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Association testing aims to discover the underlying relationship
between genotypes (usually Single Nucleotide Polymorphisms, or
SNPs) and phenotypes (attributes, or traits). The typically large
data sets used in association testing often contain missing values.
Standard statistical methods either impute the missing values using
relatively simple assumptions, or delete them, or both, which can
generate biased results. Here we describe the Bayesian hierarchical
model BAMD (Bayesian Association with Missing Data). BAMD is
a Gibbs sampler, in which missing values are multiply imputed based
upon all of the available information in the data set. We estimate the
parameters and prove that updating one SNP at each iteration pre-
serves the ergodic property of the Markov chain, and at the same time
improves computational speed. We also implement a model selection
option in BAMD, which enables potential detection of SNP interac-
tions. Simulations show that unbiased estimates of SNP effects are
recovered with missing genotype data. Also, we validate associations
between SNPs and a carbon isotope discrimination phenotype that
were previously reported using a family based method, and discover
an additional SNP associated with the trait. BAMD is available as
an R-package from http://cran.r-project.org/package=BAMD .

1. Introduction. This work was motivated from a study of the genomics
of loblolly pine, an economically and ecologically important tree species in
the United States. The native range of loblolly pine extends from Maryland,
south to Florida, and west to Texas. Its annual harvest value is approxi-
mately 19 billion dollars [McKeever and Howard (1996)]. The pine species
in the southern states produces 58% of the timber in the US and 15.8% of
the world’s timber [Wear and Greis (2002)]. We are interested in discovering
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the relationship between phenotypic traits and genes underlying complex
traits in loblolly pine, so we can understand their evolution and apply that
knowledge to genetic improvement. We are especially interested in SNPs
associated with disease resistance and response to water deficit.

Large genomic data sets typically contain missing data. Missing data cre-
ate imbalance and complicate calculations required for statistical analyses.
There are various approaches to dealing with missing data. Eliminating cases
is one approach, but undesirable in large data sets where most or all cases
have missing data. Imputation is more commonly used [Huisman (2000), Dai
et al. (2006)]. Single imputation using haplotype data [Marchini et al. (2007),
Su et al. (2008), Sun and Kardia (2008), Szatkiewicz et al. (2008)], either
implicitly or explicitly, relies on linkage disequilibrium among markers, or
information that can be extracted from other data sets [Stephens, Smith and
Donnelly (2001), Scheet and Stephens (2006), Servin and Stephens (2007)].
However, there is no reference genome sequence for loblolly pine, so it is not
possible to impute missing SNPs from flanking SNPs.

It is well established that single imputation approaches, while fast, can
give biased parameter estimates [Greenland and Finkle (1995); see also
van der Heijden et al. (2006)]. The best approach is to average over the
missing data using the formal missing data distribution, rather than to im-
pute a single value based on a possibly ad hoc scheme. This is appealing
because it addresses uncertainty and variability in the missing data [Lit-
tle and Rubin (2002), Dai et al. (2006)], particularly in species or genomic
regions where LD decays rapidly and thus adjacent SNPs are not neces-
sarily correlated [Flint-Garcia, Thornsberry and Buckler (2003), Neale and
Ingvarsson (2008)]. However, multiple imputation is so computationally in-
tensive that, prior to the present work, it has not been feasible for larger
genomic data sets.

Several approaches have been developed recently to enable association
testing. Association testing identifies relationships between polymorphisms
in DNA sequence (most commonly Single Nucleotide Polymorphisms, or
SNPs) and phenotypes, as a strategy to identify the genes that control traits
[Flint-Garcia, Thornsberry and Buckler (2003), Hirschhorn and Daly (2005),
Balding (2006)]. For family-based analysis, Chen and Abecasis (2007) used
an identity by descent parameter to measure correlation among SNPs, and
a kinship coefficient to model the correlation among siblings to develop the
Quantitative Transmission Disequilibrium Test (QTDT). Other approaches
allow association testing in populations with recent mating or historical
(unrecorded) mating, or combinations. TASSEL fits a mixed model to de-
tect associations while taking into account both “coarse-scale” relatedness
based on population structure [Pritchard, Stephens and Donnelly (2000)]
and “fine-scale” relatedness based on a matrix of kinship coefficients [Yu
et al. (2006)]. Our approach for family based analyses accomplishes the same
goal by employing the numerator relationship matrix [Henderson (1976); see
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also Quaas (1976)], which avoids complications arising from nonpositive def-
inite matrices derived from complex interrelationships. A desirable feature
of any association testing approach is simultaneous solution of multiple SNP
effects to prevent upward bias in parameter estimates, and to appropriately
model the underlying biological system in which many SNPs act in concert
to condition the phenotype. Such an approach is developed in Wilson et al.
(2010), who introduce Multilevel Inference for SNP Association (MISA),
using imputation from fastPHASE [Stephens, Smith and Donnelly (2001),
Servin and Stephens (2007)] and a Bayes-driven stochastic search method
to find good models.

