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Abstract

The extremal t process was proposed in the literature for modelling spatial extremes
within a copula framework based on the extreme value limit of elliptical t distribu-
tions (Davison, Padoan and Ribatet (2012)). A main drawback of this max-stable
model was the lack of a spectral construction such that direct simulation was infea-
sible. In this work, we propose a spectral construction for the extremal t process
that renders direct simulation possible. It further allows to identify the extremal
Gaussian process introduced by Schlather (2002) as a special case of the extremal
t process. All results naturally also hold within the multivariate domain.

Keywords: elliptical distribution, extremal t process, max-stable process, spectral
construction

1. Introduction

Davison et al. (2012) survey the statistical modelling of spatial extremes and
provide a global view on available models and their interconnections. Among these
models, the extremal t process represents a max-stable process that generalizes
the t extreme value copula to infinite dimension. It is well defined, yet no direct
construction was known back then which lead the authors to class it among copula
models characterized by their motivation from multivariate considerations. In that
paper, it was further illustrated in what way the extremal t process can be considered
as a generalization of the Brown-Resnick process (Kabluchko et al. (2009)), and
an application to Swiss rainfall data bears witness of its versatility for extremal
dependence modelling. In the following, we will see that the extremal t process
provides a natural connection between two prominent max-stable model classes,
namely Schlather’s extremal Gaussian process (Schlather (2002)) and the Brown-
Resnick process. We conceive a spectral construction that generalizes the one of
the extremal Gaussian process. It renders direct simulation possible for moderately
large general degrees of freedom.

In the remainder of this introduction, we carry together some elementary defini-
tions and results. Section 2 establishes and recalls useful results on convergence and
extremal dependence structures, before we present the new spectral construction in
Section 3 and conclude with a discussion in Section 4.

1.1. Notational conventions

If not stated otherwise, operations on vectorial arguments like maxima or arith-
metic operations must be interpreted componentwise in the following presentation.
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Vectors are typeset in bold face, in particular the vector constants 0 = (0, ..., 0)T

and 1 = (1, ..., 1)T . Rectangular bounded or unbounded sets are given according
to notations like [u,v] = [u1, v1] × · · · × [ud, vd] or (0,∞) = (0,∞) × · · · × (0,∞).
The complementary set of a set B in R

d is written Bc. The truncation operator
x+ = max(x, 0) maps negative values to 0. The indicator function of a set B is
denoted by χB(·).

1.2. Some general extreme value theory

For a more detailled account of max-stability and extreme value theory in general
we refer the reader to the textbooks of Beirlant et al. (2004) and de Haan and Ferreira
(2006).

1.2.1. Max-stability

Let Z,Z1,Z2, ... be a sequence of independent and identically distributed (iid)
random vectors in R

d (d ≥ 1) with nondegenerate univariate marginal distributions.
We say that Z follows a max-stable distribution if sequences of normalizing vectors
an > 0 and bn (n = 1, 2, ...) exist such that the equality in distribution

max
i=1,...,n

an
−1(Zi − bn)

d
= Z (1)

holds for the componentwise maximum. A full characterization of multivariate max-
stable distributions leads to rather technical expressions. For our purposes, it is con-
venient to focus on the case where the distribution G of Z has common α-Fréchet
marginal distributions Gj(zj) = Φα(zj) = exp(−z−α

j )χ(0,∞)(zj) (j = 1, ..., d) for
some tail index α > 0. Monotone and parametric marginal transformations al-
low to reconstruct all admissible univariate max-stable marginal scales in (1) from
this particular marginal scale. More precisely, the class of univariate max-stable
distributions is partitioned into the class of α-Fréchet distribution under strictly
increasing linear transformations and further the so-called Gumbel and Weibull
classes.

With α-Fréchet marginal distributions, the standard exponent measure M is de-
fined on [0,∞)\{0} by M((0, z]c) = − logP(Zα ≤ z) with the convention − log 0 =
∞ and characterizes the dependence structure in G on a standardized scale; it is
uniquely defined by the dependence function M(z) = M((0, z]c) which takes the
value ∞ whenever minj zj = 0 such that z 6∈ (0,∞). Valid dependence functions
are characterized by M(ej) = 1 for j = 1, ..., d, ej = (∞, ...,∞, 1,∞, ...,∞)T a vec-
tor with j-th component 1, and by the homogeneity property M(rz) = r−1M(z) for
r > 0. In the independence case when G is the product of its univariate marginal
distributions, we observe M(z) =

∑d
j=1 z

−1
j . The extremal coefficient M(1) ∈ [1, d]

can serve as an indicator of the strength of extremal dependence, ranging from full
dependence associated with the value 1 to independence associated with the value
d.

