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Abstract

We develop a mixture procedure for monitoring parallel streams of data for a change-point

that affects only a subset of them, without assuming a spatial structure relating the data

streams to one another. Observations are assumed initially to be independent standard nor-

mal random variables. After a changepoint the observations in a subset of the streams of

data have non-zero mean values. The subset and the post-change means are unknown. The

procedure we study uses stream specific generalized likelihood ratio statistics, which are com-

bined to form an overall detection statistic in a mixture model that hypothesizes an assumed

fraction p0 of affected data streams. An analytic expression is obtained for the average run

length (ARL) when there is no change and is shown by simulations to be very accurate. Simi-

larly, an approximation for the expected detection delay after a change-point is also obtained.

Numerical examples are given to compare the suggested procedure to other procedures for

unstructured problems and in one case where the problem is assumed to have a well defined

geometric structure. Finally we discuss sensitivity of the procedure to the asssumed value of

p0 and suggest a generalization.

1 Introduction

Single sequence problems of change-point detection have a long history in industrial quality control,

where an observed process is assumed initially to be in control and at a change-point becomes out

of control. It is desired to detect the change-point with as little delay as possible subject to the
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constraint that false detections occurring before the true change-point are very rare. Outstanding

early contributions are due to Page [Pag54], [Pag55], Shiryaev [Shi63], and Lorden [Lor71].

We assume there are parallel streams of data subject to change-points. More precisely suppose

that for each n = 1, . . . , N , we make observations yn,t, t = 1, 2, . . . . The observations are mutually

independent within and across data streams. At a certain time κ, there are changes in the distri-

butions of observations made at a subset N ⊂ {1, . . . , N} of cardinality |N | ≤ N . Also denote by

N c the set of unaffected data streams. The change-point κ, the subset N and its size, and the size

of the changes are all unknown. As in the case of a single sequence N = 1, the goal is to detect the

change-point as soon as possible after it occurs, while keeping the frequency of false alarms as low

as possible. In the change-point detection literature, a surrogate for the frequency of false alarms

is the average-run-length (ARL), defined to be the expected time before incorrectly announcing a

change of distribution when none has occurred.

It may be convenient to imagine that the data streams represent observations made by a col-

lection of N sensors, that the change-point is the onset of a localized signal that can be detected

by sensors in the neighborhood of the signal. However, the problem is unstructured in the sense

that there is no model that relates the changes seen at the different sensors. In a structured prob-

lem there exists a profile determining the relative magnitudes of the changes observed by different

sensors, say according to their distance from the location of a signal, cf. [SY08]. For discussions of

unstructured problems and applications see [TV08], [Mei10], [CGV+10], [PRT03], and [LLR09].

The detection problem of particular interest in this paper involves the case that N is large and

|N | is relatively small. To achieve efficient detection, the detection procedure should use insofar

as possible only useful information from affected sensors and suppress noise from the unaffected

sensors.

In analogy with the well known CUSUM statistic (e.g., Page [Pag54], [Pag55], Lorden [Lor71]),

Mei [Mei10] recently proposed a multisensor procedure based on sums of the CUSUM statistic from

individual sensors. He then compares the sum with a suitable threshold to determine a stopping rule.

While the distributions of the data, both before and after the change-point, are completely general,

they are also assumed to be completely known. The method is shown to minimize asymptotically

the expected detection delay for a given false alarm rate, when the threshold value (and hence the

constraint imposed by the ARL) becomes infinitely large. The procedure fails to be asymptotically

optimal when the specified distributions are incorrect. Tartakovsky and Veeravalli proposed a

different procedure [TV08] that sums the local likelihood ratio statistic before forming a CUSUM

statistics. They also assume the post-change distributions are completely prescribed. Moreover,
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both procedures assume the change-point is observed by all sensors. When only a subset of sensors

observe the change-point, these procedures include noise from the unaffected sensors in the detection

statistic, which may lead to long detection delays.

In this paper, we develop a mixture procedure that achieves good detection performance in the

case of an unknown subset of affected sensors and incompletely specified post-change distributions.

The key feature of the proposed procedure is that it incorporates an assumption about the fraction

of affected sensors when computing the detection statistic. We assume that the individual obser-

vations are independent and normally distributed with unit variance, and that the changes occur

in their mean values. At the tth vector of observations (yn,t, n = 1, . . . , N), the mixture procedure

first computes a generalized likelihood ratio (GLR) statistic for each individual sensor under the

assumption that the change-point occurs at κ ≤ t. Then the local GLR statistics are combined via a

mixture model that depends on p0, the hypothesized fraction of affected sensors. The local statistics

are then summed and compared with a detection threshold. To characterize the performance of the

mixture procedure, we derive analytic approximations for its ARL and expected detection delay,

which are evaluated by comparing the approximations to suitable simulations. Since evaluation of

the ARL by simulation is quite time consuming, the analytic approximation to the ARL proves very

useful in determining a suitable detection threshold. The proposed procedure is then compared to

competing procedures via simulation and is shown to be very competitive in unstructured problems.

It is also shown to be reasonably robust to the choice of p0, and a hierarchical mixture procedure

is suggested for cases when a single value of p0 seems inadequate.

Although we assume throughout that the observations are normally distributed, the model

can be generalized to an exponential family of distributions satisfying some additional regularity

conditions.