In this paper we introduce BAMD (Bayesian Association with Missing
Data) and show that computation time required for formal multiple im-
putation can be reduced without sacrificing accuracy, establishing the fea-
sibility of using BAMD on genomic data sets. Our approach is to use all
available data in imputation of missing SNPs. This approach is motivated
statistically; we use all of the available information to estimate SNP effects
on phenotypes, across all possible values for missing SNPs. Prior knowledge
such as pedigree structure may be used as constraints. Simulations show
that BAMD detects SNP effects efficiently.

On the loblolly pine genomic data, we used a series of tag SNPs [González-
Mart́ınez et al. (2008)]. Tag SNPs are markers that are relatively evenly
dispersed throughout the genome, and are used to survey chromosomal seg-
ments for genes that underly phenotypes. One assessment of the performance
of BAMD was to use it on this same population, genotype, and phenotype
data, in which it had been found that three of the tag SNPs were signif-
icantly associated with carbon isotope discrimination [a measure of water
use efficiency, González-Mart́ınez et al. (2008)]. BAMD detected a fifth tag
SNP in addition to the other four tag SNPs that were detected using QTDT
in that previous work.

An additional feature of BAMD is the variable selector. The variable
selector searches model space for the most parsimonious set of SNPs that
explain the phenotype. This feature is designed for unsupervised discovery
of interactions among SNPs, and should find application in situations where
epistatic interactions are important determinants of phenotype.

The remainder of the paper is organized as follows. In Section 2 we de-
scribe the model and the estimation of parameters, and Section 3 describes
the variable selector, including the use of Bayes factors, the stochastic search,
and computational strategies. In Section 4.1, we investigate the amount of
missing data that BAMD can handle through a simulation. Section 4.2 com-
pares our procedure to BIMBAM, a popular genomics program that does
both imputation and variable selection. Section 5 analyzes the loblolly pine
data, where we discover a previously undiscovered SNP. Section 6 contains
a concluding discussion. Computational implementation is described in the
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Appendix, and the accompanying theorems and proofs can be found in the
online Supplemental Information [Li et al. (2011)].

2. Model. Our method can be viewed as a two-stage procedure. The
first stage involves identifying individual SNPs that have significant effects
on the phenotype, with all SNPs in the model. The second stage searches
for the best subset of SNPs, from those picked out in the first stage. First
we describe the model.

2.1. Conceptual framework for BAMD. The response is assumed to be
continuous, following a normal distribution. The data set has fully observed
family covariates for all the observations. Missing values are imputed only
among SNPs, although the method can be modified to impute missing val-
ues for phenotypes as well. We focus on testing the relationship between
the response and the SNPs. We assume only additive effects among SNPs,
although the method can be adapted to quantifying additive and dominance
effects of SNPs.

We begin with the linear mixed model

Y=Xβ+Zγ + ε,(1)

where Yn×1 is the phenotypic trait, Xn×p is the design matrix for family
covariates, βp×1 are the coefficients for the family effect, Zn×s is the design
matrix for SNPs (genotypes), γs×1 are the coefficients of the additive effect
for SNPs, and εn×1 ∼N(0, σ2

R). The matrix R is the numerator relation-
ship matrix, describing the degree of kinship between different individuals.
(Details on the calculation of R are given in Appendix A.)

For our application here (carbon isotope data), we have n = 1000 and
s= 450. In another application of BAMD [Quesada et al. (2010)], they used
n = 450 and s = 400. In both cases the number of covariates, p, was less
than 6. With a fully Bayesian implementation, it is possible to adapt BAMD
to the p≫ n case.