In the infinite-dimensional domain, we call a stochastic process Z = {Z(s), s ∈
S ⊂ R

p} (p ≥ 1) with a non-empty Borel set S max-stable if its finite-dimensional
distributions are max-stable. If Z1,Z2, ... are iid copies of Z, then sequences of
functions an(s) > 0 and bn(s) (n ≥ 1) exist such that {maxi=1,...,n an(s)

−1(Zi(s)−
bn(s))} d

= {Z(s)}.

1.2.2. Domain of attraction

Let X,X1,X2, ... be a sequence of iid random vectors in R
d with distribution

function F . For suitably chosen normalizing sequences, relation (1) can hold asymp-
totically in the sense of distributional convergence with nondegenerate marginal
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distributions in the limit Z:

max
i=1,...,n

an
−1(Xi − bn)

d→ Z (n → ∞) . (2)

Then we say that the distribution F ofX is in the max-domain of attraction (MDA)
of the max-stable distribution G of Z; or we simply say that X is in the MDA of
Z. Normalizing sequences are not unique and the limit distribution G is unique
up to a linear transformation. If normalizing constants can be chosen such that
all the univariate marginal distributions Gj are of the same α-Fréchet type, then
the particular choice of bn = 0 is admissible. In this case, the convergence in
distribution (2) is equivalent to

nP(an
−1X 6≤ z) → M(zα) for all z ∈ (0,∞) . (3)

For d = 1, we have nP(a−1
n X ≥ z) → z−α (z > 0), and then X is said to be

regularly varying at ∞ with index α > 0 or just regularly varying in the remainder
of this paper, denoted as X ∈ RVα. The normalizing sequence can be chosen as
an = inf{x : P (X ≥ x) ≤ n−1}.

For stochastic processes, the notion of MDA is defined in the sense of the con-
vergence of all finite-dimensional distributions according to (2).

1.2.3. A spectral construction for max-stable processes

The commonly used models for max-stable processes are generated with the
help of so-called spectral constructions. Schlather (2002) proposes to use a Poisson
process {Vi} ∼ PRM(v−2dv) on (0,∞) and iid replicatesQi of an integrable random
process Q, independent of {Vi} and with EQ+(s) = 1 (s ∈ S), in order to construct
the max-stable process

Z = {Z(s)} =

{

max
i=1,2,...

ViQi(s)

}

(s ∈ S) (4)

with univariate marginal distributions of type Φ1. In particular, as a consequence
of the infinite number of points in the Poisson process {Vi}, it is possible to replace
Qi(s) by the zero-truncated value Q+

i (s) in this construction. Subsequently, with-
out loss of generality we assume that the points Vi are in descending order such that
V1 ≥ V2 ≥ ... and V1 ∼ Φ1. We obtain extremal Gaussian processes by choosing a
centered and appropriately scaled Gaussian process W for Q. Other choices of Q
were considered (cf. Davison et al. (2012)), leading for instance to so-called Brown-
Resnick processes (Brown and Resnick (1977); Kabluchko et al. (2009)). The de-
pendence function of Z for a finite number of points s1, ..., sd ∈ S is

Ms1,...,sd(z) = E max
j=1,...,d

(

z−1
j Q+(sj)

)

. (5)

1.3. Elliptical distributions

Definition 1.1 (Elliptically distributed random vectors). A random vector
X in R

d is said to follow a (non-singular) elliptical distribution if it allows for

a stochastic representation X
d
= µ + RdAU with a deterministic location vector

µ, an invertible d × d matrix A that defines the dispersion matrix Σ = AAT =
(σj1j2)1≤j1,j2≤d and a nondegenerate random variable Rd ≥ 0 independent from a
random vector U uniformly distributed on the Euclidean unit sphere Sd−1 = {z ∈
R

d | zT z = 1}. We call Rd the radial variable.

