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1 Overview

This document considers the problem of drawing samples from posterior distributions formed
under a Dirichlet prior and a truncated multinomial likelihood, by which we mean a Multi-
nomial likelihood function where we condition on one or more counts being zero a priori.
An example is the distribution with density

p(π|m,α) ∝
∏
i

παi−1
i︸ ︷︷ ︸

prior

·

∏
i 6=1

(
πi

1− π1

)m1i

∏
i 6=2

(
πi

1− π2

)m2i


︸ ︷︷ ︸

likelihood

(1)

where π ∈ ∆ :=
{
x ∈ Rn+ :

∑
i xi = 1

}
, α ∈ Rn+, and R+ = {x ∈ R : x ≥ 0}. We say the

likelihood function has two truncated terms because each term corresponds to a multinomial
likelihood defined on the full parameter π but conditioned on the event that observations
with a certain label are removed from the data.

Sampling this posterior distribution is of interest in inference algorithms for hierarchical
Bayesian models based on the Dirichlet distribution or the Dirichlet Process, particularly
the sampling algorithm for the Hierarchical Dirichlet Process Hidden Semi-Markov Model
(HDP-HSMM) [4] which must draw samples from such a distribution.

We provide an auxiliary variable (or data augmentation) [6] sampling algorithm that is
easy to implement, fast both to mix and to execute, and easily scalable to high dimensions.
This document will explicitly work with the finite Dirichlet distribution, but the sampler
immediately generalizes to the Dirichlet Process case based on the Dirichlet Process’s def-
inition in terms of the finite Dirichlet distribution and the Komolgorov extension theorem
[5].

Section 2 explains the problem in greater detail. Section 3 provides a derivation of our
sampling algorithm. Finally, Section 4 provides numerical experiments in which we demon-
strate the algorithm’s significant advantages over a generic Metropolis-Hastings sampling
algorithm.

Sampler code and functions to generate each plot in this document are available at
https://github.com/mattjj/dirichlet-truncated-multinomial.
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2 Problem Description

We say a vector π ∈ ∆ is Dirichlet-distributed with parameter vector α ∈ Rn+ if it has a
density

p(π|α) =
Γ (
∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

παi−1
i (2)

=: Dir(π|α) (3)

with respect to Lebesgue measure. The Dirichlet distribution and its generalization to
arbitrary probability spaces, the Dirichlet Process, are common in Bayesian statistics and
machine learning models. It is most often used as a prior over finite probability mass
functions, such as the faces of a die, and paired with the multinomial likelihood, to which
it is conjugate, viz.

Dir(π|α) ·Mult(m|π) ∝
∏
i

πα−1i ·
∏
i

πmi
i (4)

∝
∏
i

παi+mi−1
i (5)

∝ Dir(π|α+m). (6)

That is, given a count vector m ∈ Nn+, the posterior distribution is also Dirichlet with an
updated parameter vector and, therefore, it is easy to draw samples from the posterior.

However, we consider a modified likelihood function which does not maintain the con-
venient conjugacy property: the truncated multinomial likelihood, which corresponds to
deleting a particular set of counts from the count vector m or, equivalently, conditioning on
the event that they are not observed. The truncated multinomial likelihood where the first
component is truncated can be written

TruncMult{1}(m|π) :=
∏
i 6=1

(
πi

1− π1

)mi

(7)

= Mult(m|π, {m1 = 0}). (8)

In general, any subset of indices may be truncated; if a set I ⊆ {1, 2, . . . , n} is truncated,
then we write

TruncMultI(m|π) :=

(
1

1−
∑
i∈I πi

)m· ∏
i6∈I

πmi
i (9)

where m· =
∑
imi. This distribution can arise in hierarchical Bayesian models such as the

HDP-HSMM [4].
In the case where the posterior is proportional to a Dirichlet prior and a single truncated

multinomial likelihood term, the posterior is still simple to write down and sample. In this
case, we may split the Dirichlet prior over I and its complement I := {1, 2, . . . , n} \ I; the
factor over I is conjugate to the likelihood, and so the posterior can be written

Dir(π|α)TruncMultI(m|π) ∝ Dir

(
πI

1−
∑
i∈I πi

∣∣∣∣αI)Dir

(
πI

1−
∑
i∈I πi

∣∣∣∣αI +mI

)
(10)
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(a) The prior, Dir(π|α).

(b) The posterior proportional to
Dir(π|α) ·Mult(m|π).

(c) The posterior proportional to
Dir(π|α) · TruncMult{1}(m|π).

Figure 1: Projected visualizations of the prior distribution Dir(π|α) for n = 3 and
α = (2, 2, 2) and the associated posterior distributions when paired with Mult(m|π) and
TruncMult{1}(m|π) where m = (0, 2, 0). In low dimensions, the posteriors can be computed
via direct numerical integration over a discretized mesh.

from which we can easily sample. However, given two or more truncated likelihood terms
with different truncation patterns, no simple conjugacy property holds, and so it is no
longer straightforward to construct samples from the posterior. For a visual comparison in
the n = 3 case, see Figure 1.

