

nonstationary processes when d ≥ 0.5, all the classical tests are not able to distinguish between the cases

d = 0 and d = 1. Hence, if 0 < d < 1, the asymptotic bahaviors of KPSS or LMC tests are the same

than for d = 0: they accept the stationarity assumption H0. In contrast, ADF and PP tests accept the

nonstationarity assumption H ′
0 even if the processes are stationary when 0 < d < 0.5. This is not really a

problem with the V/S test since this test is built for distinguishing between short and long memory processes.

Conversely, the adaptive MIR tests (especially nonstationarity test T̃N) which are based on the estimation

of the memory parameter are very efficient for distinguishing between the stationary case d < 0.5 and the

nonstationary case d ≥ 0.5.

Finally, these simulations show that the adaptive MIR tests (especially nonstationarity test T̃N ) are the best

trade-off for detecting the stationarity/nonstationarity of a process.

5.3 Application to the the Stocks and the Exchange Rate Markets

We applied the adaptive MIR statistics as well as the other famous long-memory estimators and stationarity

tests to Econometric data, the Stocks and Exchange Rate Markets. More precisely, the 5 following daily

closing value time series are considered:

1. The USA Dollar Exchange rate in Deusch-Mark, from 11/10/1983 to 08/04/2011 (7174 obs.).

2. The USA Dow Jones Transportation Index, from 31/12/1964 to 08/04/2011 (12072 obs.).

3. The USA Dow Jones Utilities Index, from 31/12/1964 to 08/04/2011 (12072 obs.).

4. The USA Nasdaq Industrials Index, from 05/02/1971 to 08/04/2011 (10481 obs.).

5. The Japan Nikkei225A Index, from 03/04/1950 to 8/04/2011 (15920 obs.).

We considered the log-return of this data and tried to test their stationarity properties. Since station-

arity or nonstationarity tests are not able to detect (offline) changes, we first used an algorithm de-

veloped by M. Lavielle for detecting changes (this free software can be downloaded from his homepage:

http://www.math.u-psud.fr/∼lavielle/programmes lavielle.html). This algorithm provides the choice

of detecting changes in mean, in variance, ..., and we chose to detect parametric changes in the distribution.

Note that the number of changes is also estimated since this algorithm is based on the minimization of a

penalized contrast. We obtained for each time series an estimated number of changes equal to 2 which are

the following:
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• Two breaks points for the US dollar-Deutsch Mark Exchange rate return are estimated, corresponding

to the dates: 21/08/2006 and 24/12/2007. The Financial crisis of 2007-2011, followed by the late 2000s

recession and the 2010 European sovereign debt crisis can cause such breaks.

• Both the breaks points estimated for the US Dow Jones Transportation Index return, of the New-York

Stock Market, correspond to the dates: 17/11/1969 and 15/09/1997. The first break change can be a

consequence on transportation companies difficulties the American Viet-Nam war against communist

block. The second change point can be viewed as a contagion by the spread of the Thai crisis in 1997

to other countries and mainly the US stock Market.

• Both the breaks points estimated for the US Dow Jones Utilities Index return correspond to the dates:

02/06/1969 and 14/07/1998. The same arguments as above can justify the first break. The second

at 1998 is probably a consequence of “the long very acute crisis in the bond markets,..., the dramatic

fiscal crisis and Russian Flight to quality caused by it, may have been warning the largest known by

the global financial system: we never went too close to a definitive breakdown of relations between the

various financial instruments“(Wikipedia).

• The two breaks points for the US Nasdaq Industrials Index return correspond to the dates: 17/07/1998

and 27/12/2002. The first break at 1998 is explained by the Russian flight to quality as above. The

second break at 2002 corresponds to the Brazilian public debt crisis of 2002 toward foreign owners

(mainly the U.S. and the IMF) which implicitly assigns a default of payment probability close to 100%

with a direct impact on the financial markets indexes as the Nasdaq.

• Both the breaks points estimated for the Japanese Nikkei225A Index return corresponds to the dates

29/10/1975 and 12/02/1990, perhaps as consequence of the strong dependency of Japan to the middle

east Oil following 1974 or anticipating 1990 oil crisis. The credit crunch which is seen as a major factor

in the U.S. recession of 1990-91 can play a role in the second break point.

Data and estimated instant breaks can be seen on Figure 1. Then, we applied the estimators and tests

described in the previous subsection on trajectories obtained in each stages for the 5 economic time series.

These applications were done on the log-returns, their absolute values, their squared values and their θ-power

laws with θ maximized for each LRD estimators. The results of these numerical experiments can be seen in

Tables 9-13.

Conclusions of numerical experiments: We exhibited again the well known result: the log-returns are

stationary and short memory processes while absolute values or power θ of log-returns are generally sta-

tionary but long memory processes (for this conclusion, we essentially consider the results of S̃N , T̃N and

V/S tests since the other tests have been shown not to be relevant in the cases of long-memory processes).

However the last and third estimated stage of each time series provides generally the largest estimated values

of the memory parameter d (for power law of log-returns) which are close to 0.5; hence, for Nasdaq time

series, we accepted the nonstationarity assumption.

6 Proofs

Proof of Proposition 1. This proposition is based on results of Surgailis et al. (2008) and was already proved

in Bardet et Dola (2012) in the case −0.5 < d < 0.5.

Mutatis mutandis, the case 0.5 < d < 1.25 can be treated exactly following the same steps.

The only new proof which has to be established concerns the case d = 0.5 since Surgailis et al. (2008) do not

provide a CLT satisfied by the (unidimensional) statistic IRN (m) in this case. Let Ym(j) the standardized
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Figure 1: The financial data (DowJonesTransportations, DowJonesUtilities, NasdaqIndustrials, Nikkei225A

and US Dollar vs Deutsch Mark): original data (left) and log-return with their both estimated breaks instants

(right) occurred at the distribution Changes
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process defined Surgailis et al. (2008). Then, for d = 0.5,

∀j ≥ 1, |γm(j)| =
∣∣E

(
Ym(j)Ym(0)

)∣∣ = 2

V 2
m

∣∣∣
∫ π

0

cos(jx) x
(
c0 +O(xβ)

) sin4(mx
2 )

sin4(x2 )
dx

∣∣∣.

Denote γm(j) = ρm(j) = 2
V 2
m

(
I1 + I2

)
as in (5.39) of Surgailis et al. (2008). Both inequalities (5.41) and

(5.42) remain true for d = 0.5 and

|I1| ≤ C
m3

j
, |I2| ≤ C

m4

j2
=⇒ |I1+I2| ≤ C

m3

j
=⇒ |γm(j)| = |ρm(j)| ≤ 2

V 2
m

(
|I1+I2|

)
≤ C

m

j
.

Now let ηm(j) := |Ym(j)+Ym(j+m)|
|Ym(j)|+|Ym(j+m)| := ψ

(
Ym(j), Ym(j +m)

)
. The Hermite rank of the function ψ is 2 and

therefore the equation (5.23) of Surgailis et al. (2008) obtained from Arcones Lemma remains valid. Hence:

∣∣Cov(ηm(0), ηm(j))
∣∣ ≤ C

m2

j2

from Lemma (8.2) and then the equations (5.28-5.31) remain valid for all d ∈ [0.5, 1.25). Then for d = 0.5,

√
N

m

(
IRN (m)− E

[
IRN (m)

]) L−→
[N/m]∧m→∞

N
(
0, σ2(0.5)

)
,

with σ2(0.5) ≃ (0.2524)2.

Proof of Property 2.1. As in Surgailis et al (2008), we can write:

E
[
IRN (m)

]
= E

( |Y 0 + Y 1|
|Y 0|+ |Y 1|

)
= Λ(

Rm

V 2
m

) with
Rm

V 2
m

:= 1− 2

∫ π

0 f(x)
sin6(mx

2 )

sin2( x
2 )
dx

∫ π

0 f(x)
sin4(mx

2 )

sin2( x
2 )
dx

.

Therefore an expansion of Rm/V
2
m provides an expansion of E

[
IRN (m)

]
when m→ ∞.

Step 1 Let f satisfy Assumption IG(d, β). Then we are going to establish that there exist positive real

numbers C1, C2 and C3 specified in (6.1), (6.2) and (6.3) such that for 0.5 ≤ d < 1.5 and with ρ(d) defined

in (2.7),

1. if β < 2d− 1,
Rm

V 2
m

= ρ(d) + C1(2− 2d, β)m−β +O
(
m−2 +m−2β

)
;

2. if β = 2d− 1,
Rm

V 2
m

= ρ(d) + C2(2− 2d, β)m−β +O
(
m−2 +m−2−β log(m) +m−2β

)
;

3. if 2d− 1 < β < 2d+ 1,
Rm

V 2
m

= ρ(d) + C3(2 − 2d, β)m−β +O
(
m−β−ǫ +m−2d−1 log(m) +m−2β

)
;

4. if β = 2d+ 1,
Rm

V 2
m

= ρ(d) +O
(
m−2d−1 log(m) +m−2

)
.