Contrary to more general definitions (cf. Anderson and Fang (1990)), we prefer to
remain within the framework of quadratic and non-singular A to avoid an overly
technical presentation for the more general cases. A prominent example are elliptical
multivariate t distributions.
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Definition 1.2 (Multivariate t distribution). We say that an elliptically dis-
tributed random vector X in R

d follows the multivariate t distribution with ν > 0
(general) degrees of freedom if d−1R2

d ∼ Fd,ν , where Fd,ν is the F -distribution with
density function

x 7→ [xBeta(0.5d, 0.5ν)]−1
√

(dx+ ν)−(d+ν)(dx)dνν · χ[0,∞)(x)

and Beta refers to the Beta-function. We write X ∼ tν(µ,Σ) and P(X ≤ x) =
tν(x | µ,Σ).
As ν tends to infinity, the limit of the multivariate t distribution is the multivari-
ate normal distribution with R2

d ∼ χ2
d. The multivariate t distribution can be

constructed as a variance mixture of the multivariate normal distribution: With
νY −1 ∼ Gamma(0.5ν, 2) (ν > 0) and a multivariate normal random vector W ∼
N(0,Σ) that is independent of Y , we obtain µ +

√
YW ∼ tν(µ,Σ), cf. for in-

stance Demarta and McNeil (2005). This construction is easily generalized to the
infinite-dimensional setting on a domain S: If W is a centered Gaussian process
with domain S and covariance function Cov and νY −1 ∼ Gamma(0.5ν, 2) indepen-
dent of W, then we call the random process

√
YW a (centered) t random process

on S which is characterized by the degree of freedom ν and the dispersion function
Cov (cf. Røislien and Omre (2006)).

1.4. The t max-domain of attraction

The multivariate t distribution fulfills the MDA condition (2). For normal-

izing constants bn = 0 and an = n1/ν(σ
1/2
jj c

1/ν
ν )j=1,...,d with cν = Γ(0.5(ν +

1))−1ν−0.5ν+1√π Γ(0.5ν) (cf. Table 2.1 on page 59 in Beirlant et al. (2004)), we
obtain ν-Fréchet marginal distributions in the max-stable limit distribution G of
the multivariate t distribution tν(µ,Σ). The dependence function of G was derived
by Nikoloulopoulos et al. (2009): Denote by Σ∗ = (σ∗

j1,j2
)j1,j2 the correlation matrix

that corresponds to the dispersion matrix Σ, and by Σ∗
−j,−j = (σ∗

j1,j2
)j1 6=j,j2 6=j ,Σj,−j =

ΣT
−j,j = (σ∗

j1,j2
)j1=j,j2 6=j submatrices obtained by removing some of the rows or

columns. Similarly for vectors, we write z−j = (z1, ..., zj−1, zj+1, ..., zd)
T . Then

Mν,Σ∗(z) =
d

∑

j=1

z−1
j tν+1

(

(z−j/zj)
ν−1 | Σ∗

−j,j , (ν + 1)−1
(

Σ∗
−j,−j − Σ∗

−j,jΣ
∗T
−j,j

)

)

.

(6)
We refer to the max-stable limit as extremal t distribution, and we call extremal
t process the max-stable limit of a t random process which is a generalization of
the extremal t distribution. Its dependence structure is characterized by the set
of dependence functions for all finite-dimensional distributions, hence by a general
degree of freedom ν > 0 and the correlation function

Cov∗(sj1 , sj2) =
√

Cov(sj1 , sj1)Cov(sj2 , sj2)
−1

Cov(sj1 , sj2) (sj1 , sj2 ∈ S)

which corresponds to the dispersion function Cov and determines the matrices Σ∗

for all finite-dimensional distributions. Similar to the copula approach in the mul-
tivariate domain, it is convenient to call extremal t process any max-stable process
whose set of dependence functions is the same. Put differently, we allow for uni-
variate max-stable marginal scales beyond the ν-Fréchet scale.

2. A Breiman-type result and its ramifications

Breiman’s theorem (Breiman (1965); Cline and Samorodnitsky (1994)) charac-
terizes the tail behavior of the product of a non-negative regularly varying random
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variable with a “lighter-tailed” non-negative random variable. We state a general-
ization adapted to our purposes.

Proposition 2.1. Let R ∈ RVα (α > 0) be a non-negative random variable such
that nP(a−1

n R ≥ r) ∼ r−α for r > 0 as n → ∞. Suppose X ≥ 0 is a random vector
in R

d, independent of R, such that E(Xα) = 1. Assume further that E(Xα+δ) < ∞

for some δ > 0 or that P(R ≥ r) ∼ cr−α for some c > 0. Then the distribution of the
vector Y = RX fulfills the MDA condition (2) with a max-stable limit distribution
G. The normalizing vector sequences an = (an, ..., an)

T and bn = 0 in (2) lead to
marginal distributions Φα in G. The dependence function of G is

MY(z) = E

[

max
j=1,...,d

(z−1
j Xα

j )

]

( z ∈ (0,∞) ) .