Each row of the matrix Z, Zi, i= 1, . . . , n, corresponds to the SNP geno-
type information of one individual, which can be homozygous for either
of the two nucleotides (−1,1) or heterozygous (0). Some of this information
may be missing, and we write Zi = (Zobs

i ,Zmiss
i ), where Zobs

i are the observed
genotypes for the ith individual, and Z

miss
i are the missing genotypes. Note

two aspects of this framework:

(1) The values of Zmiss
i are not observed. Thus, if ∗ denotes one missing

SNP, a possible Zi is Zi = (1,∗,0,0,∗,∗,1).
(2) Individuals are likely to have missing data at different SNP loci. So

for 2 different individuals, we might have

Zi = (1,∗,0,0,∗,∗,1) and Zi′ = (∗,∗,1,0,0,1,1).

For a Bayesian model, we want to put prior distributions on the parame-
ters. We put a noninformative uniform prior for β, which essentially leads us
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to least squares estimation. For γ, we use the normal prior γ ∼N(0, σ2φ2
Is).

Here φ2 is a scale parameter for the variance and σ2 is the variance param-
eter. For σ2 and φ2, we use inverted Gamma priors: σ2 ∼ IG(a, b) and φ2 ∼
IG(c, d), where IG stands for the inverted Gamma distribution, and a, b, c,
and d are constants used in the priors. For specified a, b, c, d, the resulting
posterior distribution is proper [see Hobert and Casella (1996)].

We consider the case of tag SNP markers in the loblolly pine genome with
no significant linkage disequilibrium between them [González-Mart́ınez et al.
(2006)]. Therefore, noninformative priors are used for the missing SNPs,
meaning that missing data have equal probability of any allelic state. As
information increases due to higher marker density, or parental information,
or allele frequency in the population, missing data imputation could be
constrained accordingly.

We assume that missing SNPs in the data set are Missing at Random
(MAR). In particular, let the value of the random variable T denote whether Z
is observed, with T = 1 if the value is observed and T = 0 if it is missing.
If ξ is the parameter of the missing mechanism, then, under the model (1),
the MAR assumption results in

P (T |Y,Zobs,Zmiss, ξ) = P (T |Y,Zobs, ξ).

So the distribution of the missing SNP could depend on the observed SNPs,
and the observed phenotypes. Of course, this does not require such a depen-
dence, it only allows for it.

Other assumptions about missing data mechanisms are less common than
MAR. The strongest assumption, and the most difficult to justify, is Missing
Completely at Random (MCAR). Under this assumption, the missing data
distribution is independent of all observed data, the complete cases can be
regarded as sub-samples from the population, and statistical inference with
regard to the complete cases is totally valid. Under the model (1), the MCAR
assumption can be expressed as

P (T |Y,Zobs,Zmiss, ξ) = P (T |ξ).

MCAR is regarded as unrealistic and, in most cases, it is not satisfied. It is
typically not used to model missing data, and we do not use it here.

Conditional on the MAR assumption, we impute the missing SNPs based
on the correlation between SNPs within individuals and between individuals,
and use the phenotypic trait information to improve the power of imputa-
tion.

In this model, the covariance matrix,R, models the covariance between in-
dividuals within the same family, and covariance between individuals across
families. Phenotypic traits of related individuals are alike because they share
some proportion of SNPs, and genotypes of relatives are similar because they
share the same alleles passed on from parents. Various methods can be used
to calculate the relationship matrix, such as using a co-ancestry matrix,
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a kinship matrix, etc. The basic idea is to calculate the probability that
2 individuals share SNPs that are identical by descent. Some methods use
pairwise calculations and thus do not guarantee a positive definite relation-
ship matrix, which is unsatisfactory when the relationship matrix is used
as covariance matrix. We use the recursive calculation method of Hender-
son (1976), which gives a numerator relationship matrix that quantifies the
probability of sharing a SNP from the same ancestry, based on known family
pedigree and parent pedigree in the population. So by calculating this rela-
tionship matrix we obtain a probability of 0.5 for the case that two siblings
are within the same control-pollinated family and therefore share the same
copy of a SNP, or a 0.25 probability if the two siblings only have one parent
in common. For the complex pedigree that we analyze here, there are a total
of 9 categories of relatedness.

