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Abstract

We consider the reconstruction problem in compressedrsgitsiwvhich the observations are recorded in a finite
number of bits. They may thus contain quantization erraohgfbeing rounded to the nearest representable value) and
saturation errors (from being outside the range of reptabévalues). Our formulation has an objective of weighted
{2-¢1 type, along with constraints that account explicitly foragtization and saturation errors, and is solved with
an augmented Lagrangian method. We prove a consistendy fiastihe recovered solution, stronger than those that
have appeared to date in the literature, showing in padidhlat asymptotic consistency can be obtained without
oversampling. We present extensive computational cosmasiwith formulations proposed previously, and variants
thereof.
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1 Introduction

This paper considers a compressive sensing (CS) systemich tile measurements are represented by a finite number
of bits, which we denote bys. By defining a quantization interval > 0, and setting> := 25~'A, we obtain the
following values for representable measurements:
A 3A A A A
G+2, G+ 5 2,2,...,G 5 1)
We assume in our model that actual measurements are recoydexdinding to the nearest value in this set. The
recorded observations thus contain (a) quantization rresulting from rounding of the true observation to the
nearest represented number, and (b) saturation errors, thbérue observation lies beyond the range of represented
values, namely,—G + &, G — £]. This setup is seen in some compressive sensing hardwdniecatares (see, for
example, Laska et l., 2007; Tropp et al.. 2009; RombergdZD@®pp et al., 2006; Duarte etlal., 2008).
Given a sensing matrig¢ € R >N and the unknown vectar, the true observations (without noise) woulddae.
We denote the recorded observations by the vectoiRM, whose components take on the value§in (1). We partition
& into the following three submatrices:

e The saturation part®_ and ®_, which correspond to those recorded measurements that¢presented by
—G + A/20rG — A/2, respectively — the two extreme values(ih (1). We denote thelver of rows in these
two matrices combined by/.

e The unsaturated paft RMXN which corresponds to the measurements that are roundezhtexireme
representable values.

In some existing analysess (Candes et al., 2006; Jacques20&.), the quantization errors are treated as a ran-

dom variables following an i.i.d. uniform distribution ihe range{—%, %]. This assumption makes sense in many
situations (for example, image processing, audio/videagssing), particularly when the quantization interais

tiny. However, the assumption of a uniform distribution nrayt be appropriate whea is large, or when an inap-
propriate choice of saturation levélis made. In this paper, we assume a slightly weaker condiiamely, that the

guantization errors for non-saturated measurements dep@ndent random variable with zero expectation.
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The state-of-the-art formulation to this problem (see laaskal.| 2011) is to combine the basis pursuit model with
saturation constraints, as follows:

mwin [l]|1 (2a)
st @z — | < 2A? (£2) (2b)

o, x> (G- A)1 (+ saturation) (2c)

o _x < (A-G)1, (— saturation) (2d)

wherel is a column vector with all entries equalt@ndy is the quantized subvector of the observation vegtivat
corresponds to the unsaturated measurements. It has bmen stat the estimation error arising from the formulation
@) is bounded by)(eA) in the/, norm sense (see Laska et al., 2011; Candés, 2008; Jacaie®61 1).

The paper proposes a robust model that repléceés (2b) byatidideast square loss in the objective and adds an
/-, constraint:

1 -
min §H‘1>£v—y|\2+/\A|I:vH1 (32)
St [|®r — gl < A/2 (foc) (3b)
O,z > (G- AN (+ saturation) (3c)
¢ _x < (A-G)1. (— saturation) (3d)

The (., constraint arises immediately from the observation thatghantization error is bounded ky/2. This
constraint may reduce the feasible region for the recovasllpm while retaining feasibility of the true solutiari,
thus promoting more robust signal recovery. From the viemtpaf optimization, the constrainf (Pb) plays the same
role as the least-square loss term in the objediive (3a)nwevalues ot and )\ are related appropriately. However,
it will become clear from our analysis that the least-sqsiémes can lead a tighter bound than us[ng (2b).

The analysis in this paper shows that solutions obtainea tros formulation are, in the worst case, better than
the state-of-the-art moddll(2), and also better than theeiiodwhich only the/., constraint[(3b) are applied (in
place of the/, constraint[[Zb)), as suggested by Jacques et al. (2011} Mgortant, when the numbaf of unsat-
urated measurements goes to infinity faster tBamg(N) (whereS is the sparsity number—the number of nonzero
components inc*), the estimation error for the solution ¢fl (3) vanishes witgh probability. By comparison, the
state-of-the-art mode[(2) does not guarantee improvegiean more measurements. Although Jacques| et al. (2011)
show that the estimation error can be eliminated only udied 4, constraint, their “oversampling” condition is much
stronger than our requirement.

We apply the alternating direction method of multiplier&M) (see Eckstein and Bertsekas, 1992; Boyd et al.,

) to solve[(B). The computational results reported irti8el4 compare the solution properties {dr (3) to those for
(2) and other formulations in which some of the constraingésoanitted.

1.1 Reated Work

There have been several recent works on CS with quantizatidrsaturation. Laska etlal. (2011) propose the for-
mulation [2)./Jacques etlal. (2011) replace theonstraint [Zb) by arf,, constraint 2 < p < oo) to handle the
oversampling case, and show that valpegeater thar? are advantageous. The model of Zymnis ét al. (2010) allows
Gaussian noise in the measurements before quantizatidrsadves the resulting formulation with @gp-regularized
maximum likelihood formulation. The average distortiotrdduced by scalar, vector, and entropy coded quantization
of CS is studied bl Dai et Al (2011).