Under Assumption IG(d, β) and with Jj(a,m) defined in (6.7) in Lemma 6.7, it is clear that,

Rm

V 2
m

= 1− 2
J6(2 − 2d,m) + c1

c0
J6(2 − 2d+ β,m) +O(J6(2− 2d+ β + ε))

J4(2 − 2d,m) + c1
c0
J4(2 − 2d+ β,m) +O(J4(2− 2d+ β + ε))

,

since

∫ π

0

O(x2−2d+β+ε)
sinj(mx

2 )

sin2(x2 )
dx = O(Jj(2 − 2d + β + ε)). Now using the results of Lemma 6.7 and

constants Cjℓ, C
′
jℓ and C′′

jℓ, j = 4, 6, ℓ = 1, 2 defined in Lemma 6.7,
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1. Let 0 < β < 2d− 1 < 2, i.e. −1 < 2− 2d+ β < 1. Then

Rm

V 2
m

=1−2
C61(2− 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C61(2− 2d+ β)m1+2d−β+O

(
m2d−1−β

)

C41(2 − 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C41(2− 2d+ β)m1+2d−β+O

(
m2d−1−β

)

=1− 2

C41(2 − 2d)

[
C61(2 − 2d)+

c1
c0
C61(2− 2d+ β)m−β

][
1−c1
c0

C41(2− 2d+ β)

C41(2− 2d)
m−β

]
+O

(
m−2

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[C61(2− 2d)C41(2− 2d+ β)

C41(2− 2d)C41(2− 2d)
−C61(2− 2d+ β)

C41(2− 2d)

]
m−β+O

(
m−2 +m−2β

)
.

As a consequence,,

Rm

V 2
m

= ρ(d) + C1(2− 2d, β) m−β + O
(
m−2 +m−2β

)
(m → ∞), with 0 < β < 2d− 1 < 2 and

C1(2− 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C41(2− 2d+ β) − C61(2− 2d+ β)C41(2− 2d)

]
, (6.1)

and numerical experiments proves that C1(2− 2d, β)/c1 is negative for any d ∈ (0.5, 1.5) and β > 0.

2. Let β = 2d− 1, i.e. 2− 2d+ β = 1. Then,

Rm

V 2
m

=1−2
C61(2− 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C′

61(1)m
1−2d+O

(
log(m)

)

C41(2 − 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C′

41(1)m1−2d+O
(
log(m)

)

=1− 2

C41(2 − 2d)

[
C61(2 − 2d)+

c1
c0
C′

61(1)m
1−2d

][
1−c1
c0

C′
41(1)

C41(2− 2d)
m1−2d

]
+O

(
m−2 +m−2d−1 log(m)

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[ C61(2− 2d)C′
41(1)

C41(2− 2d)C41(2− 2d)
− C′

61(1)

C41(2− 2d)

]
m1−2d+O

(
m−2 +m−2d−1 log(m) +m2−4d

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + C2(2−2d, β) m−β+O
(
m−2+m−2−β log(m)+m−2β

)
(m → ∞), with 0 < β = 2d− 1 < 2 and

C2(2− 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C′

41(1)− C′
61(1)C41(2− 2d)

]
, (6.2)

and numerical experiments proves that C2(2− 2d, β)/c1 is negative for any d ∈ [0.5, 1.5) and β > 0.

3. Let 2d− 1 < β < 2d+ 1, i.e. 1 < 2− 2d+ β < 3. Then,

Rm

V 2
m

=1−2
C61(2 − 2d)m1+2d+c1

c0
C′

61(2 − 2d+ β)m1+2d−β+O
(
m1+2d−β−ǫ + log(m)

)

C41(2− 2d)m1+2d+c1
c0
C′

41(2− 2d+ β)m1+2d−β+O
(
m1+2d−β−ǫ +m−2d−1 log(m)

)

=1− 2

C41(2 − 2d)

[
C61(2 − 2d)+

c1
c0
C′

61(2− 2d+ β)m−β
][
1−c1
c0

C′
41(2− 2d+ β)

C41(2 − 2d)
m−β

]
+O

(
m−β−ǫ +m−2d−1 log(m)

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[C61(2− 2d)C′
41(2− 2d+ β)

C41(2− 2d)C41(2− 2d)
−C

′
61(2− 2d+ β)

C41(2− 2d)

]
m−β+O

(
m−β−ǫ +m−2d−1 log(m)

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + C3(2− 2d, β) m−β + O
(
m−β−ǫ +m−2d−1 log(m) +m−2β

)
(m→ ∞), and

C3(2− 2d, β) := 2
c1
c0

1

C2
41(2− 2d)

[
C61(2− 2d)C′

41(2− 2d+ β)− C′
61(2− 2d+ β)C41(2− 2d)

]
, (6.3)

and numerical experiments proves that C3(2− 2d, β)/c1 is negative for any d ∈ [0.5, 1.5) and β > 0.
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4. Let β = 2d+ 1. Then, Once again with Lemma 6.7:

Rm

V 2
m

=1−2
C61(2− 2d) m1+2d+O

(
m2d−1

)
+c1

c0
C′

62(3) log(m)+O
(
1
)

C41(2 − 2d)m1+2d+O
(
m2d−1

)
+c1

c0
C′

42(3) log(m)+O
(
1
)

=1− 2

C41(2 − 2d)

[
C61(2 − 2d)+

c1
c0
C′

62(3)m
−β log(m)

][
1−c1
c0

C′
42(3)

C41(2− 2d)
m−β log(m)

]
+O

(
m−2 +m−2d−1

)

=1−2C61(2− 2d)

C41(2− 2d)
+2

c1
c0

[ C61(2− 2d)C′
42(3)

C41(2− 2d)C41(2− 2d)
− C′

62(3)

C41(2− 2d)

]
m−β log(m)+O

(
m−2

)
.

As a consequence,

Rm

V 2
m

= ρ(d) + O
(
m−2d−1 log(m) +m−2

)
(m→ ∞), with 2 < β = 2d+ 1 < 4. (6.4)

Step 2: A Taylor expansion of Λ(·) around ρ(d) provides:

Λ
(Rm

V 2
m

)
≃ Λ

(
ρ(d)

)
+
[∂Λ
∂ρ

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)
+

1

2

[∂2Λ
∂ρ2

]
(ρ(d))

(Rm

V 2
m

− ρ(d)
)2

.

Note that numerical experiments show that
[∂Λ
∂ρ

]
(ρ) > 0.2 for any ρ ∈ (−1, 1). As a consequence, using

the previous expansions of Rm/V
2
m obtained in Step 1 and since E

[
IRN (m)

]
= Λ

(
Rm/V

2
m

)
, then for all

0 < β ≤ 2:

E
[
IRN (m)

]
= Λ0(d) +





c1 C
′
1(d, β)m

−β +O
(
m−2 +m−2β

)
if β < 2d− 1

c1 C
′
2(d, β)m

−β +O
(
m−2 +m−2−β logm+m−2β

)
if β = 2d− 1

c1 C
′
3(d, β)m

−β +O
(
m−β−ǫ +m−2d−1 logm+m−2β

)
if 2d− 1 < β < 2d+ 1

O
(
m−2d−1 logm+m−2

)
if β = 1 + 2d

with C′
ℓ(d, β) =

[
∂Λ
∂ρ

]
(ρ(d))Cℓ(2 − 2d, β) for ℓ = 1, 2, 3 and Cℓ defined in (6.1), (6.2) and (6.3).

Proof of Theorem 1. Using Property 2.1, if m ≃ C Nα with C > 0 and (1 + 2β)−1 < α < 1 then√
N/m

(
E
[
IRN (m)

]
− Λ0(d)

)
−→
N→∞

0 and it implies that the multidimensional CLT (2.5) can be replaced

by

√
N

m

(
IRN (mj)− Λ0(d)

)
1≤j≤p

L−→
N→∞

N (0,Γp(d)). (6.5)

It remains to apply the Delta-method with the function Λ−1
0 to CLT (6.5). This is possible since the

function d → Λ0(d) is an increasing function such that Λ′
0(d) > 0 and

(
Λ−1
0 )′(Λ0(d)) = 1/Λ′

0(d) > 0 for all

d ∈ (−0.5, 1.5). It achieves the proof of Theorem 1.

Proof of Proposition 2. See Bardet and Dola (2012).

Proof of Theorem 2. See Bardet and Dola (2012).

Appendix

We first recall usual equalities frequently used in the sequel:

Lemma 6.1. For all λ > 0

1. For a ∈ (0, 2),
2

|λ|a−1

∫ ∞

0

sin(λx)

xa
dx =

4a

2a|λ|a
∫ ∞

0

sin2(λx)

xa+1
dx =

π

Γ(a) sin(aπ2 )
;

2. For b ∈ (−1, 1),
1

21−b − 1

∫ ∞

0

sin4(λx)

x4−b
dx =

16

−15 + 6 · 23−b − 33−b
×
∫ ∞

0

sin6(λx)

x4−b
dx =

23−b|λ|3−b π

4 Γ(4− b) sin( (1−b)π
2 )

;
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3. For b ∈ (1, 3),
1

1− 21−b

∫ ∞

0

sin4(λx)

x4−b
dx =

16

15− 6 · 23−b + 33−b
×
∫ ∞

0

sin6(λx)

x4−b
dx =

23−b|λ|3−b π

4 Γ(4− b) sin( (3−b)π
2 )

.