2.2. Estimation of parameters. The model (1) along with the prior spec-
ification allows the use of a Gibbs sampler to estimate parameters. We can
iteratively sample from the the full conditionals, given by

β ∼N((X ′R−1X)−1X ′R−1(Y −Zγ), σ2(X ′R−1X)−1),

γ ∼N

((
Z
′R−1

Z+
I

φ2

)
−1

Z
′R−1(Y −Xβ), σ2

(
Z
′R−1

Z+
I

φ2

)
−1)

,

σ2 ∼
1

(σ2)n/2+s/2+a+1
(2)

× exp

(
−
(Y −Xβ −Zγ)′R−1(Y −Xβ −Zγ) + |γ|2/φ2 + 2b

2σ2

)
,

φ2 ∼
1

(φ2)s/2+c+1
exp−

(|γ|2/σ2 +2d)

2φ2
.

The SNPs are contained in the Zmatrix, which includes both the observed
SNPs and missing SNPs, and we use the Gibbs sampler to impute the missing
SNPs. The Gibbs sampler for the missing data simulates the samples of Zm

i
according to the distribution of each missing SNP conditional on the rest of
observed SNPs and sampled missing SNPs. For a particular SNP Zm

ij , the
jth missing SNP in the ith individual, the conditional distribution given the
rest of the vector Zm

i(−j) and all other parameters in the model is

P (Zm
ij = c|Zm

i(−j))
(3)

=
exp(−(Yi −Xiβ −Zo

i γ
o
i −Zm

i(−j)γ
m
i(−j) − cγmij )

2/(2σ2))
∑3

ℓ=1 exp(−(Yi −Xiβ −Zo
i γ

o
i −Zm

i(−j)γ
m
i(−j) − cℓγ

m
ij )

2/(2σ2))
.

The value c is the genotype currently being considered for that missing SNP,
and cl represents any one of the possible genotypes for the SNP. Notice there
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are only 3 terms in the denominator sum for each SNP and this is a key
point why Gibbs sampling is computationally feasible for our situation with
many SNPs and many observations. We also note that the EM algorithm,
which provides an alternative method of parameter estimation, can require
a prohibitive amount of computation. See Appendix B.

3. Variable selection. The Gibbs sampler will estimate the full set of
parameters in model (1). However, it is often the case that a small set of
SNPs will explain a sufficient proportion of the variability that might also be
biologically meaningful. To this end, along with the Gibbs sampler, we run
a second Markov chain that searches through the space of available models,
looking for the one with the largest Bayes factor.

A model is specified by a vector δ of length s, whose entries are either 0
or 1. The γ vector of model (1) becomes γδ = γ ⋆ δ, where “⋆” denotes
componentwise multiplication. The corresponding columns of Z are deleted,
giving Zδ , and the reduced model is

Y =Xβ+Zδγδ + ε.(4)

Thus, the components of γi corresponding to δi = 0 are excluded from
the model. Correspondingly, let θ denote the random vector consisting of
all parameters in the full model, so θ := (β,γ, σ2, φ2,Z) and, naturally,
θδ := (β,γδ, σ

2, φ2,Zδ). Let mδ, πδ, and pδ denote the marginal distribution
of Y, the prior distribution on θδ , and the conditional distribution of Y,
respectively. We also write, if needed, θ = (θδ,θδc), the latter containing the
remaining parameters not specified by δ. For the full model containing all
parameters we omit the subscript.

3.1. Searching with Bayes factors. In order to compare models, we shall
use the Bayes factor comparing each candidate model to the full model,
given by

BFδ =
mδ(Y)

m(Y)
=

∫
πδ(θδ)pδ(Y|θδ)dθδ∫

π(θ)p(Y|θ)dθ
,(5)

where p denotes the full model. We now can compare models δ and δ′ through
their Bayes factors, as a larger Bayes factor corresponds to a model that
explains more variability, when compared to the full model. These pair-
wise comparisons result in a consistent model selector [O’Hagan and Forster
(2004)], and have an advantage over BIC, which is overly biased toward
smaller models [Casella et al. (2009)].

We now set up a Metropolis–Hastings (MH) search that has target dis-
tribution proportional to the the Bayes factor, BFδ . Given that we are at
model δ, we choose a candidate δ′ from a random walk (choose one com-
ponent at random and switch 0→ 1 or 1→ 0) with probability a and, with
probability 1− a, we do an independent jump. This is a symmetric candi-
date, and δ′ is accepted with probability min{1,BFδ′/BFδ}.
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3.2. Estimating the Bayes factor. Calculating the Bayes factor in (5)
requires knowing the Z matrix, which is not the case with missing data.
Thus, to calculate the Bayes factor, we need to use the imputed Z matrix
from the Gibbs sampler. Thus, we run two Markov chains simultaneously:

(1) A Gibbs sampler on the full model, to impute the missing data in Z

and estimate all parameters.
(2) A Metropolis–Hastings algorithm on δ, in model space, to find the

best model. This algorithm uses an estimated Bayes factor based on the
current values in the Gibbs chain.

