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Abstract. We describe a new optimization scheme for finding high-
quality clusterings in planar graphs that uses weighted perfect matching
as a subroutine. Our method provides lower-bounds on the energy of
the optimal correlation clustering that are typically fast to compute and
tight in practice. We demonstrate our algorithm on the problem of image
segmentation where this approach outperforms existing global optimiza-
tion techniques in minimizing the objective and is competitive with the
state of the art in producing high-quality segmentations. 1

1 Introduction

We tackle the problem of generic image segmentation where the goal is to par-
tition the pixels of an image into sets corresponding to objects and surfaces in
a scene. Cues for this task can come from both bottom-up (e.g., local edge con-
trast) and top-down (e.g., recognition of familiar objects). For closed domains
where top-down information is available, this problem can be phrased in terms of
labeling each pixel with one of several category labels or perhaps “background”.
There is a rapidly developing body of research in this area that integrates mul-
tiple cues such as the output of a bank of object detectors into a single model,
typically formulated as a Markov random field over the pixel labels and some
additional hidden variables [1,2,3,4,5,6,7].

When top-down information is not available, it may still be quite valuable to
estimate image segments. Bottom-up segmentations provide candidate support
for novel objects and can simplify the processing of the scene to the problem
of understanding a small number of salient regions. Without a predefined set of
labels, it is natural to describe the segmentation task as a graph partitioning
problem in which pixels or superpixels have pairwise or higher order similarities
and the number of parts must be estimated. There is a rich history of applying
graph partitioning techniques to image segmentation (e.g., [8,9,10,11,12]).

Here we consider the weighted correlation clustering objective which sums
up the edges cut by a proposed partitioning of the graph. Edges may have
both positive and negative weights. Correlation clustering is appealing since the
optimal number of segments emerges naturally as a function of the edge weights

1 This is the extended version of a paper to appear at the 12th European Conference
on Computer Vision (ECCV 2012)
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rather than requiring an additional search over some model order parameter.
Further, because the objective is linear in the edge weights, the problem of
learning can be approached using techniques from structured prediction [13].

As with many non-trivial graph partitioning criteria, finding a minimum
weight correlation clustering is NP-hard for general graphs [14]. Demaine et
al. [15] provide results on the hardness of approximation in general graphs by
reduction to/from multiway cut [16]. Recently, Bachrach et al. [17] also showed
that correlation clustering is NP-hard in planar graphs by a reduction from
planar independent set.

Despite these difficulties, correlation clustering has seen a few recent appli-
cations to the image segmentation problem. Andres et al. [18] define a model
for image segmentation that scores segmentations based on the sum of costs
associated with each edge in the segmentation and optimize it using an integer
linear programming (ILP) branch-and-cut strategy. Kim et al. [19] use a corre-
lation clustering model for segmentation which includes higher-order potentials
or hyper-edges that define cost over sets of nodes which they solve using linear
programming (LP) relaxation techniques.

In this paper, we describe a new optimization strategy that specifically ex-
ploits the planar structure of the image graph. Our approach uses weighted
perfect matching to find candidate cuts in re-weighted versions of the original
graph and then combines these cuts into a final clustering. The collection of cuts
form constraints in a linear program that lower-bounds the energy of the true
correlation clustering. In practice this lower-bound and the cost of the output
clustering are almost always equal, yielding a certificate of global optimality.
We compare this new optimization scheme to existing approaches based on both
standard LP relaxations and ILP and find that our approach is substantially
faster and provides tighter lower-bounds for a wide range of image segmentation
problems.

2 Correlation Clustering

Correlation clustering is a clustering criteria based on pairwise (dis)similarities.
Let G = (V,E) be an undirected graph with edge weights θe ∈ R that specify
the similarity or dissimilarity on an edge e = (i, j) between vertices i and j.
Correlation clustering seeks a clustering of the vertices into disjoint sets V =
V1 t V2 t V3 . . . that minimizes the total weight of edges between clusters. 2

Let Xe be a binary indicator variable specifying which edges are “cut” by
the partitioning. Xe = 0 if edge e = (u, v) is within a cluster (i.e., u, v ∈ Vi) and
Xe = 1 if e runs between two clusters (i.e., u ∈ Vi, v ∈ Vj , i 6= j). Let C indicate
the configurations of X that correspond to valid partitionings of the vertices.
We can describe this succinctly by the set of triangle inequalities

C = {X : Xu,w +Xw,v ≥ Xu,v ∀u, v, w ∈ V }
2 This objective is equivalent (up to a constant) with the minimum-disagreement or

maximum-agreement objectives mentioned in the literature [14,15].
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These constraints enforce transitivity of the clustering; if edge (u,w) is cut, then
at least one of (u,w) and (w, v) must also be cut.