The remainder of the paper is organized as follows. In Section 2 we establish our notation and

formulate the problem more precisely. In Section 3 we review several detections procedures and

introduce the proposed mixture procedure. In Section 4 we derive the theoretical ARL and expected

detection delay of the mixture procedure, and demonstrate with numerical examples that these

approximations are reasonably accurate. In Section 5, we demonstrate that the mixture procedure

performs well compared to other procedures in the unstructured problem. We also compare the

mixture procedure to that suggested by [SY08] in a structured problem. Finally Section 7 concludes

the paper with some discussion.
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2 Assumptions and Formulation

Given N sensors, for each n = 1, 2, · · · , N , the observations from the nth sensor are given by yn,t,

t = 1, 2, · · · . Assume that different observations are mutually independent and normally distributed

with unit variances. Under the hypothesis of no change, they have zero means. The probability

and expectation of this case are denoted by P
∞ and E

∞, respectively. Alternatively, there exists

a change-point κ ≥ 0 and a subset N of {1, 2, . . . , N} with cardinality |N | such that for n ∈ N ,

the observations yn,t at sensors affected by the change-point, have means equal to µn > 0 for all

t > κ, while observations from the unaffected sensors keep the same standard normal distribution.

The probability and expectation of this case are denoted by P
κ and E

κ, respectively. Note that

this probability depends on N and the values of µn, although this dependence is suppressed in the

notation. The fraction of affected sensors is given by p = |N |/N .

Our goal is to define a stopping rule T such that for all sufficiently large prescribed constants

c > 0, E∞{T} ≥ c, while asymptotically E
κ{T −κ|T > κ} is a minimum. Ideally, the minimization

would hold uniformly in the various unknown parameters: κ, N and the µn. Since this is clearly

impossible, in Section 5 we will compare different procedures through numerical examples computed

under various hypothetical conditions.

3 Detection Procedures

Since the observations are independent, for an assumed value of the change-point κ = k and sensor

n ∈ N , the log-likelihood of observations accumulated by time t > k is given by

ℓn(t, k, µn) =
t
∑

i=k+1

(

µnyn,i − µ2
n/2
)

. (1)

We assume that each sensor is affected by the change with probability p0 (independently from

one sensor to the next). The global log likelihood of all N sensors is

N
∑

n=1

log {1− p0 + p0 exp[ℓn(t, k, µn)]} . (2)

The expression (2) suggests several change-point detection rules.

One possibility is to set µn equal to a nominal change, say δ > 0, which would be important to
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detect, and define the stopping rule

T1 = inf

{

t : max
0≤k≤t

N
∑

n=1

log{1− p0 + p0 exp[ℓ
+
n (t, k, δ)] ≥ b

}

, (3)

where x+ denotes the positive part of x. Here thresholding by the positive part plays the role of

dimension reduction by limiting the current considerations only to sequences that appear to be

affected by the change-point.

Another possibility is to replace µn by its maximum likelihood estimator, as follows. The

maximum likelihood estimate of the post-change mean as a function of the current number of

observations t and putative change-point location k is given by

µ̂n =

(

t
∑

i=k+1

yn,i

)+

/(t− k). (4)

Substitution into (1) gives the log generalized likelihood ratio (GLR) statistic. Putting

Sn,t =
t
∑

i=1

yn,i,

Un,k,t = (t− k)−1/2(Sn,t − Sn,k),

(5)

we can write the log GLR as

ℓn(t, k, µ̂n) = (U+
n,k,t)

2/2. (6)

We define the stopping rule

T2 = inf

{

t : max
0≤k<t

N
∑

n=1

log
(

1− p0 + p0 exp[(U
+
n,k,t)

2/2]
)

≥ b

}

. (7)

Remark. In what follows we use a window limited version of (7), where the maximum is restricted

to m0 ≤ t− k < m1 for suitable m0 < m1. The role of m1 is two-fold. On the one hand it reduces

the memory requirements to implement the stopping rule, and on the other it effectively establishes

a minimum level of change that we want to detect. For asymptotic theory given below, we assume

that b→ ∞, with m1/b also diverging. More specific guidelines in selecting m1 are discussed below.

In the numerical examples that follow we take m0 = 1. In practice a slightly larger value can be

used to provide protection against outliers in the data, although it may delay detection in cases

involving very large changes.
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The detection rule (7) is motivated by the suggestion of [ZYS11] for a similar fixed sample

change-point detection problem.

For the special case p0 = 1, (7) becomes the (global) GLR procedure, which for N = 1 was

studied by [SV95]. It is expected to be efficient if the change-point affects a large fraction of the

sensors. At the other extreme, if only one or a very small number of sensors is affected by the

change-point, a reasonable procedure would be

Tmax = inf

{

t : max
0≤k<t

max
1≤n≤N

(U+
n,k,t)

2/2 ≥ b

}

. (8)

The stopping rule Tmax(p0) can also be window limited.

Still other possibilities are suggested by the observation that a function of y of the form log[1−
p0+p0 exp(y)] large only if y is large, and then this function is approximately equal to [y+log(p0)]

+.

This suggests the stopping rules

T3 = inf

{

t : max
0≤k<t

N
∑

n=1

[ℓn(t, k, δ) + log(p0)]
+ ≥ b

}

(9)

and

T4 = inf

{

t : max
0≤k<t

N
∑

n=1

[(U+
n,k,t)

2/2 + log(p0)]
+ ≥ b

}

, (10)

or a suitably window limited version.