The aim is to search for δ∗ such that δ∗ = argmaxδ BFδ, but since we are not
able to compute BFδ exactly for any given δ, we estimate it using samples
from the Gibbs sampler, which yields a strongly consistent estimator. We
then use the estimated Bayes factor as the target in a stochastic search
driven by a Metropolis–Hastings algorithm.

A typical method of estimating a quantity such as (5) would be to use
bridge sampling [Meng and Wong (1996)]. However, since the numerator
and denominator have different dimensions (but the numerator model is
always nested in the denominator model), ordinary bridge sampling will not
work. A variation [Chen and Shao (1997)] which accounts for this introduces
a weight function to handle the dimension difference. We summarize this
strategy in the following proposition.

Proposition 1. Referring to (5), let g(θ) be such that
∫
p(Y|θ)g(θ)dθδc =

pδ(Y|θδ). Then if expectation is taken with respect to the posterior distribu-
tion π(θ|Y),

E

[
πδ(θδ)g(θ)

π(θ)

]
=BFδ.

One particular g function is defined as follows. Let Pδc := Zδc(Z
′

δcZδc)
−1

Z
′

δc ,
Cδ := (Y−Xβ−Zδγδ), and

g(θ) = (2πσ2)−dc/2|Z′

δcZδc |
1/2 × exp

(
−

1

2σ2
C

′

δPδcCδ

)
,(6)

which leads to the strongly consistent Bayes factor estimator

B̂Fδ =
1

N

N∑

i=1

(φ2(i))d
c/2|Z

(i)′
δc Z

(i)
δc |

1/2

(7)

× exp

(
−

1

2σ2(i)

(
|γ

(i)
δc |

2

φ2(i)
+C

(i)′
δ P

(i)
δc C

(i)
δ

))
.

Details and proofs of the results given here are in Supplemental Information,
Section D [Li et al. (2011)].
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3.3. Increasing computational speed. For data sets with large numbers
of SNPs and phenotypes, the slow computation speed of the Gibbs sampler
can be a major problem. We have identified two bottlenecks. First, if the
number of SNPs is increased, then for each iteration, the number of missing
SNPs to be updated will also increase. Second, in the iterations of the Gibbs
sampler, the generation of γ involves inverting the matrix Z

′R−1
Z+(1/φ2)I

each time, as the Z matrix changes at each iteration. We address these in
the following sections.

3.3.1. SNP updating. To speed up calculation, we show that instead of
updating all the SNPs at each iteration, updating only one column of SNPs
(that is, one SNP updated for all observations) at each cycle will still con-
serve the target stationary distribution and ergodicity. As the SNP has only
three possible values, this change should not have a great effect on the mix-
ing.

A consequence of this result is that instead of updating tens or hun-
dreds of SNPs in one cycle, we need to update just one SNP in each cycle.
This single-SNP updating will dramatically speed up computation, espe-
cially when there are large numbers of SNPs, or large numbers of obser-
vations, in the data. (See in Supplemental Information [Li et al. (2011)],
Section E.)

3.3.2. Matrix inverse updating. In the iterations of the Gibbs sampler,
a major bottleneck is the generation of γ, since it involves inverting the ma-
trix Z

′R−1
Z+(1/φ2)I each time, as the Z matrix changes at each iteration.

Two modifications will speed up this calculation, each based on Woodbury’s
formula [see Hager (1989) and Appendix C].