Proof. We observe nP(an
−1RX 6≤ z) = nP(Rmaxj=1,...,d(z

−1
j Xj) > an) for z ∈

(0,∞). We can apply the classical Breiman theorem if E[Xα+δ ] < ∞ and otherwise
a variant from Lemma 2.3 in Davis and Mikosch (2008) if P(R ≥ r) ∼ cr−α, and
we obtain

nP(R max
j=1,...,d

(z−1
j Xj) > an) ∼ nP(R > an)E

[

max
j=1,...,d

(z−1
j Xj)

α

]

(z ∈ (0,∞))

as n → ∞. Since nP(R > an) → 1 as n → ∞, we can deduce the α-Fréchet
marginal distributions and MY(z) = E[maxj=1,...,d(z

−1
j Xα

j )].

We notice that the dependence function depends on R only through the index of
regular variation α. The following corollary can also be deduced from Lemma 3.1 in
Segers (2012) or from some related derivations in Remark 3.6 in Davis and Mikosch
(2008); for completeness of the presentation, here we provide a proof based on
Proposition 2.1.

Corollary 2.1. The process {V1Q1(s)} (s ∈ S) in the spectral construction (4)
is in the MDA of the process Z in (4) with normalizing functions an(s) = n and
bn(s) = 0 (n ≥ 1).

Proof. It is easily seen that the random vector V1(Q1(s1), ..., Q1(sd))
T and its zero-

truncated version Y = V1(Q
+
1 (s1), ..., Q

+
1 (sd))

T belong to the same MDA (if any)
for any finite collection of points sj (j = 1, ..., d). Hence the statement follows from
a straightforward application of Proposition 2.1 with α = 1, R = V1 ∼ Φ1 and
X = (Q+

1 (s1), ..., Q
+
1 (sd))

T which yields the same dependence function MY as the
one in (5).

Exhaustiveness of the extremal t dependence structure

In general, regular variation of the radial variable Rd ensures the MDA condi-
tion for an elliptical distribution and is a necessary and sufficient condition for the
presence of asymptotic dependence (cf. Theorem 4.3 in Hult and Lindskog (2002)).
Since we can write the (zero-truncated) components of an elliptical random vector
as Rd(AU)+j (j = 1, ..., d), these are also regularly varying in the case of Rd ∈ RVα

due to Breiman’s theorem. The value of the location vector µ is irrelevant in this
context. For the other elliptical distributions in the Gumbel or Weibull MDA, as
for instance the multivariate normal distribution (Gumbel), one always obtains in-
dependence in the max-stable limit G. If Rd ∈ RVα, we can use Proposition 2.1
and write M(z) as

M(z) = Mα,Σ∗ =
{

E[(U+
1 )α]

}−1
E max

j=1,...,d

{

z−1
j [(A∗U)+j ]

α
}
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with A∗(A∗)T = Σ∗, and we see that the radial variable enters the dependence
structure only through its index of regular variation. Since the multivariate t distri-
bution covers the full range of tail indices (equal to the general degree of freedom)
and correlation matrices Σ∗, the extremal t dependence structure is exhaustive
within the class of asymptotically dependent elliptical distributions.

3. A spectral construction of the extremal-t process

We first provide a multivariate spectral construction for the extremal t distri-
bution based on elliptical distributions.

Theorem 3.1 (Multivariate spectral construction). Suppose the following items
are given:

• a tail index α > 0,

• iid replications Xi of an elliptically distributed random vector X = (X1, ..., Xd)
with dispersion matrix Σ∗ (σ∗

jj = 1 for j = 1, ..., d) and location vector µ = 0

such that the expectation mα = E[(X+
1 )α] is non-null and finite and

• a Poisson process {Vi} ∼ PRM(αv−(α+1)dv) on (0,∞).

Define the componentwise maximum

Z = m−α−1

α max
i=1,2,...

ViXi . (7)

Then Z follows the extremal t distribution with α-Fréchet marginal distributions
and dependence function Mα,Σ∗.

Proof. Due to infinite number of points in the Poisson process {Vi}, we can re-
place X by X+ in the construction (7). By taking Z to the power of α, i.e.
m−1

α maxi=1,2,... V
α
i (X+

i )
α, we obtain a special case of the construction (4) which

proves the max-stability and the α-Fréchet marginal distributions of Z. Since
V1 ∼ Φα, the radial variable in the elliptical random vector V1X1 is regularly
varying with index α due to the variant of Breiman’s theorem from Lemma 2.3 in
Davis and Mikosch (2008). Thus V1X1 is in the MDA of the extremal t distribution
and at the same time in the MDA of Z according to Corollary 2.1. We conclude
that Z follows the extremal t distribution with dependence function (6).