Mei ([Mei10]) suggests the stopping rule

TMei = inf

{

t :
N
∑

n=1

max
0≤k<t

ℓn(t, k, δ) ≥ b

}

, (11)

which simply adds the classical CUSUM statistics for the different sensors. Note that this procedure

fails to take advantage of the assumption that all distributions affected by the change-point change

simultaneously. As we shall see below this failure has a negative impact on the efficiency of the

procedure, although it might prove beneficial in differently formulated problems. For example, there

may be a time delay before the signal is perceived at different sensors, or there may be different

signals occurring at different times in the proximity of different sensors. In these problems, Mei’s

procedure, which allows changes to occur at different times, could be useful.
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The procedure suggested by Tartakovsky and Veeravalli [TV08] is defined by the stopping rule

TTV , inf

{

t : max
0≤k<t

N
∑

n=1

ℓn(t, k, δ) ≥ b

}

. (12)

This stopping rule resembles T3(p0) with p0 = 1, but with one important difference. After a change-

point the statistics of the unaffected sensors have negative drifts that tend to cancel the positive

drifts from the affected sensors. This can lead to a large expected detection delay. Use of the

positive part, [ℓn(t, k, δ)]
+, in the definitions of our stopping rules is designed to avoid this problem.

Different thresholds b are required for each of these detection procedures to meet the ARL

requirement.

4 Properties of the Detection Procedures

In this section we develop theoretical properties of the detection procedures T1 to T4, with emphasis

on T2. We use two standard performance metrics: (i) the expected value of the stopping time

T when there is no change, usually called the average run length or ARL and (ii) the expected

detection delay in the extreme case where a change occurs immediately at κ = 0. This provides

an upper bound on the expected detection delay when a change occurs later in the sequence of

observations. The approximation to the ARL will be shown below to be very accurate, which is

fortunate since its simulation can be quite time consuming.

4.1 Average run length when there is no change

The ARL is the expected value of the stopping time T when there is no change-point. It will be

convenient to use the following notation. Let g(x, p0) = log(1− p0 + p0 exp[(x
+)2/2]), and put

ψ(θ) = logE{exp[θg(U, p0)]}, (13)

where U has a standard normal distribution. Also let

γ(θ) =
1

2
θ2E{[ġ(U, p0)]2 exp[θg(U, p0)− ψ(θ)]}. (14)
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Here the dot denotes differentiation (with respect to the first argument for a function of more than

one variable). Let

f(N, θ, p0) =
θ[2πψ̈(θ)]1/2

γ(θ)N1/2
exp{N [θψ̇(θ)− ψ(θ)]}. (15)

Denote the standard normal density function by φ(x) and its distribution function by Φ(x). Also let

ν(x) = 2x−2 exp
[

−2
∑∞

1 n−1Φ
(

−|x|n1/2/2
)]

(cf. [Sie85], p. 82). For numerical purposes a simple,

accurate approximation is given by (cf. [SY07])

ν(x) ≈ (2/x)[Φ(x/2)− 0.5]

(x/2)Φ(x/2) + φ(x/2)
.

To state our approximation to the ARL of T2, we assume that N → ∞ and b → ∞ with b/N

fixed. Consider the window limited mixture stopping rule (7) with m1 = o(br) for some positive

integer r and define θ by ψ̇(θ) = b/N . Then

E
∞{T2} ∼ f(N, θ, p0)/

∫ [2Nγ(θ)/m0]1/2

[2Nγ(θ)/m1]1/2
yν2(y)dy. (16)

Remark. The integrand in the approximation is integrable at both 0 and ∞ by virtue of the

relations ν(y) → 1 as y → 0, and ν(y) ∼ 2/y2 as y → ∞.

The following calculations provide support for the approximation in (16). For detailed proofs in

similar problems see [SV95] or [SY08]. From arguments similar to those used by [ZYS11], we can

show that

P
∞{T2 ≤ m}

= P
∞

{

max
t≤m,m0≤t−k≤m1

N
∑

n=1

g(Un,k,t; p0) ≥ b

}

∼ N2e−N [θψ̇(θ)−ψ(θ)][2πNψ̈(θ)]−1/2|θ|−1γ2(θ)

∫ m1/m

m0/m

ν2
(

[2Nγ(θ)/(mt)]1/2
)

(1− t)dt/t2.

(17)

Here it is assumed that m is large, but small enough that the right hand side of (17) converges to 0

when b → ∞. Assume the maximum window size m1 is small compared to m. Changing variables

in the integrand and using the notation (15), we can re-write this approximation as

P
∞{T2 ≤ m} ∼ m

∫ [2Nγ(θ)/m0]1/2

[2Nγ(θ)/m1 ]1/2
yν2(y)dy/f(N, θ, p0). (18)

From the arguments in [SV95] or [SY08] (see also [Ald88]), we see that T2 is asymptotically ex-
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ponentially distributed. Hence if λ denotes the factor multiplying m on the right hand side of

(18), then for still larger m, in the range where mλ is bounded away from 0 and ∞, P∞{T2 ≤
m} − [1− exp(−λm)] → 0. Consequently, uniform integrability implies that E∞{T2} ∼ λ−1, which

is equivalent to (16).

A simultation illustrating the fact that T2 is approximately exponentially distributed is given in

Section 4.3.