We can express the correlation clustering problem as:

CC? = min
X∈C

∑
e∈E

θeXe

and refer to CC? as the cost or the energy of the optimal clustering. Where
appropriate, we will use CC?(θ) to indicate the dependence of this optimum on
the parameters.

Unlike other graph partitioning objectives (min-cut, normalized-cut, etc.)
the edge weights can be both positive and negative. Furthermore, we do not
specify the number of segments a priori or place any constraints on their size.
Instead, these arise naturally from the edge weights. For example, if all the edge
weights are negative, each vertex will be placed in a separate cluster. If all the
edge weights are positive, the optimal solution is to place all vertices in a single
cluster. This means that CC? is upper-bounded by 0 since placing all the vertices
in the same cluster is a valid partitioning with cost 0.

The correlation clustering objective appears very similar to standard pairwise
Markov Random Field (MRF) models for image labeling. For example, if we
knew the optimal solution consisted of k clusters, we could convert the problem
into a k-state MRF without any unary terms. In the next section we make this
connection precise.

3 Clusterings and Colorings

Consider a partitioning of the graph represented by X ∈ C. We call this parti-
tioning k-colorable if there is some labeling L : V → 1, 2, . . . , k of the vertices of
the graph so that Xuv = 1⇔ L(u) 6= L(v). For every graph, there is a minimal
number of colors γ(G), known as the chromatic number of G, that is sufficient to
represent all partitions. Let Ck be the set of partitionings that are representable
by k colors, then C1 ⊂ C2 ⊂ . . . ⊂ Cγ(G) = C. For example, the four-color theo-
rem [20] shows that any partition of a planar graph can be represented by k = 4
labels so C = C4 for planar graphs.

This provides a useful alternative formulation of correlation clustering in
terms of vertex labels. Let Lv ∈ 1, . . . , k be a label variable for vertex v. Then
we can define an equivalent optimization problem

CC?k = min
L∈{1,...,k}N

∑
(u,v)∈E

θu,v[Lu 6= Lv]

To produce a partitioning from the labeling, simply take the collection of con-
nected components for the subgraph induced by each label in turn. If G is k-
colorable, then CC?q = CC? for any q ≥ k. In general CC?q ≥ CC? for q < k
since the optimal partitioning of G may not be q-colorable. The set of 2-colorable
partitions are commonly referred to as cuts of a graph.
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Since planar graphs are 4-colorable, CC? = CC?4 . We could tackle the prob-
lem planar correlation clustering using the standard set of tools for optimizing a
4-state MRF with mixed (attractive/repulsive) potentials. Since the combinato-
rial optimization is NP hard, such methods can only give approximate solutions.
Furthermore, many of them perform poorly on problems with no unary poten-
tials. Since the energy function is symmetric with respect to permutations of
the labels, the true max-marginals for the node labels are uninformative and
one is forced to look at higher-order constraints. For example, the lower-bound
provided by TRW [21,22] is simply the sum of the negative edge weights in the
graph.

One interesting exception is the case of planar binary labeling problems. For
planar graphs, the cost of the optimal binary labeling CC?2 can be computed
by an efficient reduction to weighted perfect matching in a suitably augmented
planar dual of the graph G. This idea was first described in the statistical physics
literature by Kasteleyn [23] and Fisher [24] in the context of computing the
partition function of an Ising model. Recently, this has been explored as a tool
for finding MAP configurations of more general MRFs that include an external
field [25,26,27,28,29].

Since 2-colorable partitions are a subset of 4-colorable partitions, finding
the optimal 2-colorable partitioning does not necessarily give us the optimal
clustering of a planar graph. The space of 4-colorable partitions is larger so in
general CC?2 ≥ CC?4 . However, the optimal 2-coloring still provides some useful
information about the optimal 4-colorable partition.

Proposition 1. For any graph, 0 ≥ CC?2 ≥ CC?4 ≥ 3
2CC

?
2 so the cost of the

optimal planar correlation clustering is bounded below by 3
2 the cost of the optimal

2-colorable partition.