Proof. These equations are given or deduced (using decompositions of sinj(·) and integration by parts) from

(see Doukhan et al., p. 31).

Lemma 6.2. For j = 4, 6, denote

Jj(a,m) :=

∫ π

0

xa
sinj(mx

2 )

sin4(x2 )
dx. (6.6)

Then, we have the following expansions when m→ ∞:

Jj(a,m) =





Cj1(a)m
3−a +O

(
m1−a

)
if −1 < a < 1

C′
j1(1)m

3−a +O
(
log(m)

)
if a = 1

C′
j1(a)m

3−a +O
(
1
)

if 1 < a < 3

C′
j2(3) log(m) +O

(
1
)

if a = 3

C′′
j1(a) + O

(
m−((a−3)∧2)) if a > 3

(6.7)

with the following real constants (which do not vanish for any a on the corresponding set):

• C41(a) :=
4 π(1 − 23−a

4 )

(3 − a)Γ(3− a) sin( (3−a)π
2 )

and C61(a) :=
π(15− 6 · 23−a + 33−a)

4(3− a)Γ(3− a) sin( (3−a)π
2 )

• C′
41(a) :=

( 6

3− a
1{1≤a<3} + 16

∫ 1

0

sin4(y2 )

y4−a
dy + 2

∫ ∞

1

1

y4−a

(
− 4 cos(y) + cos(2y)

)
dy

)

and C′
61(a) :=

[
16

∫ 1

0

sin6(y2 )

y4−a
dy +

5

3− a
1{1≤a<3} +

1

2

∫ ∞

1

1

y4−a

(
− 15 cos(y) + 6 cos(2y)− cos(3y)

)
dy

]

• C′
42(a) :=

(
6 · 1{a=3} + 1{a=1}

)
and C′

62(a) :=
(
5 · 1{a=3} +

5

6
· 1{a=1}

)

• C′′
41(a) :=

3

8

∫ π

0

xa

sin4(x2 )
dx and C′′

61(a) :=
5

16

∫ π

0

xa

sin4(x2 )
dx.

Proof. The proof of these expansions follows the steps than those of Lemma 5.1 in Bardet and Dola (2012).

Hence we write for j = 4, 6,

Jj(a,m) = J̃j(a,m) +

∫ π

0

xa sinj(
mx

2
)

1

(x2 )
4
dx+

∫ π

0

xa sinj(
mx

2
)
2

3

1

(x2 )
2
dx (6.8)

with

J̃j(a,m) :=

∫ π

0

xa sinj(
mx

2
)
( 1

sin4(x2 )
− 1

(x2 )
4
− 2

3

1

(x2 )
2

)
dx.

The expansions when m→ ∞ of both the right hand sided integrals in (6.8) are obtained from Lemma 6.1.

It remains to obtain the expansion of J̃j(a,m). Then, using classical trigonometric and Taylor expansions:

sin4(
y

2
) =

1

8

(
3− 4 cos(y) + cos(2y)

)
and

1

sin4(y)
− 1

y4
− 2

3

1

y2
∼ 11

45
(y → 0)

sin6(
y

2
) =

1

32

(
10− 15 cos(y) + 6 cos(2y)− cos(3y)

)
and

1

y5
+

1

3

1

y3
− cos(y)

sin5(y)
∼ 31

945
y (y → 0),

the expansions of J̃j(a,m) can be obtained.

Numerical experiments show that C′′
41(a) 6= 0, C′′

61(a) 6= 0, C′′
42(a) 6= 0 and C′′

62(a) 6= 0.
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N = 200 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

mean d̃
(IR)
N

0.375 0.518 0.717 0.822 0.964 0.976 0.980 1.008√
MSE d̃

(IR)
N

0.399 0.536 0.729 0.833 0.135* 0.129* 0.134* 0.127*

mean d̃
(MS)
N

0.244 0.426 0.673 0.858 1.057 1.075 1.069 1.083√
MSE d̃

(MS)
N

0.286* 0.451 0.689 0.875 0.173 0.178 0.179 0.189

mean d̃
(ROB)
N

0.003 0.124 0.312 0.623 0.946 0.934 0.977 0.947√
MSE d̃

(ROB)
N

0.361 0.380* 0.519* 0.739* 0.344 0.349 0.314 0.332

mean d̃
(WAV )
N

0.461 0.600 0.747 0.831 0.902 0.925 0.933 0.968√
MSE d̃

(WAV )
N

0.491 0.615 0.756 0.843 0.175 0.163 0.162 0.159

N = 500 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

mean d̃
(IR)
N

0.232 0.355 0.629 0.804 0.980 0.981 0.976 0.995√
MSE d̃

(IR)
N

0.279 0.400 0.649 0.811 0.103* 0.101* 0.094* 0.104*

mean d̃
(MS)
N

0.068 0.157 0.390 0.644 1.057 1.057 1.055 1.060√
MSE d̃

(MS)
N

0.154* 0.212 0.412 0.659 0.174 0.164 0.171 0.174

mean d̃
(ROB)
N

0.044 0.092 0.275 0.560 0.976 0.969 0.976 0.973√
MSE d̃

(ROB)
N

0.176 0.209* 0.321* 0.589* 0.164 0.159 0.169 0.163

mean d̃
(WAV )
N

0.291 0.442 0.679 0.818 0.940 0.944 0.948 0.979√
MSE d̃

(WAV )
N

0.337 0.479 0.694 0.825 0.118 0.116 0.108 0.106

N = 1000 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

mean d̃
(IR)
N

0.171 0.284 0.579 0.774 0.975 0.981 0.994 0.995√
MSE d̃

(IR)
N

0.221 0.338 0.607 0.784 0.074* 0.073* 0.067* 0.073*

mean d̃
(MS)
N

0.057 0.137 0.340 0.574 1.027 1.031 1.029 1.031√
MSE d̃

(MS)
N

0.108* 0.162 0.351 0.580 0.103 0.103 0.102 0.099

mean d̃
(ROB)
N

0.035 0.091 0.266 0.515 0.987 0.994 0.998 0.987√
MSE d̃

(ROB)
N

0.112 0.146* 0.289* 0.528* 0.096 0.100 0.102 0.095

mean d̃
(WAV )
N

0.165 0.252 0.424 0.663 0.949 0.958 0.963 0.976√
MSE d̃

(WAV )
N

0.237 0.306 0.467 0.689 0.090 0.092 0.097 0.090

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARFIMA(1,d,0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

mean d̃
(IR)
N

0.064 0.083 0.212 0.661 0.989 0.989 0.996 1.003√
MSE d̃

(IR)
N

0.100 0.131 0.303 0.714 0.034* 0.035* 0.032* 0.036

mean d̃
(MS)
N

0.014 0.061 0.219 0.423 1.006 1.002 1.007 1.005√
MSE d̃

(MS)
N

0.042* 0.075* 0.224 0.426 0.044 0.041 0.045 0.041

mean d̃
(ROB)
N

0.034 0.080 0.243 0.479 0.997 0.997 0.997 0.999√
MSE d̃

(ROB)
N

0.053 0.090 0.247 0.481 0.038 0.036 0.037 0.034*

mean d̃
(WAV )
N

0.031 0.045 0.047 0.167 0.980 0.982 0.977 1√
MSE d̃

(WAV )
N

0.136 0.134 0.151* 0.212* 0.083 0.071 0.099 0.067

Table 1: : Comparison between d̃
(IR)
N and other famous semiparametric estimators of d (d̃