Remarks. (i) The result we have used from [ZYS11] was motivated by a problem involving changes

that could be positive, or negative, or both and in that paper it was assumed that the function

g(x, p0) is twice continuously differentiable in x. The function g(x, p0) defined above for one-sided

changes, which are more natural in our problem, and have been used in the formulations of earlier

authors, does not have this much smoothness. We can, however, approximate the indicator of

x > 0 by Φ(rx), as r → ∞, and thus use in place of x+ in the definition of g the smooth function
∫ x

−∞
Φ(rv)dv = xΦ(rx) + r−1φ(rx), which converges uniformly to x+ as r → ∞. Using the cited

result, then letting r → ∞ and interchanging limits produces (17). An alternative approach would

be simply to define g(x, p0) to be appropriate for a one sided change while having the required

smoothness in x. A simple example is g(x, p0) = log[1− p0 + p0 exp(x
2/2)Φ(x)].

(ii) The fact that the stopping times T studied in this paper are asymptotically exponentially

distributed can be very useful in simulating the ARL. It is not necessary to simulate the process

until T , which can be computationally time consuming, but only until we are able to estimate

P
∞{T ≤ m} with a reasonably small percentage error. For the numerical examples given later, we

have occasionally used this shortcut with the value of m that makes this probability 0.1 or 0.05.

4.2 Expected Detection Delay

After a change-point occurs, we are interested in the expected number of additional observations

required for detection. For the detection rules considered in this paper, the maximum expected

detection delay over κ ≥ 0 is attained at κ = 0. Hence we consider this case.

We continue to use the notation of the preceding section. In particular g(x, p0) = log(1 − p0 +

p0 exp[(x
+)2/2]), and we let U denote a standard normal random variable. Recall that N denotes

the set of sensors at which there is a change,M = |N | is the cardinality of this set, and p = |N |/N is

the true fraction of sensors that are affected by the change. For each n ∈ N the mean value changes

from 0 to µn > 0, and for n ∈ N c the distribution remains the same as before the change-point.
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Let

∆ =

(

∑

n∈N

µ2
n

)1/2

. (19)

Note that the Kullback-Leibler divergence of a vector of observations after the change-point

from a vector of observations before the change-point is ∆2/2, which determines the asymptotic

rate of growth of the detection statistic after the change-point. Using Wald’s identity [Sie85], we

see to a first order approximation that the expected detection delay is 2b/∆2, provided that the

maximum window size, m1, is large compared to this quantity. In the following derivation we

assume m1 ≫ 2b/∆2.

In addition, let

S̃t ,

t
∑

i=1

zi (20)

be a random walk where the increments zi are independent and identically distributed with mean

∆2/2 and variance ∆2. Let τ = min
{

t : S̃t > 0
}

. Our approximation to the expected detection

delay given below depends on two related quantities. The first is

ρ(∆) =
1

2
E{S̃2

τ}/E{S̃τ}, (21)

for which exact computational expressions and useful approximations are available in [Sie85]. In

particular

ρ(∆) = E{z21}/(2E{z1})−
∞
∑

i=1

i−1
E{S̃−

i } = ∆2/4 + 1−
∞
∑

i=1

i−1
E{S̃−

i }, (22)

where (x)− = −min{x, 0}. The second quantity is E{mint≥0 S̃t}, which according to (Problem 8.14

in [Sie85]) is given by

E

{

min
t≥0

S̃t

}

= ρ(∆)− 1−∆2/4. (23)

The following approximation refines the first order result for the expected detection delay. As

b→ ∞, with other parameters held fixed,

E
0{T2} = 2∆−2

[

b+ ρ(∆)− |N | log p0 − |N |/2 + E

{

min
t≥0

S̃t

}

− (N − |N |)E{g(U, p0)}+ o(1)

]

.

(24)

The following calculation provides the ingredients for a proof of (24). For details in similar

problems involving a single sequence, see [PS75] and [SV95]. For convenience we write T = T2. Let

k0 = b1/2. For k < T − k0, we can write the detection statistic at the stopping time T as follows,
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up to a term that tends to zero exponentially fast in probability:

Zk,t =

N
∑

n=1

g(Un,k,T , p0)

=
∑

n∈N

g(Un,k,T , p0) +
∑

n∈N c

g(Un,k,T , p0)

=
∑

n∈N

log

(

p0 exp
{

(U+
n,k,T )

2/2
}

[

1 +
1− p0
p0

exp
{

−(U+
n,k,T )

2/2
}

])

+
∑

n∈N c

g(Un,k,T , p0)

=
∑

n∈N

[

log p0 + (U+
n,k,T )

2/2
]

+
∑

n∈N c

g(Un,k,T , p0) +
∑

n∈N

log

(

1 +
1− p0
p0

exp
{

−(U+
n,k,T )

2/2
}

)

=|N | log p0 +
∑

n∈N

(U+
n,k,T )

2/2 +
∑

n∈N c

g(Un,k,T , p0) + o(1)

=|N | log p0 +
∑

n∈N

[(Sn,T − Sn,k)
+]2/2(T − k) +

∑

n∈N c

g(Un,k,T , p0) + o(1).

(25)

The residual term
∑

n∈Na
log
(

1 + (1− p0) exp
{

−(U+
n,k,T )

2/2
}

/p0
)

tends to zero exponentially fast

when b → ∞, because when b → ∞, T → b/∆, and n ∈ N , (U+
n,k,T )

2 grows on the order of

µ2
n(T − k) > µ2

nk0 = µ2
n

√
b.

We then use the following simple identity to decompose the second term in (25) for the affected

sensors into two parts:

(S+
n,t)

2/2t = S2
n,t/2t− (S−

n,t)
2/2t

= µn(Sn,t − µnt/2) + (Sn,t − µnt)
2/2t− (S−

n,t)
2/2t.