As a direct application of Theorem 3.1, we are now able to present one possible spec-
tral representation of extremal t processes via the corresponding Gaussian process.

Theorem 3.2 (Spectral representation of extremal t processes). Suppose the
following items are given:

• a tail index α > 0,

• iid replications Wi of a standard Gaussian random field W on S ⊂ R
p with

correlation function Cov∗ and

• a Poisson process {Vi} ∼ PRM(αv−(α+1)dv) on (0,∞).

Then the process defined by

Z = {Z(s)} =

{

mα
−α−1

max
i=1,2,...

ViWi(s)

}

(s ∈ S) , (8)

with mα =
√
π
−1

20.5(α−2)Γ(0.5(α + 1)) and Γ(·) the Gamma function, is an ex-
tremal t process with α-Fréchet marginal distributions. Its dependence structure is
characterized by α general degrees of freedom and the dispersion function Cov∗.
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Proof. It remains to verify the value of mα. Using the variable transformation
y = 0.5x2 yields

mα =

∫ ∞

0

xα(2π)−0.5 exp(−0.5x2)dx =

∫ ∞

0

(2y)0.5α(2π)−0.5 exp(−y)(2y)−0.5dy ,

and gathering the involved constants leads to the desired representation of mα.

4. Discussion

Taking {Z(s)} in (8) to the power Zα(s) establishes unit Fréchet marginal distri-
butions as in the construction (4) with Q = Wα. Clearly, we identify the extremal
Gaussian process for α = 1 (cf. Schlather (2002)).

Remark 4.1 (Extremal coefficient). When d = 2 and σ∗
12 = 0 in Theorem

3.1, the range of the extremal coefficient covers the open interval (1.5, 2): As the
degree of freedom ν = α tends to infinity in (6), the univariate t-distribution
converges towards the normal distribution and its variance tends to 0 such that
M(1) = 2 limν→∞ tν+1(1 | 0, (1 + ν)−1) = 2 in (6). As ν tends to 0, we observe
M(1) = 2 limν→∞ tν+1(1 | 0, (1 + ν)−1) = 2t1(1 | 0, 1) = 2(π−1arctan(1) + 0.5) =
1.5. This helps understand the long-range dependence structure in models for ex-
tremal t processes since the applied correlation functions are usually positive and
approach 0 as the distance between two points increases to infinity.

In particular, extremal t processes can be considered more flexible than extremal
Gaussian processes or Brown-Resnick processes which are both special cases; see
Davison et al. (2012) for the case of the Brown-Resnick process which arises for
some correlation structures as α tends to infinity. Moreover, the formulation of the
dependence function (6) for the extremal Gaussian process (ν = 1) is more general
than the bivariate expressions obtained by Schlather (2002) and lends itself more
easily to interpretation. Combining extremal t models with a random set approach
as described in Davison and Gholamrezaee (2012) further enlargens the range of
available models and dependence structures.

Remark 4.2 (Simulation). Theorems 3.1 and 3.2 allow to simulate extremal t
distributions and processes with the method devised in Theorem 4 of Schlather
(2002). When the degree of freedom is large, the computational complexity can be-
come very restrictive, making it difficult to assure a good quality of simulation. How-
ever, the Hüsler-Reiss distribution (Hüsler and Reiss (1989); Falk et al. (2011)) in
the multivariate case and the Brown-Resnick process in the infinite-dimensional case
are adequate proxies for some dispersion structures, as explained in Davison et al.
(2012).

Future research should explore in more detail up to which general degree of freedom
α the simulation procedure is numerically feasible, and if the Brown-Resnick process
provides an adequate substitute around and beyond the ”critical” value of α. The
spectral construction (8) further opens the way for tackling conditional simulation in
the theoretical framework developed by Dombry and Éyi-Minko (2011) and applied
in Dombry et al. (2011) and Dombry and Ribatet (2012).
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Dombry, C., Éyi-Minko, F., 2011. Regular conditional distributions of max infinitely
divisible processes. Arxiv preprint arXiv:1109.6492 .
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Falk, M., Hüsler, J., Reiss, R.D., 2011. Laws of small numbers: extremes and rare
events. Springer, Basel. 3rd edition.

de Haan, L., Ferreira, A., 2006. Extreme value theory: An introduction. Springer,
Berlin.

Hult, H., Lindskog, F., 2002. Multivariate extremes, aggregation and dependence
in elliptical distributions. Advances in Applied probability 34, 587–608.
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