(MS)
N , d̃

(ROB)
N and d̃

(WAV )
N )

applied to ARIMA(1, d, 0) process (Xt + φXt−1 = εt), with several φ and N values
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N = 200 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)

mean d̃
(IR)
N

-0.267 -0.134 0.024 0.183 0.365 0.467 0.567 0.770 0.971 1.179√
MSE d̃

(IR)
N

0.164 0.131 0.115 0.135 0.122* 0.115* 0.129* 0.124* 0.139* 0.133*

mean d̃
(MS)
N

-0.354 -0.170 0.008 0.201 0.403 0.536 0.644 0.883 1.078 1.181√
MSE d̃

(MS)
N

0.166 0.151 0.144 0.163 0.152 0.151 0.168 0.192 0.188 0.167

mean d̃
(ROB)
N

-0.310 -0.159 -0.012 0.201 0.357 0.476 0.604 0.781 0.984 1.065√
MSE d̃

(ROB)
N

0.261 0.301 0.361 0.382 0.411 0.368 0.374 0.369 0.361 0.319

mean d̃
(WAV )
N

-0.408 -0.229 -0.040 0.143 0.352 0.447 0.531 0.715 0.915 1.091√
MSE d̃

(WAV )
N

0.094* 0.107* 0.101* 0.120 0.124 0.135 0.144 0.160 0.167 0.201

N = 500 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)

mean d̃
(IR)
N

-0.287 -0.163 -0.007 0.187 0.379 0.464 0.558 0.778 0.963 1.180√
MSE d̃

(IR)
N

0.135 0.089 0.092 0.096 0.094* 0.100* 0.100* 0.100* 0.111* 0.114*

mean d̃
(MS)
N

-0.344 -0.181 0.001 0.209 0.411 0.522 0.636 0.870 1.034 1.158√
MSE d̃

(MS)
N

0.157 0.144 0.135 0.141 0.158 0.154 0.168 0.183 0.173 0.172

mean d̃
(ROB)
N

-0.344 -0.206 -0.029 0.196 0.376 0.486 0.596 0.799 0.956 1.058√
MSE d̃

(ROB)
N

0.146 0.174 0.164 0.172 0.190 0.182 0.187 0.176 0.168 0.214

mean d̃
(WAV )
N

-0.403 -0.218 -0.027 0.166 0.356 0.447 0.537 0.753 0.928 1.134√
MSE d̃

(WAV )
N

0.065* 0.063* 0.067* 0.080* 0.107 0.107 0.108 0.109 0.124 0.137

N = 1000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)

mean d̃
(IR)
N

-0.311 -0.170 -0.001 0.181 0.374 0.476 0.575 0.774 0.973 1.181√
MSE d̃

(IR)
N

0.105 0.065 0.063 0.059* 0.065* 0.068* 0.070* 0.075* 0.074* 0.079*

mean d̃
(MS)
N

-0.360 -0.183 -0.004 0.200 0.398 0.506 0.628 0.843 1.018 1.116√
MSE d̃

(MS)
N

0.106 0.092 0.086 0.090 0.090 0.092 0.108 0.109 0.106 0.129

mean d̃
(ROB)
N

-0.380 -0.204 -0.012 0.192 0.388 0.501 0.617 0.811 0.982 1.075√
MSE d̃

(ROB)
N

0.097 0.115 0.112 0.106 0.113 0.107 0.123 0.105 0.104 0.156

mean d̃
(WAV )
N

-0.407 -0.213 -0.026 0.164 0.357 0.460 0.550 0.761 0.938 1.137√
MSE d̃

(WAV )
N

0.059* 0.050* 0.052* 0.067 0.090 0.088 0.095 0.089 0.114 0.103

N = 5000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

ARFIMA(0,d,0)

mean d̃
(IR)
N

-0.339 -0.177 -0.003 0.189 0.386 0.483 0.589 0.786 0.984 1.199√
MSE d̃

(IR)
N

0.070 0.040* 0.031* 0.033* 0.035* 0.035* 0.035* 0.035* 0.042 0.052*

mean d̃
(MS)
N

-0.385 -0.195 0.001 0.197 0.400 0.502 0.612 0.825 1.006 1.078√
MSE d̃

(MS)
N

0.043 0.044 0.044 0.042 0.043 0.044 0.051 0.059 0.043 0.142

mean d̃
(ROB)
N

-0.395 -0.203 -0.002 0.197 0.402 0.504 0.609 0.820 0.997 1.070√
MSE d̃

(ROB)
N

0.042* 0.043 0.042 0.041 0.041 0.040 0.045 0.051 0.035* 0.147

mean d̃
(WAV )
N

-0.416 -0.210 -0.025 0.175 0.372 0.476 0.575 0.782 0.979 1.171√
MSE d̃

(WAV )
N

0.080 0.055 0.083 0.078 0.082 0.074 0.086 0.068 0.083 0.103

Table 2: : Comparison between d̃
(IR)
N and other famous semiparametric estimators of d (d̃

(MS)
N , d̃

(ROB)
N and d̃

(WAV )
N )

applied to ARFIMA(0, d, 0) process, with several d and N values
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N = 200

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

mean d̃
(IR)
N

-0.154 -0.009 0.151 0.310 0.476 0.576 0.669 0.861 1.051 1.234√
MSE d̃

(IR)
N

0.273 0.231 0.197 0.176* 0.150* 0.147* 0.146* 0.137* 0.143* 0.129*

mean d̃
(MS)
N

-0.241 -0.055 0.124 0.313 0.503 0.627 0.719 0.925 1.104 1.196√
MSE d̃

(MS)
N

0.223* 0.208* 0.190* 0.200 0.183 0.197 0.202 0.215 0.199 0.169

mean d̃
(ROB)
N

-0.312 -0.152 -0.006 0.210 0.364 0.483 0.610 0.787 0.988 1.068√
MSE d̃

(ROB)
N

0.259 0.304 0.361 0.383 0.411 0.368 0.375 0.368 0.360 0.317

mean d̃
(WAV )
N

-0.199 -0.012 0.182 0.364 0.561 0.635 0.731 0.890 1.039 1.183√
MSE d̃

(WAV )
N

0.253 0.236 0.232 0.232 0.214 0.203 0.195 0.184 0.157 0.168

N = 500

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

mean d̃
(IR)
N

-0.216 -0.090 0.062 0.255 0.435 0.529 0.617 0.827 0.999 1.214√
MSE d̃

(IR)
N

0.204 0.147 0.122* 0.128* 0.118* 0.116* 0.114* 0.114* 0.1161 0.113*

mean d̃
(MS)
N

-0.363 -0.197 -0.015 0.194 0.398 0.511 0.626 0.866 1.036 1.160√
MSE d̃

(MS)
N

0.149 0.144* 0.135 0.141 0.158 0.153 0.165 0.182 0.172 0.171

mean d̃
(ROB)
N

-0.346 -0.203 -0.022 0.202 0.382 0.492 0.602 0.804 0.959 1.060√
MSE d̃

(ROB)
N

0.1450* 0.175 0.162 0.172 0.189 0.182 0.187 0.177 0.167 0.212

mean d̃
(WAV )
N

-0.292 -0.090 0.093 0.303 0.502 0.579 0.679 0.864 1.017 1.190√
MSE d̃

(WAV )
N

0.170 0.169 0.157 0.158 0.164 0.157 0.151 0.142 0.112* 0.121

N = 1000

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

mean d̃
(IR)
N

-0.245 -0.110 0.055 0.237 0.425 0.528 0.628 0.815 1.005 1.212√
MSE d̃

(IR)
N

0.166 0.121 0.104 0.095 0.091* 0.091* 0.092* 0.093* 0.090* 0.086*

mean d̃
(MS)
N

-0.376 -0.197 -0.018 0.186 0.386 0.495 0.619 0.840 1.017 1.117√
MSE d̃

(MS)
N

0.099 0.090* 0.088* 0.091* 0.092 0.093 0.108 0.108 0.105 0.129

mean d̃
(ROB)
N

-0.379 -0.199 -0.007 0.197 0.393 0.507 0.622 0.815 0.986 1.076√
MSE d̃

(ROB)
N

0.096* 0.116 0.111 0.105 0.112 0.107 0.124 0.105 0.103 0.155

mean d̃
(WAV )
N

-0.334 -0.136 0.046 0.247 0.459 0.555 0.645 0.837 1.006 1.183√
MSE d̃

(WAV )
N

0.134 0.129 0.129 0.126 0.132 0.137 0.128 0.126 0.103 0.099

N = 5000

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

φ = −0.3 ; θ = 0.7

mean d̃
(IR)
N

-0.298 -0.143 0.037 0.226 0.423 0.523 0.621 0.813 1.005 1.219√
MSE d̃

(IR)
N

0.111 0.075 0.064 0.062 0.058 0.051 0.051 0.048* 0.054 0.063*

mean d̃
(MS)
N

-0.391 -0.200 -0.004 0.192 0.396 0.498 0.609 0.824 1.006 1.078√
MSE d̃

(MS)
N

0.042* 0.044 0.044 0.043 0.043 0.044 0.051 0.059 0.043 0.142

mean d̃
(ROB)
N

-0.392 -0.198 0.003 0.201 0.407 0.509 0.613 0.825 1.002 1.072√
MSE d̃

(ROB)
N

0.042 0.043* 0.042* 0.041* 0.042* 0.041* 0.046* 0.053 0.035* 0.146

mean d̃
(WAV )
N

-0.396 -0.187 0.003 0.196 0.405 0.519 0.605 0.818 1.014 1.192√
MSE d̃

(WAV )
N

0.085 0.094 0.097 0.107 0.110 0.100 0.124 0.102 0.107 0.101

Table 3: : Comparison between d̃
(IR)
N and other famous semiparametric estimators of d (d̃

(MS)
N , d̃

(ROB)
N and d̃

(WAV )
N )

applied to ARFIMA(1, d, 1) process (with φ = −0.3 and θ = 0.7), with several d and N values.
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N = 200 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