The extreme case of 1-bit CS (in which only the sign of the plad®n is recorded) has been studieet al.
(2010) and Boufounos and Bararilik (2008). In the latter pape/; norm objective is minimized on the unit ball,
with a sign consistency constraint. The former paper preptso algorithms that need no more thia¢t log N) mea-
surements to recover the unknown support of the true signathey cannot recover the magnitudes of the nonzeros
reliably.




1.2 Notation

We us€|| - ||,, to denote thé, norm, wherel < p < oo, with || - || denoting the/s norm. We use:* for the true signal,
% as the estimated signal (the solution[df (3), &ng & — x* as the difference between them. As mentioned ah$ve,
denotes the number of nonzero elements*of

For anyz € RY, we usez; to denote théth component and; to denote the subvector corresponding to index set
T c {1,2,..., N}. Similarly, we useb, to denote the column submatrix @f consisting of the columns indexed by
T. The cardinality ofl" is denoted byT|.

In discussing the dimensions of the problem and how theyedaged to each other in the limit (86 and A/ both
approachx), we make use of order notation dfand; are both positive quantities that depend on the dimensioms,
write o« = O() if a can be bounded by a fixed multiple 8ffor all sufficiently large dimensions. We write= o(3)
if for anypositive constand > 0, we haven: < ¢ for all sufficiently large dimensions. We write = 2(3) if both
a=0(p) ands = O(a).

The projection onto thé,, norm ball with the radius. is

Poo(,A) := sign(z) ® min(|z], \)

where® denotes componentwise multiplication and gignis the sign vector of.. (Theith entry of sigriz) is 1, —1,
or 0 depending on whether; is positive, negative, or zero, respectively.)
The indicator functiory(-) for a setll is defined to bé onII andoc otherwise.

Let B B
= —d_ P
= [ B, ] and® = [(I)] . (4)
The maximum column norm it is denoted byfimax, thatis,

max ‘— (i)z . 5
f e (K2 (5)

We define the following quantities associated with a matriwith N columns:

|Wrhrl?
(kW) = - P 6
pp( ) ) \T\grfcl,l}?eRN HhTH2 ( )
e [wrhe)?
Vrhr
MUR A - P 7
pp( ) ) \T\Snli,h)éRN HhTH2 ( )

Sometimes we use following notations for short:

py (k) = p, (k,®), pf(k):=py(k,®),
ﬁ;(k) = P; (k, (i))v ﬁ;(k) = p;_(kv (i))a
ﬁ;(k) = ;(kv CI))’ 7+(k) = P;(k, (i))

Note that the/s norm is used in each denominator, regardlesgs of
Finally, we denotenax{z,0} as(z) for short.

1.3 Organization

The ADMM optimization framework for solvind{3) is discuskie Sectiol . Sectidi 3 analyzes the properties of the
solution of [3) in the worst case and compares with existasyits. The numerical simulation is reported in Sedtion 4
and some conclusions are offered in Sedtibn 5. Proofs ajppés appendix.



2 Algorithm
This section describes the ADMM algorithm for solvid (3prFsimpler notation, we combine the saturation con-
straints as follows: B ( )

—d_ G-A)1 = _

{éJ“’z {(G—A)J < trzy,

whered is defined in[(#) ang is defined in an obvious way. To specify ADMM, we introduce saamixiliary variables
and write [[B) as follows.

S _
min [|®z — |* + |zl

st. u=dx -y

vzéx—gj (8)
[ulloo < A/2

v > 0.

Introducing Lagrange multipliers and g for the two equality constraints ifil(8), we write the augneetagrangian
for this formulation, with prox parametér> 0 as follows:

LA(Iauvvvszvavﬂvna’Y)

1 T ~ = ~ T _
=5l1Pz = glI* + Azl + (0w = Pz + ) + (8,0 — D2 + g)+ )

f ~ 5 0 . _
5”“ — ®z+g)* + §||U — @z + G|* + Ljufo<a/2(w) + Lizo(v)

At each iteration of ADMM, we optimize this function with qesct to the primal variablesandv in turn, then update
the dual variablest and 8 in a manner similar to gradient descent. The paranteteny then be increased before
proceeding to the next iteration.

We summarize the ADMM algorithm iAlgorithm[dl

Algorithm 1 ADMM for (B)
Require: @, 7, ®, 7, A, K, andz;

1: Initialize > 0, « = 0, 8 = 0, u = ®x — §, andv = dx — 7;

2: for k=0: K do

3w+ argming : La(z,u,v,a,8,) = ’POO((i)x —y—a/0,A/2);
w < argminy, : La(z,u,v,a, ) = max(®x — g — 3/6,0);

4:
5. x4 argming : La(z,u,v,a,f);
6: o a+0u—dr+7g);
7. B+ B+0—Pr+7);
8: Possibly increase;
9: if stopping criteria is satisfietthen
10: break
11:  endif
12: end for

The updates in Steps 3 and 4 have closed-form solutionspasskihe function to be minimized in Step 5 consists

of an||z||; term in conjunction with a quadratic termin Many algorithms can be applied to solve this problem, e.g.,
the SpaRSA algorithm proposed|by Wright €t al. (2009), theekecated first order method (Nesterov, 2007), and the
FISTA algorithm {(Beck and Teboulle, 2009). The update sgwtfor 6 in Step 7 is flexible. We use the following
simple and useful scheme from He et al. (2000)land Boyd :

Or it |r| > pldl

6= 0/r i |Ir| < plld| (10)
0 otherwise
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wherer andd denote the primal and dual residual errors respectivedgifipally,

. u—fi)l'-i-ﬂ _ (i)(w—l'last)
"= |:v — v+ y:| andd =0 |:‘i)($ — Tast) |’

wherex),st denotes the previous value of The parameterg and should be greater than we usedu = 10 and
T=2.