Proof. For a partitioning described by some labeling L, let

S(a, b) =
∑

u:Lu=a
v:Lv=b

θu,v

denote the sum of weights of edges between vertices labeled a and those labeled
b. Take the 4-colorable partition whose cost is CC?4 =

∑
a<b S(a, b) and consider

the 2-colorable partitions in which pairs of labels from the 4-coloring are merged.
There are three such 2-colorings, each with the following costs

Ea = S(1, 3) + S(1, 4) + S(2, 3) + S(2, 4) (1)

Eb = S(1, 2) + S(1, 4) + S(3, 2) + S(3, 4) (2)

Ec = S(1, 2) + S(1, 3) + S(4, 2) + S(4, 3) (3)
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Summing these costs includes every possible S term twice so we have

CC?4 =
1

2
(Ea + Eb + Ec) (4)

≥ 3

2
min{Ea, Eb, Ec} (5)

≥ 3

2
CC?2 (6)

The first inequality follows since one of the three terms in the sum must be at
least as small as 1/3 the total. The second inequality follows since none of these
2-colorings can have lower cost than the optimum 2-coloring. The same approach
can be used to relate any pair of CC?m and CC?n.

Corollary 1. If CC?2 = 0 then CC?4 = 0.

Since the 2-colorable clustering is only off by a constant factor and provides
a very efficient solution for finding approximate correlation clusterings, it seems
a likely candidate for segmentation. However, in practice, it performs poorly for
real image segmentation problems. In natural images, T-junctions where three
different image segments come together are common, and such a junction cannot
be 2-colored! In the next section, we devise a tighter bound which uses the 2-
coloring as a subroutine.

4 Lower-bounding Planar Correlation Clustering

Dual-decomposition provides a very general framework for tackling difficult prob-
lems by splitting them into a collection of tractable sub-problems which are
solved independently subject to the constraint that they agree on their solu-
tions. This constraint is enforced in a soft way using Lagrange multipliers, which
results in a dual solution that lower-bounds the original minimization problem.
Decomposition techniques have been studied in the optimization community for
decades. Dual-decomposition was used by Wainwright et al. [21] to derive algo-
rithms for inference in graphical models and has become increasingly popular in
the computer vision literature recently due to its flexibility [30].

We consider bounding the planar correlation clustering by a decomposition
into two sub-problems, an easier partitioning problem and an independent edge
problem that does not enforce the clustering constraints. To make the partition-
ing problem tractable, we impose a constraint on the decomposition so that the
cost of the optimal clustering can be computed. Recall our notation that CC?(λ)
is the optimal correlation clustering cost associated with edge weights λ. Let the
set Ω = {λ : CC?(λ) = 0} be those those edges weights for which the optimal
clustering has zero cost. We can then write the following decomposition bound:
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CC? = min
X∈C4

∑
e∈E

θeXe (7)

= max
λ

(
min
X̂∈C4

∑
e∈E

λeX̂e

)
+

(
min
X̄

∑
e∈E

(θe − λe)X̄e

)
(8)

≥ max
λ∈Ω

(
min
X̂∈C4

∑
e∈E

λeX̂e

)
+

(
min
X̄

∑
e∈E

(θe − λe)X̄e

)
(9)

= max
λ∈Ω

(
min
X̄

∑
e∈E

(θe − λe)X̄e

)
(10)

= max
λ∈Ω

∑
e∈E

min{(θe − λe), 0} (11)

In equation (8) we have decomposed the original edge weights θ across two
sub-problems. The first is a correlation clustering problem (identical in form
to our original problem) while the second one independently optimizes over all
the edges (with no constraints on X). For any choice of λ, these two objectives
sum up to the original problem. Since the configurations (X̂,X̄) in each sub-
problem are optimized independently, the sum of their energies may produce a
lower-bound for arbitrary λ but the bound can be made tight (setting λe = θe
recovers the original objective). In equation (9), we restrict the domain of λ to
those settings for which the clustering sub-problem has an optimum of zero. The
inequality arises since we are maximizing the bound over a more restrictive set.
Finally, in equation (10) we have simplified the expression since the constraint on
λ entails that the first term is exactly zero and X̄ can be optimized independently
for each edge.

5 Bound Optimization using Linear Programming

Lagrangian relaxation approaches typically use projected sub-gradient ascent or
other non-smooth optimization techniques to tackle objectives like that shown
in equation (9). Here it is difficult to compute the required (sub)gradient in-
formation since, for a given setting of λ, there isn’t an obvious way to recover
the full set of optimizing solutions for X̂ beyond the trivial solution X̂e = 0.
The constraint set Ω also appears quite complicated. However, we do have an
efficient method for testing membership in Ω. By our earlier proposition,

Ω = {λ : CC?(λ) = 0} = {λ : CC?2 (λ) = 0} (12)

= {λ :
∑
e

λeXe ≥ 0 ∀X ∈ C2} (13)

This expression highlights that Ω is a polytope defined by a set of linear inequal-
ities. For a given λ, we can test membership and, if λ 6∈ Ω, produce a violated
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constraint described by a negative weight 2-colorable clustering. This provides a
method to solve equation (11) using cutting planes to successively approximate
the constraint set Ω.