X(d,1)

mean d̃
(IR)
N

-0.328 -0.221 -0.097 0.080 0.250 0.320 0.435 0.623 0.852 1.021√
MSE d̃

(IR)
N

0.104* 0.107* 0.155* 0.173* 0.194 0.219 0.212 0.223 0.194 0.224

mean d̃
(MS)
N

-0.455 -0.266 - 0.080 0.122 0.320 0.409 0.527 0.733 0.990 1.219√
MSE d̃

(MS)
N

0.165 0.172 0.173 0.173 0.172* 0.183* 0.178* 0.191* 0.185* 0.183*

mean d̃
(ROB)
N

-0.322 -0.236 -0.054 0.118 0.330 0.411 0.494 0.727 0.944 1.120√
MSE d̃

(ROB)
N

0.251 0.277 0.339 0.362 0.393 0.381 0.396 0.376 0.402 0.328

mean d̃
(WAV )
N

-0.636 -0.424 -0.228 -0.014 0.184 0.253 0.358 0.552 0.780 0.992√
MSE d̃

(WAV )
N

0.259 0.254 0.254 0.246 0.244 0.283 0.279 0.285 0.266 0.251

N = 500 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

X(d,1)

mean d̃
(IR)
N

-0.358 -0.257 -0.096 0.087 0.275 0.376 0.470 0.677 0.888 1.079√
MSE d̃

(IR)
N

0.074* 0.092* 0.129* 0.153 0.161 0.161 0.167 0.167* 0.154* 0.162*

mean d̃
(MS)
N

-0.373 -0.221 -0.045 0.167 0.363 0.480 0.571 0.789 1.023 1.265√
MSE d̃

(MS)
N

0.163 0.134 0.150 0.131* 0.148* 0.146* 0.157* 0.175 0.173 0.204

mean d̃
(ROB)
N

-0.408 -0.247 -0.071 0.170 0.351 0.454 0.547 0.742 0.9530 1.1573√
MSE d̃

(ROB)
N

0.113 0.162 0.185 0.159 0.178 0.188 0.184 0.189 0.182 0.188

mean d̃
(WAV )
N

-0.593 -0.387 -0.188 0.030 0.233 0.339 0.430 0.633 0.8380 1.0589√
MSE d̃

(WAV )
N

0.214 0.207 0.208 0.196 0.199 0.196 0.203 0.196 0.199 0.183

N = 1000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

X(d,1)

mean d̃
(IR)
N

-0.382 -0.253 -0.096 0.081 0.296 0.376 0.485 0.686 0.8912 1.0898√
MSE d̃

(IR)
N

0.044* 0.081* 0.120 0.138 0.127 0.148 0.137 0.140 0.134 0.132

mean d̃
(MS)
N

-0.409 -0.221 -0.035 0.149 0.361 0.466 0.565 0.775 0.996 1.219√
MSE d̃

(MS)
N

0.092 0.093 0.101* 0.107* 0.103* 0.102* 0.103* 0.111* 0.105* 0.122

mean d̃
(ROB)
N

-0.420 -0.244 -0.037 0.150 0.358 0.459 0.562 0.754 0.959 1.164√
MSE d̃

(ROB)
N

0.077 0.110 0.110 0.125 0.119 0.117 0.120 0.128 0.112 0.119*

mean d̃
(WAV )
N

-0.564 -0.350 -0.152 0.051 0.263 0.363 0.478 0.674 0.875 1.089√
MSE d̃

(WAV )
N

0.182 0.173 0.176 0.172 0.164 0.169 0.160 0.163 0.161 0.150

N = 5000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 0d = .6 d = 0.8 d = 1 d = 1.2

X(d,1)

mean d̃
(IR)
N

-0.392 -0.257 -0.089 0.110 0.324 0.417 0.533 0.730 0.939 1.138√
MSE d̃

(IR)
N

0.028* 0.068 0.100 0.102 0.091 0.099 0.087 0.085 0.078 0.080

mean d̃
(MS)
N

-0.409 -0.216 -0.022 0.175 0.374 0.473 0.577 0.779 0.983 1.190√
MSE d̃

(MS)
N

0.047 0.046* 0.048* 0.051* 0.051* 0.056 0.050 0.052 0.048* 0.052

mean d̃
(ROB)
N

-0.426 -0.225 -0.029 0.172 0.372 0.469 0.574 0.773 0.969 1.173√
MSE d̃

(ROB)
N

0.048 0.049 0.052 0.054 0.052 0.056* 0.050* 0.049* 0.053 0.051*

mean d̃
(WAV )
N

-0.493 -0.293 -0.093 0.111 0.314 0.419 0.512 0.723 0.931 1.133√
MSE d̃

(WAV )
N

0.116 0.118 0.110 0.116 0.118 0.117 0.137 0.105 0.102 0.109

Table 4: : Comparison between d̃
(IR)
N and other famous semiparametric estimators of d (d̃

(MS)
N , d̃

(ROB)
N and d̃

(WAV )
N )

applied to X(d,1) process with several d and N values.
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N = 200 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1, d, 0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

S̃N : Accepted H0 0.997 0.870 0.303 0.130 0.020 0.027 0.023 0.010

KPSS: Accepted H0 0.637 0.470 0.183 0.087 0.030 0.017 0.013 0.017

LMC: Accepted H0 0.983 0.917 0.750 0.657 0.530 0.277 0.077 0

T̃N : Rejected H′

0 0.350 0.070 0.003 0 0 0 0 0

ADF: Rejected H′

0 1 1 0.957 0.677 0.047 0.037 0.063 0.050

PP : Rejected H′

0 1 1 1 0.797 0.005 0.047 0.060 0.037

V/S : Accepted H0 0.757 0.527 0.233 0.090 0.017 0.017 0.007 0.013

N = 500 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1,d,0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

S̃N : Accepted H0 1 0.950 0.353 0.087 0.010 0.007 0.003 0.007

KPSS: Accepted H0 0.793 0.673 0.303 0.117 0.003 0 0.003 0.003

LMC: Accepted H0 1 0.993 0.860 0.707 0.470 0.140 0.010 0

T̃N : Rejected H′

0 0.787 0.450 0.060 0 0 0 0 0

ADF: Rejected H′

0 1 1 1 0.997 0.067 0.050 0.033 0.033

PP : Rejected H′

0 1 1 1 1 0.070 0.050 0.030 0.030

V/S : Accepted H0 0.773 0.653 0.260 0.030 0 0.003 0 0

N = 1000 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1,d,0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

S̃N : Accepted H0 1 0.950 0.377 0.117 0 0 0 0

KPSS: Accepted H0 0.817 0.723 0.447 0.107 0 0 0 0

LMC: Accepted H0 1 1 0.963 0.797 0.560 0.060 0 0

T̃N : Rejected H′

0 0.957 0.680 0.173 0.007 0 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.057 0.047 0.043 0.047

PP : Rejected H′

0 1 1 1 1 0.057 0.047 0.027 0.033

V/S : Accepted H0 0.817 0.693 0.267 0.037 0 0 0 0

N = 5000 d = 0 d = 0 d = 0 d = 0 d = 1 d = 1 d = 1 d = 1

ARIMA(1,d,0) φ=-0.7 φ=-0.8 φ=-0.9 φ=-0.95 φ=-1 φ=-1.05 φ=-1.1 φ=-1.2

S̃N : Accepted H0 1 0.997 0.877 0.293 0 0 0 0

KPSS: Accepted H0 0.930 0.867 0.687 0.430 0 0 0 0

LMC: Accepted H0 1 1 1 0.963 0.570 0 0 0

T̃N : Rejected H′

0 1 0.997 0.850 0.240 0 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.033 0.057 0.057 0.043

PP : Rejected H′

0 1 1 1 1 0.037 0.060 0.060 0.040

V/S : Accepted H0 0.903 0.893 0.747 0.183 0 0 0 0

Table 5: Comparisons of stationarity and nonstationarity tests from 300 independent replications of ARIMA(1, d, 0)

processes (Xt + φXt−1 = εt) for several values of φ and N . The accuracy of tests is measured by the frequencies of

trajectories “accepted as stationary” (accepted H0 or rejected H ′

0) among the 300 replications which should be close

to 1 for d ∈ (−0.5, 0.5) and close to 0 for d ∈ [0.5, 1.2]
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N = 200 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

ARFIMA(0,d,0)

S̃N : Accepted H0 1 1 1 0.997 0.997 0.980 0.803 0.203 0.010 0.003

KPSS: Accepted H0 1 1 0.950 0.727 0.340 0.240 0.097 0.057 0.017 0.013

LMC: Accepted H0 1 1 0.933 0.360 0.017 0.007 0 0.010 0.483 1

T̃N : Rejected H′

0 1 1 0.997 0.860 0.380 0.100 0.033 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.873 0.553 0.387 0.170 0.043 0.010