3 Analysis

The section analyzes the properties of the solution obdafireen our formulation[(B). In Subsectign 8.1, we obtain
bounds on the norm of the differenkdetween the estimatdrgiven by [3) and the true signaf. Our bounds require
the true solution:* to be feasible for the formulatiohl(3); we derive condititimst guarantee that this condition holds,
with a specified probability. In Subsectibn13.2, we estinthte constants that appear in our bounds under certain
assumptions, including an assumption that the full sensiagix ® is Gaussian.

We formalize our assumption about quantization errors bmas.

Assumption 1. The quantization errorédz* — §);,7 = 1,2, ..., M are indepently distributed with expectation

3.1 Estimation Error Bounds

The following error estimate is our main theorem, provechimappendix.

Theorem 1. Assume that the true signat satisfies

127 (®2" —§)lloe < AA/2. (11)
Lets andl be positive integers in the range2, ..., N, and define

By, :=61/s)\A, (12a)

Boo =V MA, (12b)

Ao(W) :=p5 (s + 1, W) = 3v/5/l[p3 (s + 20, W) — pj (s + 21, )] (12c)

Ay (W) :=4[pF (s + 21, V) — p; (s + 21, V)], (12d)

cuw) =TT 2o

Oy (@) ma 4+ V1T jos(g‘)‘ll(q’), (12f)

Co(T) =, /%. (12g)

We have that for an§y € {1,2, ..., N} with s = |Tp|, if Ag(®) > 0, then

|h]| <Co(®) B, + C1(®)/ V1|27 |1 + Co(®)By/? /M4y |11, (13a)
]| C2(®)Boo + C1(®)/VI||27e 1 (13b)

Suppose that Assumptioh 1 holds, andret (0, 1) be given. If we defing = \/210g 2N/ fiax in (3), then with
probability at leastP = 1 — , the inequalitieg13d)and (I31) hold.

From the proof in the appendix, one can see that the estimatior bound [{I3a) is mainly determined by the
least square term in the objectilel(3a), whereas the estimatror bound{13b) arises from tlig,, constraint[(3b).

If we take T, as the support set af*, only the first term in[{I3a) and(IBb) remains. It followstthja| <
min{Cy(®)Br, C2(®) B }. We will compare their values in next subsection.



3.2 Estimating the Constants

Here we discuss the behaviors of the least square term arfd.teenstraints by comparing the vaIues(ﬁf(é)BL
andCs(®P) B« . In order to simplify the comparison, we make the followirsgamptions.

(i) @ isa Gaussian random matrix, that is, each entry is i.i.dwdrfrom a standard Gaussian distributigigo0, 1).
(ii) the confidence leveP = 1 — 7 is fixed.
(iii) s and! are both equal to the sparsity numiser
(iv) Slog(N)=o(M).
(v) the saturation ratiqq := M /M is smaller than a small positive threshold that is definedriadfeni .

(vi) Ty is taken as the support set.of, so thatxi}oc =0.

Note that (iii) and (iv) together imply that= [ = S < M, while (iv) implies that\/ = Q(M).
The discussion following Theorelnh 2 in Appendix indicatest inder these assumptions, the quantities defined in

(I28), (12, [12f), and{5) satisfy the following estimsite
Co(®) = Q(1/M), C1(B) =Q(1), Cs(®) = Q1/VM), fmax = AVM),

with high probability, for sufficiently high dimensions. ldg the estimates in Theordth 2, we have from the definitions
of By, andB,. in Theorent]L, with the setting of from Theoreni I, that

Col#)By = O (MSlog(ﬁ)fmaxA) _ o( m%(zv)A> Lo (148)
- (VEaN
Co(®)Boo = O <W =0(A). (14b)
Combining the estimation error boun@s (IL13a) dnd(13b), we ha
A} < min{Cy(®)Br, C2(®) Boo } = min{O(y/Slog(N)/M), O(1)}A. (15)

In the regime described by assumption (i¢),(®)B;, will be asymptotically smaller thaf,(®)B... The bound

in (I8) has siz@i 2%810 N)/MA), consistent with the upper bound of the Dantzig selecton(@a and Tao, 2007)

and the LASSO (Eb)RecaII that the estimation error of the state-of-the-yorthm (2) for quantized
compressed sensing || dz* — || /v/M) (Jacques et A, 2011 Laska etlal.. 2011). Sifge* — j|| = O(vV/MA)
(Jacques et al., 20111), this estimate is consistent witkrttee that would be obtained if we imposed only the con-
straint [3b) in our formulation. Under the assumption (g estimation error foi {3) will vanish as the dimensions
grow, with probability at least — 7. By contrast, Jacques et al. (2011) do not account for giaria their formu-
lation and show that the estimation error convergédsusing the/., constraint only when oversampling happens (in
particular,M > Ne®/S)andM — oco. Our formulation yields a much weaker condition dhthan oversampling.
For example) = Slog?(N) would produce consistency in our formulation, but nofin (2)