(26)

From the preceding discussion, we see that max0≤k<T−k0 Zk,T is on the order of b, while maxT−k0≤k<T Zk,T

is on the order of k0 = b1/2. Hence with overwhelming probability the max over all k is attained for
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k < T − k0, so from (26) and (25) we have

max
0≤k<T

Zk,t

= max
0≤k<T−k0

N
∑

n=1

g(Un,k,T , p0) + o(1)

=|N | log p0 + max
0≤k<T−k0

[

∑

n∈N

µn[(Sn,T − Sn,k)− (T − k)µn/2] +
∑

n∈N

[(Sn,T − Sn,k)− (T − k)µn]
2/[2(T − k)]

−[(Sn,T − Sn,k)
−]2/2(T − k) +

∑

n∈N c

g(Un,k,T , p0)

]

+ o(1)

=|N | log p0 +
∑

n∈N

µn (Sn,T − Tµn/2)+

max
0≤k<T−k0

[

−
∑

n∈N

µn (Sn,k − kµn/2) +
∑

n∈N

[(Sn,T − Sn,k)− (T − k)µn]
2/[2(T − k)]

−
∑

n∈N

[(Sn,T − Sn,k)
−]2/[2(T − k)] +

∑

n∈N c

g (Un,k,T , p0)

]

+ o(1).

(27)

The following lemma forms the basis for the rest of the derivation. The proof is omitted here;

for details see ([Xie11]) or ([SV95]) for the special case N = 1.

Lemma 1. For k0 = b1/2, asymptotically as b → ∞

max
0≤k<T

[

−
∑

n∈N

µn (Sn,k − kµn/2) +
∑

n∈N

[(Sn,T − Sn,k)− (T − k)µn]
2

2(T − k)
−
∑

n∈N

[(Sn,T − Sn,k)
−]2

2(T − k)

+
∑

n∈N c

g(Un,k,T , p0)

]

=
∑

n∈N

(Sn,T − Tµn)
2/2T +

∑

n∈N c

g(Un,0,T , p0) + max
0≤k<k0

[

−
∑

n∈N

µn(Sn,k − kµn/2)

]

+ op(1),

where op(1) converges to 0 in probability.
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By taking expectations in (27), letting b→ ∞ and using Lemma 1, we have

E
0

{

max
0≤k<T

N
∑

n=1

g(Un,k,T , p0)

}

=E
0

{

|N | log p0 +
∑

n∈N

µn(Sn,T − Tµn/2) +
∑

n∈N

(Sn,T − Tµn)
2

2T
+
∑

n∈N c

g(Un,0,T , p0)+

max
0≤k<k0

[

−
∑

n∈N

µn(Sn,k − kµn/2)

]}

+ o(1).

(28)

We will compute each term on the right hand side of (28) separately. We will need the lemma

due to Anscombe and Doeblin (see Theorem 2.40 in [Sie85]), which states that the standardized

randomly stopped sum of random variables are asymptotically normally distributed under quite

general conditions.

(i) By Wald’s identity [Sie85]:

E
0

{

∑

n∈N

µn(Sn,T − Tµn/2)

}

= E
0{T}∆2/2. (29)

(ii) By the Anscombe-Doeblin Lemma, (Sn,T − Tµn)/T
1/2 is asymptotically normally distributed

with zero mean and unit variance. Hence
∑

n∈N (Sn,T − Tµn)
2/T is asymptotically a sum of

independent χ2
1 random variables, so

E
0

{

∑

n∈N

(Sn,T − Tµn)
2/2T

}

= |N |/2 + o(1). (30)

(iii) Similarly,

E
0

{

∑

n∈N c

g(Un,0,T , p0)

}

→ (N − |N |)E0{g(U, p0)}. (31)

(iv) The term −∑n∈N µn(Sn,k − µnk/2) (k ≥ 0) is a random walk with negative drift −∆2/2 and

variance ∆2. Hence E
0
{

max0≤k<k0[−
∑

n∈N µn(Sn,k − kµn/2)]
}

converges to the expected

minimum of this random walk, which has the same distribution as mint≥0 S̃t defined above.

Having evaluated the right hand of (28), we now consider the left-hand side. The first order

asymptotic behavior of the process
∑N

n=1 g(Un,k,T , p0) is the same as that of
∑

n∈N µn(Sn,T−Tµn/2),
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which has drift ∆2/2 and variance ∆2. By writing

E
0

{

max
0≤k<T

N
∑

n=1

g(Un,k,T , p0)

}

= b+ E
0

{

max
0≤k<T

N
∑

n=1

g(Un,k,T , p0)− b

}

, (32)

and using nonlinear renewal theory to evaluate the expected overshoot of the process of (20) over

the boundary ([Sie85], Chapter IX), we obtain

E
0

{

max
0≤k<T

N
∑

n=1

g(Un,k,T , p0)− b

}

→ ρ(∆). (33)

Remark. An examination of the preceding argument indicates that the accuracy in practice of

the approximation may be quite variable. In particular, variability in the µn will be reflected in

variability in the accuracy of the expansion of g(Un,k,t, p0). In particular if some of the µn are close to

0, there will not be the clear separation required by the derivation of the indices n into terms where

the approximation applies and terms where it does not, with the result that the approximation may

break down.

4.3 Accuracy of the Approximations

We start with examining the accuracy of our approximations for the ARL and the expected detection

delay in (16) and (24). For a Monte Carlo experiment we use N = 100 sensors, m1 = 200 and µn = 1

for all affected data streams. The comparisons between the theoretical and Monte Carlo ARLs for

different values of p0 are given in Table 1. Numerical results obtained from 500 Monte Carlo trials

are given in Table 1, where they show that the approximation in (16) is quite accurate.