We say that an edge e is constrained by Ω for a given setting of λ if there
exists some cut in X ∈ C2 with Xe = 1 and for which

∑
e λeXe = 0. If an edge

e is unconstrained, then we can decrease λe and thereby increase the bound
until it becomes constrained or until it is no longer cut in the independent edge
problem.

To simplify the bound optimization, we first consider some additional con-
straints on λ. When maximizing the bound over λe, it is always the case that
there is an optimal λe ≥ θe. Choosing λe < θe gives the edge e positive weight
in the independent edge problem so it does nothing to increase the objective.
Further, any amount by which λe is less than θe can only make the constraints
Ω more difficult to satisfy. Therefore, we are free to only consider λ for which
(θe − λe) ≤ 0 without impacting the final bound. This simplifies the expression
for the objective in equation (11) by removing the min.

We also impose upper bounds on λ. For edges with θe < 0 we add the
constraint that λe ≤ 0. For edges with θe ≥ 0 we impose the constraint that
λe = θe. These constraints are sensible in that they are coordinate-wise optimal
(e.g., increasing λe above θe ≥ 0 decreases the bound). In Appendix B, we
show that any optimal λ can be deformed to one which satisfies these additional
constraints without loosening the bound. In practice these additional constraints
make the bound optimization far more efficient.

We can now write the bound optimization problem with these additional
constraints explicitly as standard linear program:

max
λ

∑
e

(θe − λe) (14)

s.t. θe ≤ λe ≤ max{0, θe}∑
e

λeXe ≥ 0 ∀X ∈ C2

This LP has an exponential number of constraints, one for every possible
2-colorable partition X. To solve this LP efficiently, we use a cutting plane
approach to successively add violated constraints to a collection. Our final algo-
rithm for bound optimization is given in Figure 1.

In our actual implementation, we perform one additional step. Each new
constraint X may partition the graph into multiple components. We break the
cut X up into the set of basic cuts, each of which isolates a component. We add
this collection of constraints as a batch. With this modification, we find that in
practice very few batches of constraints (typically 5-10) are necessary in order
to produce a solution to the full linear program.
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Lower-bound optimization

P = ∅
while CC?

2 (λ) < 0 do
X = arg minX∈C2

∑
e∈E λeXe

P = P ∪X
Solve (14) with partial constraint

set P ⊂ C2
end while

Upper-bound decoding

S = 0
E = {e : θe − λe < 0}
for e ∈ E do

X = arg minX∈C2,Xe=1

∑
f∈E λfXf

S′ = max(S,X)
if

∑
e θeS

′
e ≤

∑
e θeSe then

S = S’
∀e : Xe = 1, λe = 0

end if
end for

Fig. 1. (left) Cutting plane algorithm for computing the optimal lower-bound by suc-
cessively adding constraints. (right) Upper-bound decoding by recursive partitioning

6 Decoding upper-bounds

6.1 Recursive Bipartitioning

Once we have optimized the lower-bound, we would like to find a corresponding
low-cost clustering. In general, there will be some edges for which (θe−λe) < 0.
In order for the bound to be tight, we need to find a clustering in which these
edges are cut. As noted in the previous section, every such “must cut” edge
is constrained by some cut X̂ that includes that edge. Although none of the
individual minimal cuts X̂ may agree with all of the “must cut” edges in the
independent sub-problem (second term in equation (9)), there is some minimal
cut that agrees with each one.

Motivated by this intuition, one can use the following decoding technique.
Start with the original clustering sub-problem which has edge weights λ. Choose
an ordering of those edges e for which (θe − λe) < 0. For each of these “must
cut” edges in turn, find a zero weight cut X ∈ C2 for the clustering subproblem
and add it to the final partitioning as long as it decreases the original objective.
Remove these cut edges from the graph and continue on with the next edge. The
pseudo-code is displayed in Figure 1.