By Woodbury’s formula, if the matrices A and I − V A−1U are both in-
vertible, then

(A+UV )−1 =A−1 −A−1U(I + V A−1U)−1V A−1.(8)

If U and V are vectors, the inverse takes a particularly nice form:

(A+ uv′)−1 =A−1 −
A−1uv′A−1

(1 + v′A−1u)
,(9)

so if we have A−1, no further inversion is needed.
First, relating to the generation of γ in (2), (8) leads to the identity

(
Z
′R−1

Z+
1

φ2
I

)
−1

= φ2

[
I −Z

′

(
1

φ2
R+ZZ

′

)
−1

Z

]
,(10)

where the left-hand side involves the inversion of an s× s matrix, and the
right-hand side involves the inversion of an n × n matrix. Thus, we can
always choose to invert the smaller matrix.
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Next we look at inverting Z′R−1
Z+(1/φ2)I [a similar argument can be de-

veloped for the right-hand side of (10)]. Suppose, at the current iteration, we
have A0 = Z

′

0R
−1

Z0 +(1/φ2
0)I , and we update to A1 = Z

′

1R
−1

Z1 +(1/φ2
1)I .

Because we update one column of SNPs at each iteration, we have Z1 =
Z0 +∆, where ∆ is a matrix of all 0’s, except for one column. This column
contains the differences of the respective columns from Z1 and Z0. Thus,
∆ = (0 · · ·00δ0 · · · 0), and

A1 =A0 +∆′R−1
Z0 +Z

′

0R
−1∆+∆′R−1∆+

(
1

φ2
1

−
1

φ2
0

)
I.

The three matrices on the right-hand side involving ∆ are all rank one ma-
trices, that is, they are of the form uv′ for column vectors u and v. Moreover,
we can write I =

∑s
j=1 eje

′

j , where ej is a column vector of zeros with a 1 in

the jth position. We can then apply (9) three times to get the inverse of A1.
This calculation involves only matrix by vector multiplications for the mid-
dle three terms on the right-hand side. For the ej vectors, the multiplications
reduce to an element extraction. (See Appendix C for details.)

4. Empirical analyses of BAMD.

4.1. Percentage of missingness handled. In this subsection we apply
BAMD to simulated data in order to assess the procedure’s performance
as we increase the percentage of missing data in the Z matrix. We sim-
ulated a data set with six families, 20 observations in each family and 5
SNPs per observation. The five SNPs are independent of each other. The six
families are also independent, so that the parents of the six families are not
related and individuals across families are independent. On the other hand,
the individuals within each family share the same parents; this relationship
is captured via the numerator relationship matrix. From this data set, four
data sets with different percentages of missing values, 5%, 10%, 15%, and
20%, were randomly derived. The family effects, β, which were used to sim-
ulate the data, are listed in Table 1. The true SNP effects (additive and
dominant effects) used to generate the data are listed in Table 2. When sim-
ulating, we let the variance parameter σ2 = 1. Our proposed methodology
was applied to analyze the data without missing values and also to the new
data containing missing values.

Note that for this small simulation, we used a parameterization differ-
ent from the {−1,0,1} coding that we use for larger numbers of SNPs. In
this example, each SNP effect is represented as (γa, γd)—the additive and
dominant effects of the SNP genotypes.

Tables 1 and 2 summarize the parameter estimation capabilities of BAMD
for family and SNP effects. All calculations were based on samples obtained
after an initial burn-in of 20,000 iterations of BAMD. The results show
that when the percentage of missing values is less than 15%, the proposed
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Table 1

The true family effects for the simulated data set are given in the first row of the table.
The remaining rows indicate the estimated means returned from running BAMD on the
data sets derived by setting different degrees of missing values in the SNP matrix of the

simulated data set

β1 β2 β3 β4 β5 β6

Actual value 15 20 25 30 35 40

0% missing 15.45 20.65 25.48 29.84 34.76 40.40
5% missing 15.16 20.74 25.46 28.29 33.43 38.62
10% missing 16.18 21.38 25.65 30.71 35.86 40.81
15% missing 15.45 19.63 24.59 30.18 35.38 40.18
20% missing 14.87 20.18 24.68 30.08 34.88 40.13

methodology yields good estimates for the parameters of direct interest.
When the percentage of missing values is greater than 15%, we should be
wary of interpreting the results. For example, the true dominant effect for
SNP 3 is 0, but the estimate is 1.32 when the percentage of missing values is
20%. Note that the estimate in this case is accurate when the percentage of
missing values is less than 10%. We believe the discrepancy arises because
one category of genotype for SNP 3 has substantially higher probability
and it overpowers the other two categories. When the percentage of missing
values increases, the dominated genotype category has only a small chance
to be well represented and thus may have unreliable estimates.