Table 1: Average run length (ARL) of T2(p0), m1 = 200.

p0 b Theory Monte Carlo
0.3 31.2 5001 5504
0.3 32.3 10002 10221
0.1 19.5 5000 4968
0.1 20.4 10001 10093
0.03 12.7 5001 4830
0.03 13.5 10001 9948

Figure 1 illustrates the fact that (for example) T2(0.1) is approximately exponentially distributed.

Results for the expected detection delay obtained from 500 Monte Carlo trialsare given in Table

2. The approximation for the expected detection delay does not appear to be as accurate as the

14
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Figure 1: The tail probability P{T2(0.1) > m}. Theoretic values are calculated from (16).

approximation for the ARL. Since the expected detection delay requires considerably less compu-

tational effort to simulate and needs to be known only roughly when we choose design parameters

for a particular problem, we are less concerned about its accuracy.

Table 2: Expected detection delay of the mixture procedure with ARL≈ 5000, µ = 1, andm1 = 200.

p p0 b Theory Monte Carlo
0.3 0.3 31.2 3.5 3.2
0.1 0.3 31.2 6.2 6.5
0.3 0.1 19.5 5.2 3.6
0.1 0.1 19.5 7.2 6.7
0.03 0.1 19.5 13.9 14.3
0.03 0.03 12.7 13.9 14.2

We have performed considerably more extensive simulations that yield results consistent with

the small experiments reported in Tables 1 and 2. Since the parameter p0 defining T2 must be

chosen subjectively, it is interesting to observe that Table 2 suggests this procedure is reasonably

robust with respect to the choice of p0, and choosing p0 somewhat too large is less costly than

choosing p0 too small. More extensive calculations bear out this observation. We return to the

problem of choosing p0 in Section 5.1.
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5 Numerical Comparisons

In this section, we compare the expected detection delays for several procedures when their ARLs

are all approximately 5000. The thresholds are given in Table 3, where we assume N = 100, and

m1 = 200 for those procedures for which a limited window size is appropriate. The procedure

(7) is denoted by T2(p0). For Mei’s procedure we put δn = 1. The procedures (9) are denoted by

T3(p0, δ). Recall that T2(1) uses the generalized likelihood ratio statistic and T3(1, δ) is similar to the

procedure proposed by Tartakovsky and Veeravalli (2008), but we have inserted the positive part to

avoid the problems discussed above with this procedure when a relatively small number of sensors

are affected by the changepoint. The expected detection delays are obtained from 500 Monte Carlo

trials and are listed in Table 4. For some entries values from our asymptotic approximation are

given in parentheses.

Note that the max procedure (8) has the smallest detection delay when p = 0.01, but it has the

largest delay for p greater than 0.1. The procedures defined by T2 and by T3 are comparable. Mei’s

procedure performs well when p is large, but poorly when p is small.

Table 3: Thresholds for ARL ≈ 5000, m1 = 200.

Procedure b Monte Carlo ARL
Max 12.8 5041
T2(1) 53.5 4978
T2(0.1) 19.5 5000
Mei 88.5 4997

T3(.1, 1) 12.4 4948
T3(1, 1) 41.6 4993
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Table 4: Expected Detection Delays with N = 100 obtained from 500 Monte Carlo trials. Thresh-
olds for ARL 5000 are listed in Table 3. Theoretical approximations for the expected detection
delay are in parentheses.

p Method DD, µ = 1 DD, µ = 0.7 DD, µ = 1.3
0.01 max 25.5 49.6 16.3

T2(1) 52.3(56.9) 105.5(114.6) 32.9(34.1)
T2(.1) 31.6(32.5) 59.4(64.9) 20.3 (19.7)
Mei 53.2 103.8 38.1

T3(.1, 1) 29.1 63.3 19.1
T3(1, 1) 82.0 213.7 53.3

0.03 max 18.1 33.3 11.6
T2(1) 18.7(19.3) 35.8(38.4) 12.6(11.7)
T2(.1) 14.2(13.9) 26.7(27.5) 9.3(8.5)
Mei 23.0 41.6 16.4
T3(.1) 13.4 26.9 9.2
T3(1) 27.2 66.0 16.3

0.05 max 15.5 28.4 9.7
T2(1) 12.2(11.6) 21.8(23.0) 7.9(7.1)
T2(.1) 10.4(10.1) 18.9(19.9) 6.9(6.2)
Mei 15.7 26.9 11.4

T3(.1, 1) 9.8 18.6 7.0
T3(1, 1) 15.5 38.8 9.0

0.1 max 12.6 23.0 8.4
T2(1) 6.7(5.9) 11.8(11.3) 4.7(3.7)
T2(.1) 6.7(7.2) 11.6(14.1) 4.6(4.5)
Mei 9.6 15.4 7.4

T3(.1, 1) 7.1 11.9 5.3
T3(1, 1) 6.8 15.7 4.6

0.3 max 9.6 16.7 6.6
T2(1) 3.0(2.0) 4.4(3.5) 2.4(1.4)
T2(.1) 3.5(5.2) 5.6(10.1) 2.7(3.3)
Mei 4.9 7.0 4.0