4 Simulations

This section compares results for five variant formulatidie first one is our formulatiof](3), which we refer to in
the plots as. ASSOoco . We also tried a variant in which thig, constraint[(3b) was omitted frorfl(3). The recovery

ITheir bound isO (/S log(N)/Mo) whereo is the standard deviation of the observation noise whicthérclassical setting for the Dantzig
selector and the LASSO, is assumed to follow a Gaussiaritdigon.



performance for this variant was uniformly worse than f#xSSOocc, so we do not show it in our figures. (It is,
however, sometimes better than the formulations deschbtmv, and uniformly better thabantzig.)

The remaining four alternatives are based on the followingeh in which the/s norm of the residual appears in
a constraint (rather than the objective) and a constraiBioitzig type also appears:

min ||z (16a)
st ||®x — g|]? < A2 ) (16b)
182 — §lloc < A/2 ) (16c)
|7 (dz — )|« < AA/2  (Dantzig) (16d)
&,z > (G — A)1 (+ saturation) (16e)
®_x < (A — G)1. (— saturation) (16f)

The four formulations are obtained by omitting certain ¢oaiats from this model.

e Loo:an/. constraint model that enforcés (16€), (116e), and (16f)nbt{16h) or[16H) (that it, the model with
p = oo inJacques et al. (2011) but with the addition of saturatimmstraints)

e L2: an/, constraint model (that is, the state-of-the-art mode[n((2ska et al.. 2011)) that enforcés (16b),
(d16é), and[(16f) but nof (Ibc) dr (16d);

e Dantzig: the Dantzig constraint algorithm with saturation coristis that is, it enforce§ (16dJ, (1I6e), ahd (16f)
but not [I6b) or[(18c);

e L2Dantzigoo: the full model defined by (16).

Note that we use the same value\ah (I&d) as in[(B), since in both cases they lead to a consttahthe true signal
x* satisfieg|®7 (®z* — )|l < AA/2 with a certain probability; se€ (16d) and{11).

The synthetic data is generated as follows. The measuranairik ® ¢ R >V is a Gaussian matrix, each entry
being independently generated froki(0, 1/R?), for a given parameteR. The S nonzero elements of* are in
random locations and are drawn from independently f/gii0, 1). We use SNR= —201log; (|| — =*||/||=*||) as
the error metric, wherg is the signal recovered from each of the formulations undesitieration. Given values of
saturation parameté¥ and number of bitd3, the intervalA is defined accordingly a& = 25~1G. All experiments
are repeated fa30 times; we report the average performance.

We now describe how the boundsfor [3d) and[(16d) and for (I68) were chosen for these experiments. Es-
sentially,e and )\ should be chosen so that the constrainfs](16b) (16d)t dldentrue signalk:* with a a high
(specified) probability. There is a tradeoff between tigisgof the error estimate and confidence. Larger values of
e and \ can give a more confident estimate, since the defined feasigien includes:* with a higher probability,
while smaller values provide a tighter estimate. Althougmmd2 suggests how to choosand Jacques etlal. (2011)
show how to determine, the analysis it not tight, especially whéd and N are not particularly large. We use in-
stead an approach based on simulation and on making the pissartnot used elsewhere in the analysis) that the
non-saturated quantization errgrs= (ti)x* — g); are i.i.d. uniform inU_a /2 A /2. (As noted earlier, this stronger
assumption makes sense in some settings, and has been pseddus analyses.) We proceed by generating numer-
ous independent samples Bf~ U|_x /2 a/2)- Given a confidence levél — 7 (for = > 0), we sete to the value for
whichP(Z > eA) = 7 is satisfied empirically. A similar technique is used to dei@e A\. When we seek certainty
(m = 0, or confidence” = 100%), we sete and A according to the true solutiar”, that is,e = |®z* — 7| /A and
A =2[@T(®a* — §)lleo/A.

To summarize the various parameters that are varied in quergrents:M and N are dimensions o®, S is
sparsity of solutionc*, GG is saturation levelB is number of bitsR is the inverse standard deviation of the elements
of &, andP = 1 — 7w denotes the confidence levels, expressed as a percentage.

In Figure[1, we fix the values of/, S, G, R, and P, choose two values dB: 3 and 5. Plots show the average
SNRs (over30 trials) of the solutions: recovered from the five models against the dimensiann this and all
subsequent figures, the saturation ratio is defined toMse- M) /M, the fraction of extreme measurements. Our




LASSOcc formulation and the full moddl 2Dantzigoo give the best recovery performance for smisill while for
larger N, LASSOc is roughly tied with the th& 2 model. Thel oo andDantzigmodels have poorer performance —
a pattern that we continue to observe in subsequent tests.

M300-S10-B3-G4-R10-P100(Saturation=0.34) M300-S10-B5-G4-R10-P100(Saturation=0.24)
} % Lo % Lo
2% —-o-L2 H —-o-L2
—— Dantzig 36 —— Dantzig
211 —#%— L2DantzigeoH S —¥— L2Dantzigeo||
—+—LASSOw —+—LASSOw

20 B 34F

SNR
SNR

I I I I I L I B
100 200 300 400 500 600 700 800 900 1000

Figure 1: Comparison among various models for fixed values- 300, S = 10, G = 4, R = 10, andP = 100%,
and two values of3 (3 and 5, respectively). The graphs show dimensibhorizontal axis) against SNR (vertical
axis) for values ofV betweenl 00 and1000, averaged ove30 trials for each combination of parameters.