6.2 Dual LP Rounding

An alternative approach is to consider the dual LP to equation (14). Let C be
a matrix whose rows contain the indicator vectors for cuts X ∈ C. Define the
convex cone C42 = {CTα, α ≥ 0} which is known as the “cut cone” [31]. It is
straightforward to see that the set of valid partitions lives inside the cut cone
(C ⊂ C42 ). Given a valid partition indicator vector X, we can write it as a linear
combination of cuts, where each cut isolates an individual segment and the cuts
are assigned a weight of αi = 0.5.
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The dual LP to our lower-bound is given by

min
z
θT z −min(θT , 0) max(z − 1, 0) (15)

s.t. z ∈ C42

The first term in the objective is exactly our original correlation clustering ob-
jective where the binary indicator X has been replaced by real valued z. The
second term in the objective arises from the upper-bound constraints imposed
on λ and effectively cancels out the benefit of cutting any negative weight edge
by an amount of more than one (see Appendix A). To compute a solution to the
dual, we solve (15) using a matrix C that contains only those cut vectors in P
produced during the lower-bound optimization. The resulting solution vector z
is thresholded to produce a final segmentation.

Taking the dual of equation (14) without the upper-bound constraints on λ
yields a nice interpretation of our algorithm as a convex relaxation of the original
discrete clustering problem in which the convex hull of C is approximated by the
intersection of the cut cone and the unit cube:

min
z
θT z s.t. z ∈ C42 , 0 ≤ z ≤ 1 (16)

Since the cut cone for planar graphs can be described with a polynomial number
of constraints [32], one could directly solve the dual LP in equation (16). Our
bound optimization gains considerable efficiency by not using the full set of cuts
C. Instead, a small number of cutting planes (in the original LP) provides a
delayed column generation scheme for solving the dual LP.

When only using a subset of cuts, the second term in (15) and the corre-
sponding constraints in the primal LP are necessary since the bound can be
tight without the optimal partition vector living in the subspace of the cut cone
described by P. Allowing solutions with z > 1 lets us access a larger set parti-
tions without increasing the dimensionality of the subspace.

7 Experiments

We demonstrate the performance of our algorithm on correlation clustering prob-
lem instances from the Berkeley Segmentation Data set [33,34]. Our clustering
problem is defined on the superpixel graph given by performing the oriented wa-
tershed transform (owt) on the output of the “generalized probability of bound-
ary” (gPb) boundary detector output as proposed by [34]. Each pair of super-
pixels that are adjacent in the image are connected by an edge whose weight is
given by

θe = log

(
1− gPbe
gPbe

)
+ β

where gPbe is the average gPb along the edge and β is a threshold parameter
that modulates the number of segments in the optimal clustering. Large β results
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Fig. 2. Comparison of bound optimization on image segmentation problems. Each
graph shows the distribution results over 200 problem instances at four different thresh-
old settings ranging from coarse (β = 0.35) to fine (β = 0.12). The left column shows
the difference in the lower-bounds returned by the PlanarCC bound and MPLP using
the set of face cycle constraints. Our code returned tight bounds in all but one in-
stance while the LP relaxation typically gave looser bounds. The right column shows
the running times of our approach compared to the ILP branch-and-cut advocated by
[18]. Here we plot relative speedup factors on a logarithmic scale. We find that the
PlanarCC bound computation and decoding produces the same global optima as the
ILP approach much faster.

in more positive edges and hence coarser optimal segmentations. To compare dif-
ferent optimizers, we use 4 different settings of β = {0.35, 0.27, 0.20, 0.12} which
produces segmentation outputs that cover a range of granularities. Parameters
θ were rounded to 5 decimal places in order to simplify tests of convergence.

We implemented our optimization using the BlossomV minimum weight per-
fect matching code [35,36] and IBM’s CPLEX solver to optimize the lower-
bound. We used a tolerance of−10−6 as a stopping criterion for adding additional
constraints to the lower-bound LP. We found that both decoding schemes work
well. In the experiments described here, we computed up to ten upper bounds
using the recursive bipartitioning procedure, each run using a random order for
adding contours. This process terminated early if the lower- and upper-bounds
were equal.

For a baseline lower-bounding scheme, we used max-product linear program-
ming (MPLP) [37] which efficiently solves an LP relaxation of the original clus-



Fast Planar Correlation Clustering 11

tering objective. To represent the set of clusterings in terms of node labels, each
superpixel takes on one of 4 states and pairwise potentials encode the boundary
strength between neighboring superpixels. As mentioned before, the standard
edge-based relaxation is uninformative when unary potentials are absent so we
include the set of cycle constraints given by collection of cycles that bound the
planar faces of the superpixel graph. This is not sufficient to enforce consistency
over all cycles in the graph but is a natural choice commonly used in the litera-
ture. In our experiments, we used a fast, in-house implementation of MPLP.