T3(.1, 1) 4.6 6.7 3.9
T3(1, 1) 3.0 4.3 2.5

0.5 max 8.6 14.4 5.8
T2(1) 2.3 3.0 2.0
T2(.1) 2.8 4.0 2.1
Mei 3.8 5.0 3.0

T3(.1, 1) 4.0 5.4 3.3
T3(1, 1) 2.3 3.0 2.0

1 max 7.2 12.1 5.1
T2(1) 2.0 2.0 2.0
T2(.1) 2.0 2.6 2.0
Mei 3.0 3.4 2.3

T3(.1, 1) 3.4 4.3 3.0
T3(1, 1) 2.0 2.1 2.0
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5.1 Parallel Mixture Procedure

The procedures considered above depend on a parameter p0, which presumably should be chosen

to be close to the unknown true fraction p. While Table 4 suggests that the value of p0 is fairly

robust, to achieve robustness over a wider range of the unknown parameter p, we consider a parallel

procedure that combines several procedures, each using a different p0 to monitor a different range

of p values. The thresholds of these individual procedures will be chosen so that they have the

same ARL. For example, we can use two different values of p0, say a small p0 = p1 and a large

p0 = p2, and then choose thresholds b1 and b2 to obtain the same ARL for these two procedures.

The parallel procedure claims a detection if at least one of the component procedures reaches its

threshold, specifically

Tparallel , min{T2(p1), T2(p2)}. (34)

To compare the performance of the parallel procedure with that of a single T2, we consider a

case with N = 400 and m1 = 200. For the single mixture procedure we use the intermediate value

p0 = 0.10 and threshold value b = 44.7, so P
∞{T2 ≤ 1000} ≈ 0.10 and hence the ARL ≈ 10000.

For the parallel procedure we consider the values p1 = 0.02 and p2 = 0.33. For the threshold values

b1 = 21.2 and b2 = 87.7, respectively, we have P
∞{T2(pi) ≤ 1000} ≈ 0.05. By the Bonferroni

inequality P
∞{min[T2(p1), T2(p2)] ≤ 1000} ≤ 0.1, so conservatively E

∞{Tparallel} ≥ 10000. Table 5

shows that the expected detection delays of the parallel procedure are usually smaller than those of

the single procedure, particularly for very small or very large p. Presumably these differences are

magnified in “larger” problems.

Table 5: Comparison of Parallel and Simple Procedures

Procedure p µ Expected Detection Delay
T2(.1) 0.1 0.7 6.5

0.005 1.0 27.1
0.005 0.7 54.5
0.25 0.3 12.0

Parallel Procedure 0.1 0.7 6.4
0.005 1.0 22.9
0.005 0.7 45.8
0.25 0.3 10.5

Simulations indicate that because of dependence between the two statistics used to define the

parallel procedure, the ARL is actually somewhat larger than the Bonferroni approximation sug-

gested. Since the parallel procedure becomes increasingly attractive in larger problems, which
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provide more room for improvement over a single choice of p0, but which are also increasingly dif-

ficult to simulate, it would be interesting to develop a more accurate theoretical approximation for

the ARL.

An attractive alternative to the parallel procedure would be to use a weighted linear combination

for different values of p0 of the statistics used to define T2 or T3. Our approximation for the ARL

can be easily adapted, but some modest numerical exploration suggests that the expected detection

delay is not improved as much as for the parallel procedure.

6 Profile-based Procedure for Structured Problems

Up to now we have assumed there is no spatial structure relating the change-point amplitudes

at difference sensors. In this section we will consider briefly a structured problem, where there is a

parameterized profile of the amplitude of the signal seen at each sensor that is based on the distance

of the sensor to the source of the signal. Assuming we have some knowledge about such a profile,

we can incorporate this knowledge into the definition of an appropriate detection statistic. Our

developments follow closely the analysis in ([SY08]).

Assume the location of the nth sensor given by its coordinates xn, n = 1, · · · , N at points in

Euclidean space, which for simplicity we take to be on an equi-spaced grid. We assume that the

source is located in a region D, which is a subset of the ambient Euclidean space. In our example

below we consider two dimensional space, but three dimensions would also be quite reasonable.

Assume the change-point amplitude at the nth sensor is determined by the expression

µn =
M
∑

m=1

rmαzm(xn), (35)

where M is the number of sources, zm ∈ D is the (unknown) spatial location of the mth source,

αz(x) is the profile function, and the scalar rm is an unknown parameter that measures the strength

of the mth signal. The profile function describes how the signal strength of the mth point source

has decayed at the nth sensor. We assume some knowledge about this profile function is available.

For example, αz(x) is often taken to be a decreasing function of the Euclidean distance between z

and x. The profile may also depend on finitely many parameters, such as the rate of decay of the

function. See [Rab94] or [SSSW03] for examples in a fixed sample context.

If the parameters rm are multiplied by a positive constant and the profile αzm(xn) divided by the

same constant, the values of µn do not change. To avoid this lack of identifiability, it is convenient
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to assume that for all z the profiles have been standardized to have unit Euclidean norm, i.e.,
∑

x α
2
z(x) = 1 for all z.

6.1 Profile-based procedure

Under the assumption that there is at most one source, say at z, for observations up to time t with

a change-point assumed to equal k, the log likelihood function for observations from all sensors (1)

is

ℓ(t, k, r, z) =

N
∑

n=1

[rαz(xn)(Sn,t − Sn,k)− r2(t− k)α2
z(xn)/2]. (36)

When maximized with respect to r this becomes

1

2

[

{
∑

n

αz(xn)Un,k,t}+
]2

. (37)

Maximizing the function (37) with respect to the putative change-point k and the source location

z, we obtain the log GLR statistic and a profile-based stopping rule of the form

Tprofile = inf







t : max
t−m1≤k≤t−m0

max
z∈D

[

{
∑

n

αz(xn)Un,k,t}+
]2

≥ b







. (38)

If the model is correct, (38) is a matched-filter type of statistic.