PP : Rejected H′

0 1 1 1 1 1 0.927 0.747 0.360 0.063 0

V/S : Accepted H0 1 1 0.953 0.617 0.347 0.173 0.107 0.033 0.017 0.007

N = 500 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

ARFIMA(0,d,0)

S̃N : Accepted H0 1 1 1 1 1 0.960 0.793 0.070 0.010 0

KPSS: Accepted H0 1 1 0.953 0.610 0.167 0.110 0.030 0.010 0.003 0

LMC: Accepted H0 1 1 0.943 0.223 0 0 0 0 0.493 1

T̃N : Rejected H′

0 1 1 0.997 0.950 0.513 0.147 0.023 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.973 0.737 0.607 0.260 0.053 0.010

PP : Rejected H′

0 1 1 1 1 1 0.990 0.910 0.437 0.053 0.007

V/S : Accepted H0 1 1 0.943 0.480 0.170 0.053 0.033 0 0 0

N = 1000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

ARFIMA(0,d,0)

S̃N : Accepted H0 1 1 1 1 1 0.960 0.553 0.020 0 0

KPSS: Accepted H0 1 1 0.957 0.503 0.100 0.060 0.010 0.003 0 0

LMC: Accepted H0 1 1 0.943 0.107 0 0 0 0 0.513 1

T̃N : Rejected H′

0 1 1 1 1 0.773 0.180 0.010 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.997 0.867 0.747 0.343 0.047 0.003

PP : Rejected H′

0 1 1 1 1 1 0.997 0.973 0.527 0.043 0

V/S : Accepted H0 1 1 0.960 0.403 0.057 0.017 0 0 0 0

N = 5000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

ARFIMA(0,d,0)

S̃N : Accepted H0 1 1 1 1 1 0.980 0.067 0 0 0

KPSS: Accepted H0 1 1 0.947 0.380 0.010 0.010 0 0 0 0

LMC: Accepted H0 1 1 0.927 0.017 0 0 0 0 0.507 1

T̃N : Rejected H′

0 1 1 1 1 0.960 0.240 0 0 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.977 0.923 0.447 0.067 0

PP : Rejected H′

0 1 1 1 1 1 1 1 0.647 0.060 0

V/S : Accepted H0 1 1 0.957 0.153 0 0 0 0 0 0

Table 6: Comparisons of stationarity and nonstationarity tests from 300 independent replications of ARFIMA(0, d, 0)

processes for several values of d and N . The accuracy of tests is measured by the frequencies of trajectories “accepted

as stationary” (accepted H0 or rejected H ′

0) among the 300 replications which should be close to 1 for d ∈ (−0.5, 0.5)

and close to 0 for d ∈ [0.5, 1.2]

24



N = 200

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Accepted H0 1 1 1 0.997 0.930 0.787 0.493 0.073 0 0

KPSS: Accepted H0 1 0.990 0.927 0.547 0.317 0.203 0.137 0.040 0.003 0.003

LMC: Accepted H0 0.943 0.810 0.990 1 1 1 1 1 1 1

T̃N : Rejected H′

0 1 0.997 0.920 0.497 0.100 0.030 0.010 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.797 0.610 0.417 0.203 0.053 0.027

PP : Rejected H′

0 1 1 1 1 0.933 0.777 0.537 0.183 0.027 0.003

V/S : Accepted H0 1 0.997 0.910 0.537 0.310 0.157 0.097 0.033 0.020 0.003

N = 500

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Accepted H0 1 1 1 1 0.970 0.793 0.563 0.080 0.010 0

KPSS: Accepted H0 1 1 0.913 0.557 0.193 0.087 0.060 0.003 0.007 0

LMC: Accepted H0 0.967 0.887 1 1 1 1 1 1 1 1

T̃N : Rejected H′

0 1 1 1 0.850 0.207 0.043 0.003 0 0 0

ADF: Rejected H′

0 1 1 1 1 0.977 0.760 0.573 0.203 0.057 0.027

PP : Rejected H′

0 1 1 1 1 0.997 0.880 0.757 0.250 0.013 0

V/S : Accepted H0 1 1 0.917 0.460 0.163 0.083 0.030 0.003 0.003 0

N = 1000

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Accepted H0 1 1 1 1 0.980 0.767 0.377 0.033 0 0

KPSS: Accepted H0 1 1 0.937 0.477 0.117 0.040 0.010 0.003 0 0

LMC: Accepted H0 0.990 0.943 1 1 1 1 1 1 1 1

T̃N : Rejected H′

0 1 1 1 0.993 0.330 0.057 0.007 0.003 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.860 0.687 0.273 0.043 0.010

PP : Rejected H′

0 1 1 1 1 1 0.953 0.857 0.357 0.027 0

V/S : Accepted H0 1 1 0.943 0.413 0.080 0.023 0.007 0 0 0

N = 5000

ARFIMA(1,d,1) d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

φ = −0.3 ; θ = 0.7

S̃N : Accepted H0 1 1 1 1 0.993 0.703 0.133 0 0 0

KPSS: Accepted H0 1 1 0.937 0.380 0.037 0.003 0 0 0 0

LMC: Accepted H0 1 1 1 1 1 1 1 1 1 1

T̃N : Rejected H′

0 1 1 1 1 0.670 0.043 0 0 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.990 0.933 0.460 0.057 0.010

PP : Rejected H′

0 1 1 1 1 1 1 0.993 0.607 0.057 0

V/S : Accepted H0 1 1 0.943 0.200 0 0 0 0 0 0

Table 7: Comparisons of stationarity and nonstationarity tests from 300 independent replications of ARFIMA(1, d, 1)

processes (with φ = −0.3 and θ = 0.7) for several values of d and N . The accuracy of tests is measured by the

frequencies of trajectories “accepted as stationary” (accepted H0 or rejected H ′

0) among the 300 replications which

should be close to 1 for d ∈ (−0.5, 0.5) and close to 0 for d ∈ [0.5, 1.2]
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N = 200 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

X(d,1)

S̃N : Accepted H0 1 1 1 1 1 1 0.977 0.633 0.093 0.017

KPSS: Accepted H0 1 1 0.997 0.827 0.460 0.330 0.220 0.077 0.017 0.007

LMC: Accepted H0 1 1 1 0.837 0.153 0.103 0.027 0 0 0.317

T̃N : Rejected H′

0 1 1 0.997 0.960 0.720 0.530 0.173 0.013 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.723 0.620 0.463 0.280 0.120

PP : Rejected H′

0 1 1 1 1 1 0.997 0.990 0.880 0.493 0.113

V/S : Accepted H0 1 1 0.993 0.827 0.427 0.290 0.187 0.067 0.027 0.003

N = 500 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

X(d,1)

S̃N : Accepted H0 1 1 1 1 1 1 0.947 0.263 0.017 0

KPSS: Accepted H0 1 1 0.970 0.693 0.310 0.130 0.050 0.013 0.003 0

LMC: Accepted H0 1 1 1 0.670 0.037 0.003 0 0 0 0.270

T̃N : Rejected H′

0 1 1 1 0.987 0.803 0.533 0.207 0.003 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.810 0.820 0.593 0.300 0.093

PP : Rejected H′

0 1 1 1 1 1 1 0.997 0.913 0.443 0.057

V/S : Accepted H0 1 1 0.990 0.653 0.207 0.090 0.053 0.007 0 0

N = 1000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

X(d,1)

S̃N : Accepted H0 1 1 1 1 1 0.993 0.917 0.067 0.003 0

KPSS: Accepted H0 1 1 0.990 0.597 0.157 0.073 0.023 0.007 0 0

LMC: Accepted H0 1 1 1 0.553 0 0 0 0 0 0.177

T̃N : Rejected H′

0 1 1 1 1 0.910 0.667 0.213 0 0 0

ADF: Rejected H′

0 1 1 1 1 1 0.900 0.870 0.630 0.270 0.087

PP : Rejected H′

0 1 1 1 1 1 1 1 0.930 0.427 0.053

V/S : Accepted H0 1 1 1 0.580 0.090 0.027 0.007 0 0 0

N = 5000 d = −0.4 d = −0.2 d = 0 d = 0.2 d = 0.4 d = 0.5 d = 0.6 d = 0.8 d = 1.0 d = 1.2

X(d,1)

S̃N : Accepted H0 1 1 1 1 1 0.993 0.653 0 0 0

KPSS: Accepted H0 1 1 0.977 0.417 0.050 0 0 0 0 0

LMC: Accepted H0 1 1 1 0.213 0 0 0 0 0 0

T̃N : Rejected H′

0 1 1 1 1 0.977 0.730 0.073 0 0 0

ADF: Rejected H′

0 1 1 1 1 1 1 0.953 0.800 0.203 0.027

PP : Rejected H′

0 1 1 1 1 1 1 1 0.983 0.320 0.007

V/S : Accepted H0 1 1 0.987 0.253 0.007 0 0 0 0 0

Table 8: Comparisons of stationarity and nonstationarity tests from 300 independent replications of X(d,1) processes

for several values of d and N . The accuracy of tests is measured by the frequencies of trajectories “accepted as

stationary” (accepted H0 or rejected H ′

0) among the 300 replications which should be close to 1 for d ∈ (−0.5, 0.5)

and close to 0 for d ∈ [0.5, 1.2]
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r=(USD1 vs Deutsh-Mark Exchange Rate Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 5963] S S S S S S SM 5.5 -0.2 -0.031 0.059 0.057 -0.007