For the remainder of this document, we deal with the case where there are two likeli-
hood terms, each with one component truncated. The generalization of the equations and
algorithms to the case where any set of components is truncated is immediate.

3 An Auxiliary Variable Sampler

Data augmentation methods are auxiliary variable methods that often provide excellent
sampling algorithms because they are easy to implement and the component steps are
simply conjugate Gibbs sampling steps, resulting in fast mixing. For an overview, see the
survey [6].

We can derive an auxiliary variable sampler for our problem by augmenting the distri-
bution with geometric random variables k = (k1, k2) = ({k1j}, {k2j}). That is, we define
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for kij = {0, 1, 2, . . .} a new distribution q such that

q(π,m, k|α) ∝

(∏
i

πα−1i

)∏
i 6=1

πm1i
i

∏
i 6=2

πm2i
i

m1·∏
j=1

π
k1j
1

m2·∏
j=1

π
k2j
2

 (11)

where {m1i} and {m2i} are sample counts corresponding to each likelihood, respectively,
and mi· :=

∑
jmij . Note that if we sum over all the auxiliary variables k, we have

∑
k

q(π,m, k|α) ∝

(∏
i

πα−1i

)∏
i 6=1

πm1i
i

∏
i 6=2

πm2i
i

∏
j

∑
k1j

π
k1j
1

∏
j

∑
k2j

π
k2j
2


(12)

=
∏
i

πα−1i

∏
i 6=1

(
πi

1− π1

)m1i

∏
i 6=2

(
πi

1− π2

)m2i

 (13)

∝ p(π,m|α) (14)

and so if we can construct samples of π, k|m,α from the distribution q then we can form
samples of π|m,α according to p by simply ignoring the values sampled for k.

We construct samples of π, k|m,α by iterating Gibbs steps between k|π,m, α and π|k,m, α.
We see from (11) that each kij in k|π,m, α = k|π,m is independent and distributed accord-
ing to

q(kij |π,m) = (1− πi)π
kij
i . (15)

Therefore, each kij follows a geometric distribution with success parameter (1− πi).
The distribution of π|k,m, α in q is also simple:

q(π|m, k, α) ∝

(∏
i

παi−1
i

)∏
i 6=1

(
πi

1− π1

)m1i

∏
i 6=2

(
πi

1− π2

)m2i

 (16)

·

m1·∏
j=1

(1− π1)π
k1j
1

m2·∏
j=1

(1− π2)π
k2j
2

 (17)

∝ Dir(π|α+ m̃) (18)

where m̃ is a set of augmented counts including the values of k. In other words, the Dirichlet
prior is conjugate to the augmented model. Therefore we can cycle through Gibbs steps in
the augmented distribution and hence easily produce samples from the desired posterior.
For a graphical model of the augmentation, see Figure 2.

4 Numerical Experiments

In this section we perform several numerical experiments to demonstrate the advantages
provided by the auxiliary variable sampler. We compare to a generic Metropolis-Hastings
sampling algorithm. For all experiments, when a statistic is computed in terms of a sampler
chain’s samples up to sample index t, we discard the first b t2c samples and use the remaining
samples to compute the statistic.
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(a) Un-augmented distribution.
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(b) Augmented distribution.

Figure 2: Graphical models for the un-augmented and augmented probability models.

Metropolis-Hastings Sampler We construct an MH sampling algorithm by using the
proposal distribution which proposes a new position π′ given the current position π via the
proposal distribution

p(π′|π;β) = Dir(π′|β · π) (19)

where β > 0 is a tuning parameter. This proposal distribution has several valuable proper-
ties:

1. the mean and mode of the proposals are both π;

2. the parameter β directly controls the concentration of the proposals, so that larger β
correspond to more local proposal samples;

3. the proposals are naturally confined to the support of the target distribution, while
alternatives such as local Gaussian proposals would not satisfy the MH requirement
that the normalization constant of the proposal kernel be constant for all starting
points.

In our comparison experiments, we tune β so that the acceptance probability is approx-
imately 0.24.

Sample Chain Autocorrelation In Figure 3 we compare the sample autocorrelation
of the auxiliary variable sampler and the alternative MH sampler for several lags with
n = 10. The reduced autocorrelation that is typical in the auxiliary variable sampler chain
is indicative of faster mixing.

The R̂ Multivariate Potential Scale Reduction Factor The R̂ statistic, also called
the Multivariate Potential Scale Reduction Factor (MPSRF), was introduced in [1] and is a
natural generalization of the scalar Scale Reduction Factor, introduced in [2] and discussed
in [3, p. 296]. As a function of multiple independent sampler chains, the statistic compares
the between-chain sample covariance matrix to the within-chain sample covariance matrix
to measure mixing; good mixing is indicated by empirical convergence to the statistic’s
asymptotic value of unity.
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(a) Autocorrelations in the first (truncated) component.
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(b) Autocorrelations in the second component.