We also implemented the branch-and-cut ILP technique proposed by [18] us-
ing the CPLEX ILP solver. This approach finds an integral solution of the corre-
lation clustering objective, removes cut edges specified in the solution and then
produces a partition by finding connected components of the resulting graph. It
then searches for inconsistent edges, namely cut edges that connect two nodes
that lie within the same connected component. If any such edges are found, a
constraint is added to enforce consistency of that edge and the ILP is re-solved.

7.1 Bound optimization experiments

Figure 2 shows a comparison of the lower-bounds generated by MPLP compared
to that generated by PlanarCC. We found that the time needed for MPLP to
solve each problem is comparable to that of PlanarCC. However the differences
in the lower-bound are significant. With only the set of face cycles, MPLP is
seldom able to produce a tight lower-bound. In contrast, the PlanarCC approach
typically gives tight bounds with only 5-10 batches of cut constraints.

We found that the upper-bounds (solutions) generated by ILP and PlanarCC
are very similar and very close to optimal so we compare the time consumed by
each algorithm as a function of β. In Figure 2(a) we show histogram of the
comparative run times, log10(TILP /TPlanarCC).

Note that the relative performance of PlanarCC improves as we move from a
high detail segmentation β = 0.12 to a coarse segmentation β = 0.35. For coarse
segmentations (large β) the optimal solution contains many long contours and
PlanarCC performs well relative to ILP, whereas for detailed segmentations ILP
will tend to do more favorably. For example, in the limit where all the edges have
negative weight, the ILP approach or LP relaxation gives the correct answer (cut
all edges) without the need for any constraints. However on average, we find that
the PlanarCC approach performs favorably across a range of useful thresholds
on the BSDS images, giving speedups that range from 10 to 1000x.

7.2 Segmentation performance

We benchmark the quality of the segmentations produced by correlation clus-
tering for a range of thresholds β on the BSDS500 test set. We use the same
superpixels and local cues as the top performing gPb+owt+UCM algorithm of
Arbelaez et al. [34]. Figure 3 shows the benchmark results of our algorithm and
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Fig. 3. Evaluation on the BSDS500 segmentation boundary benchmark. We compare
segmentation performance to the state of the art technique (gPb+owt+UCM) proposed
by [34]. We use the same set of superpixels and contour cues derived from (gPb+owt).
We compare to two different variants of the UCM algorithm based on region merging.
UCM performs a length weighted average of the gPb along contours after each merge
while UCM-L performs a uniform average. We find that the globally optimal corre-
lation clustering returned by our algorithm performs slightly better than the uniform
averaging version of UCM but the length-weighted UCM gives better final performance.

two variants of the UCM algorithm. As visible in the figure, our algorithm per-
forms comparably to UCM and performs slightly better than the results of [18]
who report an F-measure of 0.70.

The UCM algorithm is a region merging algorithm that successively merges
the two superpixels that have the lowest energy edge between them. Since this
algorithm is “greedy” with respect to the clustering objective, we would expect
that it would occasionally merge two segments due to some small break in the
contour contrast, a fate that our global optimization approach could avoid. How-
ever, as is clear from Figure 3, in practice the greedy nature of UCM does not
seem to significantly hurt overall performance.

One explanation is that the UCM algorithm modifies the edge costs as it
proceeds. After each merging step, any new contours that have been formed are
re-assigned the average of the underlying gPb. Our global clustering objective
cannot capture this length weighted averaging. Figure 3 shows performance of
the UCM algorithm with length-weighted averaging (UCM) and simple averaging
(UCM-L). While our approach outperforms the non-length weighted version, the
differences are not substantial.
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Fig. 4. We find that our algorithm returns lower-energy segmentations than the UCM
algorithm. This suggests either a mismatch between the correlation clustering model
and the ground-truth or that our model is using suboptimal settings for the local
boundary cues

Another possible explanation is that the greedy merging is truly successful in
optimizing the correlation clustering objective. Figure 4 shows that this is not the
case – while there is usually some UCM threshold that provides a segmentation
with a fairly low-cost clustering, it is still suboptimal compared to the solutions
returned by PlanarCC. This suggests learning an optimal cue combination via
structured prediction may improve performance.

Finally, it is worth noting that the boundary detection benchmark does not
provide strong penalties for small leaks between two segments when the total
number of boundary pixels involved is small. We found that on the region based
benchmarks, PlanarCC did outperform UCM slightly when the optimal segmen-
tation threshold was chosen on a per-image basis (GT Covering OIS 0.65 versus
0.64 for UCM). We expect these differences may become more apparent in an
application where the local boundary signal is noisier (e.g., biological imaging)
or when there is a greater cost for under-segmentation.