[5965 : 6313] S S S S S S SM 3.4 0.1 0.034 0.169 0.122 -0.015

[6315 : 7173] S S S S S S SM 5.3 -0.4 0.098 0.140 0.043 0.019

|r| = abs(USD1 vs Deutsh-Mark Exchange Rate Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 5963] S S S S NS NS LM 9.5 1.8 0.294 0.301 0.344 0.275

[5965 : 6313] S S NS S NS NS LM 3.6 1.1 -0.121 0.153 0.414 -0.038

[6315 : 7173] S S S S NS NS LM 9.2 1.8 0.168 0.417 0.389 0.410

r2 = (USD1 vs Deutsh-Mark Exchange Rate Return)2

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 5963] S S S S S S LM 289.5 10.7 0.081 0.258 0.298 0.078

[5965 : 6313] S S S S NS S LM 8.7 2.3 -0.018 0.127 0.431 -0.096

[6315 : 7173] S S S S NS S LM 81.3 7.1 0.035 0.411 0.336 0.428

|r|θ = (abs(USD1 vs Deutsh-Mark Exchange Rate Return))θ

θ̂
(j)
i = (Non)Stationarity Test LRD Kurtosis Skewness d̂

ArgMaxθ(d̂(|ri|θ)) S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

θ̂
(IR)
1 =0.32 S S NS S NS NS SM 3.5 -0.5 0.321* 0.251 0.256 0.343

θ̂
(MS)
1 = 0.97 S S S S NS NS SM 8.7 1.1 0.293 0.301* 0.343 0.275

θ̂
(ROB)
1 = 1.12 S S S S NS NS SM 13.7 2.3 0.302 0.300 0.345* 0.273

θ̂
(WAV )
1 =0.77 S S S S NS NS SM 5.1 1.1 0.273 0.298 0.335 0.379*

θ̂
(IR)
2 =0.05 S S NS NS S NS LM 27.9 -5.0 0.246* 0.078 -0.005 0.103

θ̂
(MS)
2 = 1.31 S S S S NS NS LM 4.9 1.5 -0.103 0.166* 0.446 -0.072

θ̂
(ROB)
2 =1.50 S S S S NS S LM 5.8 1.8 -0.092 0.162 0.450* -0.082

θ̂
(WAV )
2 =0.03 S S NS NS S NS LM 30.9 -5.4 0.239 0.113 -0.030 0.211*

θ̂
(IR)
3 =0.63 S S NS NS NS NS LM 3.8 0.7 0.244* 0.354 0.333 0.097

θ̂
(MS)
3 = 1.44 S S S S NS NS LM 27.1 3.7 0.159 0.436* 0.387 0.441

θ̂
(ROB)
3 = 1.19 S S S S NS NS LM 14.9 2.6 0.168 0.430 0.394* 0.430

θ̂
(WAV )
3 = 2.90 S S S S NS S LM 223.4 13.3 0.053 0.291 0.233 0.475*

Table 9: Results of stationarity, nonstationarity and V/S tests and the 4 long memory parameter estimators applied

to several functionals f of USD1 vs Deutsh-Mark Exchange Rate Return: from the top to bottom, f(x) = x,

f(x) = |x|, f(x) = x2 and f(x) = |x|θ with θ maximizing the 4 different long memory parameter estimators (”S“ for

”stationarity“ decision and ”NS“ for ”nonstationarity“ decision). Statistics are applied to the 3 estimated stages of

each trajectory (obtained from a change detection algorithm).
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r=Dow Jones Transportation Index Return

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 1271] S S S S S NS SM 4.6 0.0 0.218 0.174 0.098 0.198

[1273 : 8531] S S S S S S SM 21.7 -0.8 0.053 0.002 0.008 -0.404

[8533 : 12071] S S S S S S SM 8.3 -0.3 0.002 -0.015 -0.034 -0.038

|r| = abs(Dow Jones Transportation Index Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 1272] S S S S NS NS LM 6.1 1.5 0.154 0.320 0.270 0.166

[1273 : 8532] S S S S NS NS LM 57.3 4.4 0.322 0.260 0.240 0.168

[8533 : 12071] S S S S NS NS LM 16.3 2.5 0.405 0.476 0.496 0.374

r2 = (Dow Jones Transportation Index Return)2

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 1272] S S S S NS S LM 32.3 4.4 0.158 0.284 0.231 0.231

[1273 : 8532] S S S S S NS LM 2301.5 39.9 0.334 0.122 0.093 0.118

[8533 : 12071] S NS S S NS NS LM 459.0 15.5 0.416 0.452 0.434 0.356

|r|θ = (abs(Dow Jones Transportation Index Return))θ

θ̂
(j)
i = (Non)Stationarity Test LRD Kurtosis Skewness d̂

ArgMaxθ(d̂(|ri|θ) S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

θ̂
(IR)
1 = 1.83 S S S S NS S LM 25.0 3.8 0.252* 0.291 0.237 0.202

θ̂
(MS)
1 = 0.45 S S NS S NS NS LM 2.7 0.4 0.118 0.331* 0.290 0.047

θ̂
(ROB)
1 = 0.36 S S NS S NS NS LM 2.9 -0.4 0.118 0.329 0.291* 0.237

θ̂
(WAV )
1 = 0.03 S S NS S NS NS LM 12.8 -3.4 0.149 0.257 0.260 0.327*

θ̂
(IR)
2 = 2.06 S S S S S NS LM 2551.6 42.6 0.355* 0.113 0.086 0.110

θ̂
(MS)
2 = 0.68 S S S S NS NS LM 10.6 1.6 0.308 0.276* 0.261 0.135

θ̂
(ROB)
2 = 0.65 S S S S NS NS LM 9.2 1.4 0.303 0.276 0.261* 0.129

θ̂
(WAV )
2 = 1.29 S S S S NS NS LM 246.8 10.1 0.330 0.227 0.200 0.504*

θ̂
(IR)
3 = 0.66 S NS S S NS NS LM 5.4 1.1 0.444* 0.435 0.461 0.374

θ̂
(MS)
3 = 1.38 S S S S NS NS LM 64.8 5.2 0.402 0.492* 0.499 0.391

θ̂
(ROB)
3 = 1.22 S S S S NS NS LM 36.2 3.8 0.400 0.489 0.502* 0.387

θ̂
(WAV )
3 = 2.75 S S S S NS NS LM 1698.7 35.8 0.407 0.315 0.287 0.466*

Table 10: Results of stationarity, nonstationarity and V/S tests and the 4 long memory parameter estimators

applied to several functionals f of DowJones Transportation Index Return: from the top to bottom, f(x) = x,

f(x) = |x|, f(x) = x2 and f(x) = |x|θ with θ maximizing the 4 different long memory parameter estimators (”S“ for

”stationarity“ decision and ”NS“ for ”nonstationarity“ decision). Statistics are applied to the 3 estimated stages of

each trajectory (obtained from a change detection algorithm).
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r=Dow Jones Utilities Index Return

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 1152] S S S S S S SM 7.3 0.6 0.191 0.037 -0.132 0.222

[1153 : 8748] S S S S S S SM 43.2 -1.3 0.094 0.025 0.001 0.043

[8749 : 12071] S S S S S S SM 13.0 0.0 0.026 0.024 0.001 -0.032

|r| = abs(Dow Jones Utilities Index Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 1152] S S S S NS NS LM 11.9 2.4 0.283 0.287 0.316 0.225

[1153 : 8748] S S S S NS NS LM 127.4 5.9 0.134 0.301 0.304 0.184

[8749 : 12071] S S S S NS NS LM 25.5 3.4 0.417 0.559 0.484 0.595

r2 = (Dow Jones Utilities Index Return)2

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 1152] S S S S NS S LM 63.1 6.7 0.250 0.253 0.212 0.270