Our ultimate goal is to identify significant SNPs from the candidate SNPs.
Since we believe that imputation is a tool to obtain better estimates of
the parameters, we are not particularly interested in recovering the actual
imputed values for the missing SNPs. Nonetheless, the simulation results in
Table 3 show that when the probability of one genotype for a certain SNP is
dominantly high, the imputed SNPs are correctly identified with probability

Table 2

The true additive and dominant effects for each SNP in the simulated data set are given
in the first row of the table. The remaining rows indicate the estimated SNP effects
returned from running BAMD on the data sets derived by setting different degrees of

missing values in the SNP matrix of the simulated data set

SNP1:a SNP1:d SNP2:a SNP2:d SNP3:a SNP3:d SNP4:a SNP4:d SNP5:a SNP5:d

Actual SNP −2.00 1.00 1.00 −1.00 3.00 0.00 2.50 0.10 0.30 3.00

0% missing −2.16 1.00 0.82 −0.75 2.59 0.30 2.43 0.60 −0.04 2.59

5% missing −1.86 1.14 1.16 −1.05 3.00 0.05 2.21 −0.20 0.48 3.00

10% missing −1.95 0.77 1.18 −1.52 2.74 0.18 2.51 0.13 0.00 2.74

15% missing −1.80 0.78 0.99 −0.96 2.48 0.67 2.43 0.47 0.73 2.48

20% missing −2.08 1.29 1.21 −0.76 3.10 1.32 1.87 −0.20 0.47 3.10
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Table 3

The true genotype probabilities for the SNPs used to generate the simulated data set are
given in the first 3 rows. The final row identifies the frequency with which the true

genotype was imputed when running BAMD with 10% of missing data in the SNP matrix

SNP1 SNP2 SNP3 SNP4 SNP5

a = −2 a = 1 a = 3 a = 2.5 a = 0.3

d= 1 d= −1 d = 0.5 d = 0.1 d= 3

Actual SNP

Pr(GG) 0.1309 0.3012 0.8181 0.7719 0.3983

Pr(GC) 0.5307 0.3875 0.0796 0.1950 0.5425

Pr(CC) 0.3384 0.3113 0.1023 0.0331 0.0592

Frequency of correct 0.5500 0.5479 0.6337 0.8508 0.6516

imputation

ranging from 0.55–0.85, being correctly imputed more frequently than the
other genotypes distributions (see SNPs 3 and 4).

4.2. Comparison with BIMBAM. Here we compare our multiple-imputa-
tion missing data algorithm with a program called BIMBAM [Servin and
Stephens (2007), http://stephenslab.uchicago.edu/software.html],
which is a popular program among geneticists for association genetics and
variable selection with missing data (using single imputation).

BAMD and BIMBAM both propose a two-stage procedure that involves
first finding a set of significant SNPs, and then running these significant
SNPs through a variable selection procedure that finds the best subset of
the significant SNPs that describes the variation in the phenotype. Hence,
in this study, BIMBAM and BAMD are assessed through the SNPs they
find in the first stage and through the final model they put forth.

For the evaluation, we simulated data from the model given in equa-
tion (1). The dimensions of the model were fixed to be n = 50, p = 3, and
s = 25 throughout. The three families comprised 16, 17, and 17 individu-
als, respectively. In addition, the X and β matrices were fixed. Entries in
the Z matrix took three possible values, mirroring the real-life situation,
when they would represent genotypes. Interest lies in discovering the signif-
icant coordinates of the γ vector (which corresponds to SNP effects), in the
presence of missing values in the Z matrix.

In the simulation study, three factors—percentage of missing values in Z,
magnitude of γ effects, and the degree of correlation within a family—were
varied across different levels. When a particular factor was being investi-
gated, the others were held constant. Here in the main paper, we only present
two specific comparisons. The remainder of the results from the simulation
study can be found in Supplemental Information [Li et al. (2011)], Section F.
In running the study, we simulated several data sets for each case, and ob-

http://stephenslab.uchicago.edu/software.html


SIMULTANEOUS SNP IDENTIFICATION 13

served very consistent results. Hence, in presenting our results, we focus on
a single representative data set in each case.

In both of the studies presented here, the γ vector was generated from
a multivariate normal, and any values less than 3 in absolute value were set
to 0. After generating the Y responses, 20% of the entries in the Z matrix
were set to missing before being passed to BAMD and BIMBAM.