8 Conclusion

We have presented a novel, fast algorithm for finding high quality correlation
clusterings in planar graphs. Our algorithm appears to outperform existing ap-
proaches on a variety of real problem instances. Our method exploits decom-
position into subproblems that lack efficient combinatorial algorithms but are
still tractable in the sense having efficient oracles. This offers a new technique
in the toolkit of Lagrangian relaxations that we expect will find further use in
the application of dual-decomposition to vision problems.
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Appendix A: Derivation of the LP dual

It is informative to analyze the dual LP to the bound optimization presented in
Equation (14) of the paper:

max
λ

∑
e

(θe − λe) (17)

s.t. θe ≤ λe ≤ max{0, θe}∑
e

λeXe ≥ 0 ∀X ∈ C2

In order to write this in a standard form, define

λ̃e = λe − θe

and

θ̃e = max(0, θe)− θe = −min(0, θe)

Let C be a matrix whose rows are the collection of cut indicator vectors X. Let
us assume for now that C contains the entire set of cut vectors. We can write
the LP in standard form:

max
λ
−1T λ̃ (18)

s.t. λ̃ ≥ 0

λ̃ ≤ θ̃
− Cλ̃ ≤ Cθ

which has the following dual LP:

min
α,β

θTCTα+ θ̃Tβ (19)

s.t. α ≥ 0

β ≥ max(0, CTα− 1)

To further simplify the expression, we define the set C42 = {CTα, α ≥ 0} which
is the convex cone known as the “cut cone”[31]. Since θ̃ ≥ 0, β will always take
on its minimum allowable value so we can collapse it into the objective, yielding:

min
z
θT z −min(θT , 0) max(z − 1, 0) (20)

s.t. z ∈ C42

Observe that the second term in the objective is 0 when z ≤ 1 and is positive
when z > 1.
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If we drop the upper-bound constraints on λ in Equation (14) in the main
paper, we get the simplified dual LP:

min
z
θT z (21)

s.t. z ∈ C42
z ≤ 1

As discussed in the paper, this analysis provides several insights on the nature
of the lower-bound:

1. One can see that geometrically, the PlanarCC bound is equivalent to opti-
mizing over a relaxation of the multi-cut polytope given by the intersection
of the cut cone and the unit hypercube. This seems natural since the cut
cone and the multi-cut cone coincide [31] and the cut cone can be compactly
described for planar graphs.

2. Intuitively, the upper-bound constraints on λ in the original LP are irrele-
vant to the final value of the LP in the case that all cuts are included in C.
This is because any multicut can be represented as a sum of isolating cuts,
each with weight 0.5. If such a solution optimizes LP (5), it is also optimal
for LP (4). We give a detailed proof in the next section which holds even
when C only includes a subset of cuts.

3. Finally, one can see the relation between this bound and the standard cutting
plane approaches used, for example, in [38] or the ILP solution of [18]. In a
standard cutting-plane approach, one optimizes the LP relaxation min θT z
with a subset of the constraints that define the multi-cut polytope and then
successively add constraints, carving away parts of the search space until an
integral solution is found. In contrast, each time we add a cutting plane to
our primal LP, this adds another row to the matrix C in the dual LP which
expands the set of allowable solutions z. Thus our algorithm can be viewed
as a delayed column generation scheme for the dual LP in which we keep
growing the space of reachable z until an optimum is found.

Appendix B: Additional constraints on λ don’t affect the
bound

In Section 5 we introduced the constraint λe ≤ max{0, θe} without a formal
justification. Here we show this constraint does not decrease the lower-bound.
Suppose we first optimize the lower-bound without including the constraint λe ≤
max{0, θe}. Let λ∗ denote the optimizing parameters. Our strategy is to show
that λ∗ can be modified to satisfy λe ≤ max{0, θe} ∀e without loosening the
bound.