Figurd2 fixesV, M, B, G, R, andP, and plots SNR as a function of sparsity legeFor all models, the quality of
reconstruction decreases rapidly wihL ASSOocc andL 2Dantzigoo achieve the best results overall, but are roughly
tied with theL 2 model for all but the sparsest signals. The model is competitive for very sparse signals, while the
Dantzigmodel lags in performance.

We now examine the effect of number of measureméiitsn SNR. FiguréB fixev, S, G, R, andP, and tries
two values ofB: 3 and5, respectively. Figurgl4 fixeB = 4, and allowsN to increase with\/ in the fixed ratio5 /4.
These figures indicate that thé SSOco andL 2Dantzigoo models are again roughly tied with th€ model when the
number of measurements is limited. For largér our models have a slight advantage overlti2zeandL co models,
which is more evident when the quantization intervals arallen(that is,B = 4). Another point to note from Figufé 4
is thatL co outperformd. 2 when both\/ and N are much larger than the sparsity

In Figure[® we examine the effect of the number of liiten SNR, for fixed values oV, M, S, G, R, andP. The
fidelity of the solution from all models increases linearlighwB, with theLASSOoo, L 2Dantzigoc, andL 2 models
being slightly better than the alternatives.

Next we examine the effect on SNR of the confidence level, fedfivalues ofV, M, B, G, andR. In Figurd®, we
setM = 300 and plot results for two values 6f. 5 and 15. In Figurkl7, we use the same value$,difut seth/ = 150
instead. Note first that the confidence level does not affecsolution of the.co model, since this is a deterministic
model, so the reconstruction errors are constant for thidel&or the other models, we generally see degradation as
confidence is higher, since the constraihis[16b) (Iedpaser, so the feasible point that minimizes the objectiv
| - |I1 is further from the optimum:*. Again, we see a clear advantage EGkSSOoco when the sparsity is low)/ is
larger, and the confidence levBlis high. For less sparse solutions, th2andL 2Dantzigoo models have similar or
better performance.

In Figure 8 we examine the effect of saturation botGhon SNR. We fixV, M, B, R, andP, and try two values of
S: 5 and10. A tradeoff is evident — the reconstruction performancesrast monotonic withG. As G increases, the
proportion of saturated measurements drops sharply, bufuhntization interval also increases, degrading thetgual
of the measured observations. We again note a slight adyafdaathel. ASSOoo andL 2Dantzigoo models, with very
similar performance bi.2 when the oversampling is lower.

In Figurel®, we fix\V, M, S, B, R, and tune the value df to achieve specified saturation ratio26f and10%.

We plot SNR against the confidence level varied from0% to 100%. Again, we see generally good performance
from theL ASSOoo andL 2Dantzigoo models, withl 2 being competitive for less sparse solutions.
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Figure 2: Comparison among various modelsfore 500, M = 300, B =4, G = 0.4, R = 10, andP = 100%. The
graph shows sparsity levél (horizontal axis) plotted against SNR (vertical axis),raged oveB0 trials.
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Figure 3: Comparison among various models for fixed vaNies 500, S = 5,G = 0.4, R = 15, andP = 100%, and
two values ofB (3 and5). The graphs show the number of measureméntthorizontal axis) against SNR (vertical
axis) for values of\/ betweer20 and300, averaged ove30 trials for each combination of parameters.
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Figure 4: Comparison among various models for fixed ratjd/ = 5/4, and fixed value$ = 10, B = 4, G = 0.4,
R = 15, andP = 100%. The graph shows the number of measureméntghorizontal axis) against SNR (vertical
axis) for values of\/ betweenl00 and1680, averaged ove30 trials for each combination of parameters.
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Figure 5: Comparison among various models for fixed valMies 500, M = 300, S = 10, G = 0.4, R = 10, and
P = 100%. This graph shows the bit numbBr(horizontal axis) against SNR (vertical axis), averageet 80 trials.
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Figure 6: Comparison among various models for fixed vahies 400, M = 300, B = 4, G = 0.4, andR = 15, and
sparsity levelsS = 5 andS = 15. The graphs show saturation boufidhorizontal axis) against SNR (vertical axis)
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Summarizing, we note the following points.

(a) Ourproposetl ASSOco formulation gives either best or equal-best reconstragigrformance in most regimes,
with a more marked advantage when the signal is highly sgardéhe number of samples is higher.

(b) TheL2model has similar performance to the full model, and is eslagyitly better than our model for less
sparse signals with fewer measurements, since it is noitiserts the measurement number as the upper bound
suggested by Laska et al. (2011). Although the inequaliffH) also indicates the estimate error by our model
is bounded by a constant due to the constraint, the error bound determined by the constraint is not so
tight as the/s constraintin general. This fact is evident when we comgagehel. oo model with thel. 2 model.

(c) TheL oo model performs well (and is competitive with the others) wiige number of unsaturated measure-
ments is relatively large.

(d) ThelL2Dantzigoo model is competitive with. ASSOc if € and A can be determined from the true signdl
Otherwise L ASSOcc is more robust to choices of these parameters that do noiregkpowledge of the true
signals, especially if one desires a high confidence level.