Figure 3: Autocorrelations for the auxiliary variable sampler and MH sampler chains with
αi = 2, n = 10, β = 160. The solid lines show the mean autocorrelation over 50 randomly-
initialized runs for each sampler, and the dashed lines show the 10th and 90th percentile
autocorrelation chains over those runs. These plots can be reproduced with the function
autocorrelation in figures.py.
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Specifically, loosely following the notation of [1], with ψ
(i)
jt for denoting the ith element of

the parameter vector in chain j at time t (with i = 1, . . . , n, j = 1, . . . ,M , and t = 1, . . . , T ),
to compute the n-dimensional MPSRF we form

V̂ =
T − 1

T
W +

(
1 +

1

M

)
B/T (20)

where

W =
1

M(T − 1)

M∑
j=1

T∑
t=1

(ψjt − ψ̄j·)(ψjt − ψ̄j·)T (21)

B/T =
1

M − 1

M∑
j=1

(ψ̄j· − ψ̄··)(ψ̄j· − ψ̄·c·)T. (22)

The MPSRF itself is then defined when W is full-rank as [1, Eq. 4.1 and Lemma 1]

R̂ := sup
v∈Rn

vTV̂ v

vTWv
(23)

= λmax

(
W−1V̂

)
(24)

= λmax

(
W−

1
2 V̂ W

1
2

)
(25)

where λmax(A) denotes the eigenvalue of largest modulus of the matrix A and the last

line follows because conjugating by W
1
2 is a similarity transformation. Equivalently (and

usefully for computation), we must find the largest solution λ to det(λW − V̂ ) = 0.
However, as noted in [1, p. 446], the measure is incalculable when W is singular, and

because our samples are constrained to lie in the simplex in n dimensions, the matrices
involved will have rank n−1. Therefore when computing the R̂ statistic, we simply perform
the natural Euclidean orthogonal projection to the (n − 1)-dimensional affine subspace on

which our samples lie; specifically, we define the statistic in terms of QTV̂ Q and QTWQ,
where Q is an n× (n− 1) matrix such that QTQ = I(n−1) and

QR =


−(n− 1) 1 · · · 1 1

1 −(n− 1) · · · 1 1
...

1 1 · · · 1 −(n− 1)
1 1 · · · 1 1

 (26)

for upper-triangular R of size (n− 1)× (n− 1).
Figure 4 shows the MPSRF of both samplers computed over 50 sample chains for n = 10

dimensions, and Figure 5 shows the even greater performance advantage of the auxiliary
variable sampler in higher dimensions.

Statistic Convergence Finally, we show the convergence of the component-wise mean
and variance statistics for the two samplers. We estimated the true statistics by forming
estimates using samples from 50 independent chains each with 5000 samples, effectively
using 250000 samples to form the estimates. Next, we plotted the `2 distance between these
“true” statistic vectors and those estimated at several sample indices along the 50 runs for
each of the sampling algorithms. See the plots in Figure 6.
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(a) The horizontal axis is the sample index.
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(b) The horizontal axis is elapsed time.

Figure 4: The R̂ Multivariate Potential Scale Reduction Factor [1] for the auxiliary variable
sampler and MH sampler with αi = 2, n = 10, and β = 160, with horizontal axes scaled
by sample index and elapsed time. For each sampler, 5000 samples were drawn for each of
50 randomly-initialized runs, and the MPSRF was computed at 25 equally-spaced intervals.
These plots can be reproduced with the function Rhatp in figures.py.
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(a) The horizontal axis is the sample index.
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(b) The horizontal axis is elapsed time.

Figure 5: The R̂ Multivariate Potential Scale Reduction Factor [1] for the auxiliary variable
sampler and MH sampler with αi = 2, n = 20, and β = 160, with horizontal axes scaled
by sample index and elapsed time. For each sampler, 5000 samples were drawn for each of
50 randomly-initialized runs, and the MPSRF was computed at 25 equally-spaced intervals.
These plots can be reproduced with the function Rhatp in figures.py.
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(a) `2 error of component-wise mean esti-
mate vs sample index.
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(b) `2 error of component-wise variance esti-
mate vs sample index.
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(c) `2 error of component-wise mean estimate
vs elapsed time.
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(d) `2 error of component-wise variance esti-
mate vs elapsed time.

Figure 6: Component-wise statistic convergence for the auxiliary variable sampler and MH
sampler with αi = 2, n = 10, and β = 160, with horizontal axes scaled by sample index and
elapsed time. For each sampler, 5000 samples were drawn for each of 50 randomly-initialized
runs. The `2 distances from estimated “true” parameters are plotted, with the solid lines
corresponding to the mean error and the dashed lines corresponding to 10th and 90th
percentile errors. These plots can be reproduced with the function statistic convergence

in figures.py.
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