[1153 : 8748] S S S S NS NS LM 5322.4 67.8 0.130 0.100 0.100 0.100

[8749 : 12071] S NS S S NS NS LM 289.6 14.0 0.510 0.468 0.423 0.513

|r|θ = (abs(Dow Jones Utilities Index Return))θ

θ̂
(j)
i = (Non)Stationarity Test LRD Kurtosis Skewness d̂

ArgMaxθ(d̂(|ri|θ)) S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

θ̂
(IR)
1 = 0.39 S S NS S NS NS LM 3.3 -0.1 0.354* 0.262 0.327 0.145

θ̂
(MS)
1 = 1.09 S S S S NS NS LM 14.6 8.4 0.215 0.288* 0.308 0.234

θ̂
(ROB)
1 = 0.60 S S NS S NS NS LM 4.5 0.8 0.311 0.276 0.336* 0.396

θ̂
(WAV )
1 = 0.63 S S S S NS NS LM 4.8 1.0 0.310 0.278 0.336 0.398*

θ̂
(IR)
2 = 3.00 S S S S S S LM 7320.6 84.9 0.165* 0.015 0.017 0.040

θ̂
(MS)
2 = 0.61 S S S S NS NS LM 9.1 1.2 0.113 0.330* 0.327 0.113

θ̂
(ROB)
2 = 0.67 S S S S NS NS LM 13.0 1.6 0.117 0.330 0.327* 0.113

θ̂
(WAV )
2 = 1.84 S S S S NS NS LM 4386.6 59.1 0.125 0.130 0.129 0.377*

θ̂
(IR)
3 = 2.69 S NS S S NS NS LM 683.1 22.5 0.527* 0.394 0.344 0.426

θ̂
(MS)
3 = 0.95 S S S S NS NS LM 21.6 3.1 0.415 0.560* 0.483 0.544

θ̂
(ROB)
3 = 1.10 S S S S NS NS LM 35.2 4.2 0.421 0.557 0.485* 0.364

θ̂
(WAV )
3 = 1.03 S S S S NS NS LM 28.2 3.7 0.419 0.559 0.484 0.723*

Table 11: Results of stationarity, nonstationarity and V/S tests and the 4 long memory parameter estimators applied

to several functionals f of Dow Jones Utilities Index Return: from the top to bottom, f(x) = x, f(x) = |x|, f(x) = x2

and f(x) = |x|θ with θ maximizing the 4 different long memory parameter estimators (”S“ for ”stationarity“ decision

and ”NS“ for ”nonstationarity“ decision). Statistics are applied to the 3 estimated stages of each trajectory (obtained

from a change detection algorithm).
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r=Nasdaq Industrials Index Return

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 7160] S S S S S S SM 20.7 -1.5 0.141 0.073 0.092 -0.202

[7161 : 8320] S S S S S S SM 4.6 0.0 0.012 0.070 0.116 0.014

[8321 : 10480] S S S S NS S SM 10.4 -0.3 0.045 0.078 0.082 -0.045

|r| = abs(Nasdaq Industrials Index Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 7160] S S S S S NS SM 52.4 4.4 0.361 0.309 0.287 0.274

[7161 : 8320] S S S S NS NS LM 7.4 1.6 0.284 0.532 0.504 0.385

[8321 : 10480] S NS S NS NS NS LM 18.3 3.0 0.516 0.761 0.606 0.668

r2 = (Nasdaq Industrials Index Return)2

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 7160] S S S S S NS SM 1356.8 31.4 0.381 0.146 0.114 0.100

[7161 : 8320] S S S S NS NS LM 49.0 5.4 0.304 0.466 0.378 0.432

[8321 : 10480] S NS S S NS NS LM 140.0 10.0 0.498 0.786 0.544 0.708

|r|θ = (abs(Nasdaq Industrials Index Return))θ

θ̂
(j)
i = (Non)Stationarity Test LRD Kurtosis Skewness d̂

ArgMaxθ(d̂(|ri|θ)) S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

θ̂
(IR)
1 = 1.04 S S S S S NS LM 63.7 4.9 0.396* 0.304 0.281 0.325

θ̂
(MS)
1 = 0.67 S S S S NS NS LM 10.2 0.7 0.188 0.329* 0.325 0.293

θ̂
(ROB)
1 = 0.56 S S S S NS NS LM 6.3 0.9 0.178 0.326 0.328* 0.275

θ̂
(WAV )
1 = 0.83 S S S S NS NS LM 22.4 2.6 0.199 0.324 0.311 0.587*

θ̂
(IR)
2 = 2.83 S S S S NS S LM 142.0 9.8 0.317* 0.374 0.276 0.263

θ̂
(MS)
2 = 1.03 S S S S NS NS LM 7.9 1.7 0.284 0.532* 0.501 0.388

θ̂
(ROB)
2 = 0.73 S S NS S NS NS LM 4.2 0.9 0.300 0.517 0.517* 0.340

θ̂
(WAV )
2 = 1.87 S S S S NS NS LM 39.8 4.8 0.299 0.479 0.395 0.432*

θ̂
(IR)
3 = 2.60 S NS S S NS S LM 256.9 14.3 0.548* 0.272 0.479 0.669

θ̂
(MS)
3 = 1.70 S NS S S NS NS LM 89.1 7.7 0.504 0.801* 0.575 0.739

θ̂
(ROB)
3 = 1.13 S NS S S NS NS LM 26.0 3.7 0.526 0.772 0.608* 0.671

θ̂
(WAV )
3 = 1.26 S NS S S NS NS LM 36.0 4.5 0.532 0.782 0.606 0.760*

Table 12: Results of stationarity, nonstationarity and V/S tests and the 4 long memory parameter estimators applied

to several functionals f of Nasdaq Industrials Index Return: from the top to bottom, f(x) = x, f(x) = |x|, f(x) = x2

and f(x) = |x|θ with θ maximizing the 4 different long memory parameter estimators (”S“ for ”stationarity“ decision

and ”NS“ for ”nonstationarity“ decision). Statistics are applied to the 3 estimated stages of each trajectory (obtained

from a change detection algorithm).
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r=Nikkei 225A Index Return

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 6672] S S S S S S SM 12.6 -0.6 0.083 0.067 0.084 0.022

[6673 : 10400] S S S S S S SM 63.7 -2.3 -0.021 -0.016 -0.013 -0.039

[10401 : 15919] S S S S S S SM 9.0 -0.1 0.033 0.047 -0.005 -0.015

|r| = abs(Nikkei 225A Index Return)

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ ˜dIR d̃MS d̃ROB d̃WAV

[1 : 6672] S S S S NS NS LM 26.1 3.3 0.302 0.343 0.313 0.218

[6673 : 10400] S S S S NS NS LM 150.9 7.5 0.196 0.346 0.304 0.321

[10401 : 15919] S S S S NS NS LM 17.0 2.6 0.413 0.415 0.431 0.335

r2 = (Nikkei 225A Index Return)2

Segments (Non)Stationarity Test LRD Kurtosis Skewness d̂

Breaks S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

[1 : 6672] S S S S NS NS LM 427.8 16.9 0.275 0.241 0.267 0.080

[6673 : 10400] S S S S S NS LM 2610.8 48.0 0.230 0.146 0.154 0.117

[10401 : 15919] S S S S NS NS LM 235.5 12.3 0.381 0.396 0.363 0.377

|r|θ = (abs(Nikkei 225A Index Return))θ

θ̂
(j)
i = (Non)Stationarity Test LRD Kurtosis Skewness d̂

ArgMaxθ(d̂(|ri|θ)) S̃N T̃N ADF PP KPSS LMC V/S κ̃ s̃ d̃IR d̃MS d̃ROB d̃WAV

θ̂
(IR)
1 = 1.53 S S S S NS NS LM 149.8 9.0 0.323* 0.296 0.296 0.201

θ̂
(MS)
1 = 0.86 S S S S NS NS LM 15.4 4.4 0.286 0.345* 0.311 0.213

θ̂
(ROB)
1 = 1.01 S S S S NS NS LM 27.1 3.4 0.303 0.342 0.313* 0.218

θ̂
(WAV )
1 = 1.30 S S S S NS NS LM 74.8 6.1 0.273 0.322 0.307 0.622*

θ̂
(IR)
2 = 3.00 S S S S S S LM 3487.4 58.3 0.252* 0.037 0.042 0.045

θ̂
(MS)
2 = 0.84 S S S S NS NS SM 55.5 4.1 0.180 0.353* 0.304 0.154

θ̂
(ROB)
2 = 0.91 S S S S NS NS SM 87.1 5.3 0.186 0.352 0.305* 0.035

θ̂
(WAV )
2 = 1.64 S S S S S NS SM 1697.1 35.8 0.221 0.220 0.222 0.465*

θ̂
(IR)
3 = 1.23 S NS S S NS NS LM 35.7 4.1 0.467* 0.412 0.426 0.386

θ̂
(MS)
3 = 0.87 S S S S NS NS LM 11.0 2.0 0.429 0.415* 0.428 0.351

θ̂
(ROB)
3 = 1.00 S S S S NS NS LM 17.0 2.6 0.413 0.415 0.431* 0.335

θ̂
(WAV )
3 = 1.27 S NS S S NS NS LM 40.3 4.4 0.467 0.411 0.424 0.425*

Table 13: Results of stationarity, nonstationarity and V/S tests and the 4 long memory parameter estimators applied

to several functionals f of Nikkei 225A Index Return: from the top to bottom, f(x) = x, f(x) = |x|, f(x) = x2 and

f(x) = |x|θ with θ maximizing the 4 different long memory parameter estimators (”S“ for ”stationarity“ decision and

”NS“ for ”nonstationarity“ decision). Statistics are applied to the 3 estimated stages of each trajectory (obtained

from a change detection algorithm).
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