5 Conclusion

We have analyzed a formulation of the reconstruction pralflem compressed sensing in which the measurements
are quantized to a finite number of possible values. Our ftatimn uses an objective @§-¢; type, along with explicit
constraints that restrict the individual quantizatioroesito known intervals. We obtain bounds on the estimaticorer
and estimate these bounds for the case in which the sensiinig m&Gaussian. Finally, we prove the practical utility
of our formulation by comparing with an approach that has\lq@eposed previously, along with some variations on
this approach that attempt to distil the relative importaatdifferent constraints in the formulation.
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Appendix

This section contains the proof to Theoréln 1, developed vianaber of technical lemmas. At the end, we state and
prove a result (Theoreld 2) concerning high-probabilitynestes of the bounds under additional assumptions on the
sensing matrixp.

The proof of Theorerfil1 essentially follows the standardyamislprocedure in compressive sensing. Some sim-
ilar lemmas and proofs can be found. in Bickel et al. (2009nd2s and Tad (2007); Candes (2008); Zhang (2009);
ILiu et all {2010 2012). For completeness, we include albfsin the following discussion.

Let Ty be any subset df1, 2, ..., N}, with s := |Tg|. Given the error vectds = & — «*, divide the complementary
index setTy := {1,2,..., N}\T, into a group of subset$;’s (j = 1,2,...,.J), without intersection, such thdg
indicates the index set of the largésintries thTS' T, contains the next-largesentries thTS' and so forttﬂ

Lemmal. We have

[®h]l < A. (17)

2The last subset may contain fewer tHaglements.
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Proof. From [3B), and invoking feasibility of andz*, we obtain
1Bhlloc = |B(E — 27) oo < 82 — Flloc + | 82" — o < A.
O
Lemma 2. Suppose that Assumptibh 1 holds. Giwea (0, 1), the choice\ = /21log (2N/7) fmax €nsures that the

true signalz* satisfieg1), that is -
|97 (®2* = §)lloo < AA/2

with probability at leastl — .

Proof. Define the random variablg; = ©%(®z* — §) = ®L¢, whereé = (¢, ..., &y] is defined in an obvious
way. (Note that| Z| oo = [|®7(P2* — §)||e0-) SinceE(Z;) = 0 (from Assumptioffill) and alb;;¢;’s are in the range
[—®;;A/2, ®,;A/2], we use the Hoeffding inequality to obtain

P(Z; > AAJ2) =P(Z; — E(Z;) > AA/2)

M
=P(Y_ ®i& —E(Z;) > A\A/2)
=1
—2(\A/2)?
Zfil(éz—jA)?
2
exp ——=—
23,92

2

<exp ——,
=Parz

<exp

which implies (using the union bound) that
2

2f§1ax

SB( Z]lo0 = max |Z;] > AA/2) < 2N exp
J

1 2N
=P <|Z||OO >4/ §log—fmaXA> <m,
T

where the last line follows by settingto the prescribed value. This completes the proof. O

P(1Z;] > AA/2) < 2exp

2

2f1%1ax

Lemma 3. We have

J
Ihzs | <> oy || < bl / VI

Jj=2
whereTy, = Ty U Ty.

Proof. First, we have for any > 1 that
”th+1 ”2 < thTj+1 H2 < l(”th ||1/l)2 = Hth ”%/17

because the largest value| i, , , | cannot exceed the average value of the componenis-df It follows that

J J—1
g Il <> Ny || < Y Myl /VE < (lhrglh /v
j=2 j=1

14



Similar claims or inequalities to Lemrfih 3 can be found in Zh@009)| Candés and Tgo (2007); Liu et al. (2010).

Lemma 4. Assume thafll) holds. We have

gl < 3llhzyll + 427, (18a)
IRl < /T +9s/U ey || + 4l |11/ V1. (18b)

Proof. Sincez is the solution off(B), we have
- 1, . . *
0> Z)|%d - §|* - 512" = 1> + AA (2l — [l2” )
> hTOT (®x* - §) + AA(|E]1 — [|lz*]l1)  (by convexity of(1/2)[|dx — g]|*)
= hT®T(®2* — §) + AA(l|2n, |1 — 127, |1 + Ezgh = llegelh)

> —[[B1 | @7 (@2* = §)lloo + AA(I27, [ = 27, 11 + IE7g [l — 2% [11)
> —[|AhAA/2 + AA((|27, 1 = |27, 1+ (@7l + [[2Te ]l — 2[l2Tell) - (from (@T)
= =(llhnyllr + Az [1)AA/2 + AA(=lhpy 1 + [[hrgll — 2[|7ell1)

Y

1 3 "
ABRTglly = SAANRT [l = 2AA [z |1

It follows that3||hx, |1 + 4[|lz7.[l1 > [|hze |1, proving [188).
The second inequalit@b) is from

1217 = lhro, |12 + |1, |12
< ||hr, ||? + [|hrell3/1 (from LemmdB
< N, I + Bllhzo |11 + 4l|a7e]11)?/1 - (from (18)
<Ny I + (35 by, [ + 4l (1) /1
= (1+9s/Dlhro |12 + 24V /U by || 5 1y + 16|27 (13 /1

2
< [V 9 Uy, || + Allwig i/ V]