We first restate the definition of the lower-bound:

CC∗ ≥
∑
e

(θe − λ∗e) + min
X∈C2

∑
e

λ∗eXe (22)
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The convex hull of the set of cut indicator vectors is known as the cut poly-
tope [31] which we denote C�2 . For planar graphs, this polytope is compactly
described by the set of cycle inequalities [39]. One can relax the discrete opti-
mization over C2 to an LP over the cut polytope (see e.g., [38]). In the following
analysis, we work with the dual of this relaxed LP in which we have a collection
of dual variables {φce} corresponding to the constraint on each cycle c of the
planar graph [40].

min
X∈C�2

∑
e

λ∗eXe = max
φ:

∑
c φ

c
e=λ∗

e

∑
c

min
Xc∈C2

∑
e

φceX
c
e (23)

The right-hand side corresponds to dual-decomposition into a collection of sub-
problems, each of which is a cycle from the original graph. Let φ? denote an
optimizer of this dual LP. We write our lower-bound in terms of this cycle de-
composition as:

CC∗ ≥
∑
e

(θe − λ∗e) +
∑
c

min
Xc∈C2

∑
e

φ∗ce X
c
e (24)

Lemma 1: For all cycles c, minXc∈C2
∑
e φ
∗c
e X

c
e = 0.

Lemma 1 holds because the minimum energy of each subproblem for a cycle
c is upper-bounded by zero and the sum of all the cycle subproblem energies
is zero due to the constraint λ? ∈ Ω. Notice that if there is a negative valued
parameter φ∗ce on the c’th cycle sub-problem then any other edge f 6= e must
have a parameter setting such that φ∗ce + φ∗cf ≥ 0. Otherwise, the configuration
which cuts e and f would have negative energy. In particular, this implies that
each cycle subproblem can only have a single negative parameter.

Lemma 2: For each edge e with (θe − λ∗e < 0) contained in a cycle c, either
(φ∗ce < 0) or (∃f s.t. φ∗ce + φ∗cf = 0).

Suppose there existed an edge e and cycle c for which the implication of
the lemma is false, that is (θe − λ∗e < 0), (φ∗ce ≥ 0) and (∀f : φ∗ce + φ∗cf > 0).
This would mean there is no minimizing configuration of the cycle subproblem
that includes edge e (such a cut would have positive weight). However, edge e is
necessarily cut in the single edge problem. In such a case the lower-bound could
be tightened by the following update:

f = arg min
f 6=e

(φ∗ce + φ∗cf ). (25)

V = min[−(θe − λ∗e), φ∗ce + φ∗cf ]

λ∗e ⇐ λ∗e − V
φ∗ce ⇐ φ∗ce − V

This update would drive up the energy of the single edge problem thus increas-
ing the lower-bound by a positive quantity V . Since the lower-bound is tight by
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assumption, such an edge e and cycle c must not exist.

Modifying λ to satisfy the constraint: We now describe an iterative proce-
dure that starts with λ∗ and φ∗ and produces a modified λ+and φ+ obeying the
constraint:

(θe − λ+
e < 0)→ (φ+c

e ≤ 0) ∀[c, e] (26)

The lower-bound corresponding to λ+ will have the same value as that of λ∗ and
will satisfy the additional upper-bound constraint as desired.

For each (e, c) such that (θe − λ∗e < 0) and (φ∗ce > 0), Lemma 2 establishes
that there exists an edge f so that (φ∗ce +φ∗cf = 0). Choose one such edge f and
apply the parameter updates:

V ⇐ max[θe − λ∗e,−φ∗ce ] (27)

φ∗ce ⇐ φ∗ce + V

φ∗cf ⇐ φ∗cf − V
λ∗e ⇐ λ∗e + V

λ∗f ⇐ λ∗f − V

Repeatedly apply these updates until there exist no (e, c) such that (θe−λ∗e < 0)
and (φ∗ce > 0). These updates do not change the minimizing configuration or en-
ergy of either the cycle or edge subproblems. They also respect the lower-bound
constraint θe ≤ λe. Thus the bound remains constant. The final results of this
procedure are denoted λ+ and φ+.

Lemma 3: For all edges e, (θe − λ+
e < 0)→ (λ+

e ≤ 0)

The algorithm terminates when (θe − λ+
e < 0) → (φ+c

e ≤ 0) for all cycles c
and edges e. Since φ+ is a reparameterization of λ+ we have that

∑
c φ

+c
e = λ+

e

for each edge e which establishes the lemma.

Claim: For all edges e, λ+
e ≤ max{0, θe}

If (θe − λ+
e = 0) then the claim is satisfied. If (θe − λ+

e < 0) then by Lemma
3 we have (λ+

e ≤ 0). For such an edge, it must be that θe < 0 as we can’t
simultaneously have (θe − λ+

e < 0), λ+
e ≤ 0 and θe ≥ 0. Thus, we can transform

any optimizer λ? into an optimizer λ+ that achieves the same lower-bound and
satisfies the additional constraints.
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