6.2 Theoretical ARL of profile-based procedure

Using the result presented in [SY08], we can derive an approximation for the ARL of the profile-

based procedure. We consider in detail a special case where d = 2 and the profile is given by a

Gaussian function

αz(x) =
1√
2πβ

e−
1

4β
||x−z||2, x ∈ R

2, β > 0. (39)

The parameter β > 0 controls of rate of profile decay and is assumed known. With minor modifi-

cations one could also maximize with respect to a range of values of β.

Although the sensors have been assumed to be located on the integer lattice of two-dimensional

Euclidean space, it will be convenient as a very rough approximation to assume that summation

over sensor locations x can be approximated by integration over the entire Euclidean space. With

this approximation,
∑

x α
2
z(x), which we have assumed equals 1 for all z, becomes

∫

R2 α
2
z(x)dx,

which by (39) is readily seen to be identically 1. The approximation is reasonable if β is large, so
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the effective distance between points of the grid is small, and the space D, assumed to contain the

signal, is well within the set of sensor locations (so edge effects can be ignored and the integration

extended over all of R2).

It will be convenient to use the notation

〈f, g〉 =
∫

R2

f(x)g(x)dx. (40)

Let α̇z denote the gradient of αz with respect to z. Then according to [SY08],

P
∞{Tprofile ≤ m} ∼ m exp(−b/2)(b/4π)3/221/2

∫ (b/m0)1/2

(b/m1)1/2
uν2(u)du

∫

D

[det|〈α̇z, α̇⊤
z 〉|1/2dz, (41)

To evaluate the last integral in (41), we see from (39) that α̇z satisfies

α̇z(x) = αz(x)(x− z)/(2β). (42)

Hence by (40) 〈α̇z, α̇⊤
z 〉 is a 2×2 matrix of integrals, which can be easily evaluated, and its determi-

nant equals 1/(16β4). Hence the last integral in (41) equals |D|/(4β2) where |D| denotes the area

of D. Arguing as above from the asymptotic exponentiality of Tprofile, we find that an asymptotic

approximation for the average run length is given by

E
∞{Tprofile} ∼ exp(b/2)

(

b

4π

)−3/2

·
[

∫ (b/m0)1/2

(b/m1)1/2
uν2(u)du · |D|/(21/2β2)

]−1

. (43)

6.3 Numerical examples

In this section we briefly compare the unstructured detection procedure based on T2 with the profile

procedure in the special case that the assumed profile is correct.

Assume that the profile is given by the Gaussian function (39) with parameter β = 1 and both

procedures are window-truncated with m0 = 1, m1 = 100. The number of sensors is N = 625

distributed over a 25 × 25 square grid with center at the origin. In this situation, approximately

p = 0.016 sensors are affected. In the specification of T2 we take p0 = 0.05.

The thresholds are chosen so that the average run lengths when there is no changepoint are

approximately 5000. Using (41), we obtain P∞{Tprofile ≤ 250} = 0.050 for b = 29.5. From 500

Monte Carlo trials we obtained the threshold 26.3, so the theoretical approximation appears to be

slightly conservative.
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To deal with a failure to know the true rate of decay of the signal with distance, we could

maximize over β, say for β ∈ [0.5, 5]. A suitable version of (41) indicates the threshold would be

33.8. This slight increase to the threshold suggests that failure to know the appropriate rate of

decay of the signal with distance leads to a relatively moderate loss of detection efficiency.

For comparisons of the expected detection delay, we used for the profile procedure the threshold

26.3, given by simulation, while for T2(0.05) we used the analytic approximation, which our studies

have shown to be very accurate. Table 6 compares the expected detection delay of the profile based

procedure with that of the mixture procedure. As one would expect from the precise modeling

assumptions, the profile procedure is substantially more powerful.

In many cases there will be little scientific basis for the assumed profile, so it would also be

interesting to compare the structured and the unstructured problems when the assumed profile

differs moderately or substantially from the true profile, perhaps in the number of sources of the

signals, their shape, the rate of decay, or the locations of the sensors.

Table 6: Comparison of Expected Detection Delays (EDD)
b EDD r = 1 EDD, r = 1.5

Profile-based procedure 26.3 25.65±10.3 12.33±4.4
Unstructured procedure 39.7 78.26±30.9 35.79±11.1
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7 Discussion

For an unstructured multi-sensor change-point problem we have suggested and compared a number

of sequential detection procedures. We assume that the pre- and post- change samples are normal

distributed with known variance and that both the post-change mean and the set of affected sensors

are unknown. For performance analysis, we have derived approximations for the average run length

(ARL) and the expected detection delay, and have shown that these approximations have reasonable

accuracy. Our principal procedure depends on an assumed fraction of sensors affected by the change-

point. We show numerically that the procedures are fairly robust with respect to discrepancies

between the actual and the hypothesized fractions, and we suggest a parallel procedure based on

two or more hypothesized fractions to increase this robustness.

In a structured problem, we have shown that knowledge of the correct structure can be imple-

mented to achieve large improvements in the expected detection delay. An open question is the

extent to which failure to hypothesize the appropriate structure compromises these improvements.
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