O
Lemma 5. Assume thafld) holds. For any matrix¥ with N columns, and, ! < N, we have
[Wh|? > Ao(W)[lhmy, |* = Av () [[hzy, 2 1/ V1
whereAy(¥) and A(¥) are defined infI2d) and (12d) respectively.
Proof. For any;j > 2, we have
|h§01 \I/gm \I/Tj th |
[z, ([ 7y |
1 2
= 5 |19z /g, ||+ Oy b /e, 1P = 193, oz /N | = @y oy /N
1 s /|| 1] || B /|, ] ||
= [ @y, = gy |0 — ([ Wy, o Ty ] | T
4 H[ To1 TJ] [th/|th| [ To1 TJ —th/HthH
1
< 7(203 (s +20) = 2p5 (s + 20))
1 _
= (o (s +20) = py (s + 20). (19)
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The inequality above follows from the definitiog (6) ahil, @)d the fact that fact thaiz,, /|| h,, || andhr, /| bt ||
arely-unit vectors, so that

2 2
|:hT01/||hT01 |:| _ ’ |:hT01/|hT01|:| 2.
th/”thH _th/Hth”

Considering the left side of the claimed inequality, we have

[wh|?

= Wy, hy, |1? + 207, W, e hre, + [V b, |2
2 H\Iij hTm H2 —2 Z |hT01 To1 \I]TJ hTJ|
j>2
> py (s + Dl hro,[I* = (03 (5 +20) = pz (5 + 20)hrey | Y [l || (from (Z2))
j>2

> py (s + Dllhry, |2 = (p3 (s +20) = p3 (s + 20) ||y, | g 11 /vT - (from Lemmé B

> py (5 + DlIhry, |1* = (03 (s +20) = p3 (s + 20) ||y, [ Bl Ay |1/ VT + 4l /D) (from (T83)

> (3 (s +10) = 3/5/1p (5 +20) = 5 (5 + 20)) ) oy >

4(p3 (s +20) = py (s + 20) |2 1| oy 1/ VD (using]lhay |2 < Vs )z, || < Vsllha, )
> Ao(0)lhgy I* = Ar(O) ooy |2 [12/ V2,

which completes the proof. O

Lemma 6. Assume thaflT) holds. We have

|®h|* < AA||h||1 < 6VsAA gy, || + 6AA |27 |1, (20a)
| ®h|2 gMA2, (20b)
Proof. Denote the feasible region ¢f{11) as
Fi={z|®z-7y>0, [Pz - jl < A/2}.
Sincez is the optimal solution td {3), we have the optimality coiutit
T (D& — §) + AMAD||E||, N —=Np(z) # 0

where Nr(Z) denotes the normal cone &f at the pointi andd||z||; is the subgradient of the functidp||, at the
pointz. It is equivalent to say that there exist J||z||, andn € Np(&) such that

T (@i — §) + MAg +n = 0.
It follows that
OTdh + T (Px* — ) + Mg +n =0
= hT'dToh 4+ hTOT (Da* — ) + MAL g+ hTn =0
= ||®h|? = th>T( ¥ — ) = AARTg —hTn
= | ®h|? < o7 (®z* — ) — MALTg  (usingz* € F andh’n > 0)
= HfI)hH2< ||h|| 187 (®2* = §)lloo + AA[IA]11glloo-
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From||g||o < 1 and[I1), we obtain
1@R]? < AA[IR]1/2 + AA|IAllL

3
= =-AA||h
ESYNTAT

3
= 5/\A(HhToH1 + [|hrell1)

3
< GAAMIRy [y + 4|27 ]2) - (from (182)
< 6vVsAA[[g, || + 6AA |27 1,

which proves the first inequality.

2
From [17), the second inequality is obtained|jdf||> < (w/]\?[|<i>h|oo> < MA2. O

Proof of Theorem[1
Proof. First, assume tha(.1) holds. Take= ® in LemmdX® and apply (Z0a). We have
Ao(®)[hzy, P = (A1(®) VD) |27 1]l |
<||®h?
<6VsAA | hry, || + 6AA[|27Te |1
=B\ ht, | + (Br/vs) |27l
If follows that

Ao(®)[Proy |17 = (A (@) /VD) |05, 1t + Br) ||z, | < Br/ Vsl 1 (21)

Using Ay(®) > 0 (which is assumed in the statement of the theorem), we réwatlfor a quadratic inequality
az® — bx < cwith a, b, ¢ > 0, one has
<b+\/b2—|—4ac<2b—|—\/4ac b
€T ~ =~ =

- —. 22
2a 2a a+ a (22)

o

Hence[[21L) implies that

1 . § BLH@FOCHl
gy, || < e ((A1(<I>)/\fl)||:vT(;:1H1 —i—BL) + iAn(®)

By, Al (&)) % By, x 11/2
- = + = c + I c .
40(3) AO(@)\/ZHQCTO [l 540 (D) ||$T0 [
By invoking (I8b), we provd (13a) by

1Al < V/TH 90y, || + (4/VD) 5 |

< VILOBL <4+ V1T 0s/A(®) ) e I V) + | L0 DBE e a2
o(®) Ao(P)

V5Ao(D)
= Co(®) By + Cu(®) 2 11/ VI + Co(@) By * ([l /% /sM4).
Next we prove[(13b). Taking = & in Lemmd% and applyind (ZDb), we have
Ao(®)[|hzy, |I” = (AL(®) VD |27 [1llhros || < [[PR* < MA® = B

17



Using [22) again, one has

”hTmH <

A®) (el
O LAy v

By invoking (18b), we have

Il <VTF95 b | + 4Dl
V1+9s/1A: (D 1+ 9s/1
_< )n vl /VI+ A

Ay (D) Ay (D)

[o o}

proving [13b).

Note that all claims hold under the assumption that (11) fisféad. Since Lemm&l2 shows thRf{11) holds with
probability at leastl — = with taking A = /21og(2N/7) fmax, We conclude that all claims hold with the same
probability. O

High-Probability Estimates of the Estimation Error
For use in these results, we define the quantity

X =M /M = (M — M)/M, (23)
which is the fraction of saturated measurements.

Theorem 2. Assumed € RM*N to be a Gaussian random matrix, that is, each entry is i.ind drawn from a
standard Gaussian distributioh/(0,1). Let ® € RM*N be the submatrix o taking M rows from®, with the

remaining M rows being used to form the other submatéixc R <V as defined inf@). Then by choosing a
thresholdr sufficiently small, and assuming thasatisfies the boung(1 — log x) < 7, we have for any: > 1 such

thatklog N = o(M) that, with probability larger than. — O(exp(—Q(M))), the following estimates hold:

pF (k) < VAT + o VIT), (242)
py () z%\/ﬂ —o(VM), (24b)
NED gi—éx/ﬁmﬁ (24c)

5 (& \/_ — o (24d)

Proof. From the definition ofpy (k), we have

T (k)= ax (P
p2( ) |T|§k,THCl?f2 VVVVV N}Umdx( T)7

whereo,.x(®r) is the maximal singular value df. Froml, Theorem 5.39), we have for any0
that
Umax(q)T) S VM + O(\/E) + 1

with probability larger than — O(exp(—Q(t?)). Since the number of possible choicesTois
(N) (eN) k
< )
k)~ \ k
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we have with probability at least

- <]/§> O(exp (~Q12))) = 1 = Olexp (Klog (eN/k) - Q(t2))
that

py (k) = Omax(P1) < VM + O(VE) +t.

= max
|T|<k,T7C{1,2,...,N}
Takingt = v/M /16, and noting thak = o(1/), we obtain the inequality_ (Z#a), with probability at least
1 — O(exp (klog(eN/k) — Q(t%))
1 —O(exp (klog(eN/k) — Q(M))
=1—0(exp (o(M) — Q(M))
1= O(exp(=Q(M)))

The second inequality (Z¥b) can be obtained similarly from

Umin((I)T) < \/M - O(\/E) — t,

min
T|<k,TC{1,2,...,N}

whereo i, (P7) is the minimal singular value ab;. (We sett = v/ M /16 as above.)
Next we prove[(Z4c). We have

_ Srhy||
T(k) = max I < max Omax (P
PO = B T = ik TR

whereR C {1,2,...,M} andT C {1,2,..., N} are subsets of the row and column indicesbofespectively, and
O R 1 is the submatrix off consisting of rows ink and columns irf”. We now apply the result i 11

Theorem 5.39) again: For any> 0, we have

Umax(q)R,T) < \/ﬁ + O(\/E) +1

with probability larger than — O(exp (—£2(¢?))). The number of possible choices fAris

<%> = (%)M - <§>XM = exp(Mxlog(e/x)) < exp(TM),

so that the number of possible combinations(fBr T') is bounded as follows:

We thus have
P <\/[)§F(k) < VM +O(VE) +t>
>P < max  o(®pr) < VM +OWE) + t)

|RI<M,|T|<k

()

=1—0 [exp (TM + klog(eN /k) — Q(t%))] .
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Takingt = v/ M /16, and noting again that = o()M), we obtain the inequality if{Z%c). Working further on the
probability bound, for this choice af we have
1-0 [exp (TM + klog(eN/k) — Q(M))}
=1-0][exp(TM + klog(eN/k) — Q(M))]
=1—O(exp(—Q(M))),

where the first equality follows from/ = (1 — x)M and for the second equality we assume tha chosen small
enough to ensure that thE M) term in the exponent dominates th&/ term.
A similar procedure can be used to prove (24d). O

We finally derive estimates af(®), C;(®), Co(®), and fuax, that are used in the discussion at the end of
Sectior 3. .
From Theorerfil2, we have that under assumptions (iii), (iv), (&) the quantityd, (®) defined in[I2H) is bounded

as follows:
A(B) =4 <\/ﬁ;(s +20) + /iy (s + 21)) <\/ﬁ;(s +20)— /g (s + 21))

< 4(2V/¥ + o VD) (5 V3T + o V)
= M + o(M) = Q(M).

Usings = [, the quantity ofd,(®) defined in[IZ) is bounded as follows:

3

4S/l A(D)

15
oM = o(M) -

Ag(®) = py (s +1) —

M — o(M)

=~ w

for all sufficiently large dimensions and small saturatiatiay, sinceM = (1 — y)M. Using the estimates above for
Ao(®) andA; (®), together withs = [, in the definitions[(12e)[(IRf), and (12g), we obtain

Co(d) =Y = 0,

Cy (D) =4+ ¥ 2007 =Q(1),

Ca(d) =[S eht = A1V,

as claimed. Finally, the estimate fif.. can be estimated bfax = /3 (1) < 2V M + o(M) = O(VM).
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