The first comparison measures the performance of the procedures when
an equicorrelation structure (ρ was set to be 0.8) exists within each of the
three families. The second comparison presented here aims to see if BAMD
turns up many false positives. The γ vector was generated in the same way
as earlier, but only the coordinates with the five largest values were kept.
The rest were set to 0. In addition, the individuals were assumed to be
uncorrelated, that is, R= In.

The results for each comparison are summarized through two diagrams.
The first (the upper panels in Figures 1 and 2) display the SNPs that BAMD
and BIMBAM found to be significant in the first stage. The lower panels in
Figures 1 and 2 display the output from the variable selection procedure.

Each figure shows that BAMD significantly outperforms BIMBAM. In the
first example, BIMBAM found only one of the 14 significant SNPs, while
BAMD found six. In the second example, there were five significant SNPs,
and BIMBAM only found one again, while BAMD found four of them.

5. Analysis of the loblolly pine data. Carbon isotope discrimination (CID)
is a time-integrated trait measure of water use efficiency. González-Mart́ınez
et al. (2008) used the family-based approach of the Quantitative Transmis-
sion Disequilibrium Test QTDT to detect SNPs associated with CID. We
utilized the family structure of this population [also described in Kayihan
et al. (2005)] in the design matrix in our model. Of the 61 control-pollinated
families measured for CID, each had approximately 15 offspring that were
clonally propagated by rooted cuttings to generate the ramets (genetically
identical replicates). Each genotype has two ramets, sampled from each of
two testing sites at Cuthbert, GA and Palatka, FL. Our approach enables
us to utilize the family pedigree and parental information to recover missing
SNP genotypes. With informative priors, we infer the progeny SNP geno-
type through Mendelian randomization [Falconer and Macay (1996)]. With
uninformative priors, we assume SNPs are missing at random and assign
equal probability for each genotype class for missing SNPs.

All SNPs are simultaneously tested under our association model. The
Gibbs sampler ran for 50,000 iterations. The first 10,000 iterations were
burn-in, after which we thinned the chain every 4 iterations; the autocorre-
lation reduced significantly after thinning (data not shown). Thus, we have
a total of 10,000 samples for each chain for our statistics, and we then ap-
plied the variable selector on the four SNPs that were found when using the
informative prior.
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Fig. 1. In the upper panel, triangles and squares represent the true coordinates of the γ

vector, where the true nonzero SNPs in the model were (1), (2), (4), (5), (8), (9), (10),
(11), (16), (17), (18), (22), (24), and (25). A solid triangle means that BIMBAM found
that SNP to be significant at α= 0.05 level, the remaining SNPs are squares. Horizontal
lines represent highest posterior density intervals returned by BAMD. Solid lines mean the
95% HPD interval found that SNP to be significant. Thus, in the SNP-discovery stage,
BIMBAM found SNPs (1), (5), (8), and (25) to be significantly nonzero while BAMD
picked out SNPs (2), (4), (5), (8), (11), (18), and (25). In the lower panel, the gray
numbers are SNPs that were exactly 0 in the true model, and the black numbers are SNPs
with nonzero effects. The circled numbers are the SNPs that were in the best model found
by the procedure. Thus, the best model found by BIMBAM contains only SNP (8), whereas
the best model found by BAMD contains SNPs (2), (4), (5), (8), (11), and (25).

We detected significant effects of several SNPs on CID at a 95% Bayesian
confidence interval (Table 4). Using the uninformative prior, we found 3
significant SNPs [(3) ccoaomt s10, (5) ein2 s1, (31) Caf1 s1]. Using the in-
formative prior, we detected 4 SNPs [(5) ein2 s1, (6) cpk3 s5, (29) dhn1 s2,
(31) Caf1 s1] as significant. Note that (6) and (29) are close to significant
using the uninformative prior, and (3) was close to significant using the in-
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Fig. 2. In the upper panel triangles and squares represent the true coordinates of the γ

vector, where the true nonzero SNPs in the model were (9), (10), (17), (22), and (24).
A solid triangle means that BIMBAM found that SNP to be significant at α= 0.05 level,
the remaining SNPs are squares. Horizontal lines represent highest posterior density in-
tervals returned by BAMD. Solid lines mean the 95% HPD interval found that SNP to be
significant. Thus, in the SNP-discovery stage, BIMBAM found SNPs (10), (13), and (22)
to be significantly nonzero while BAMD found SNPs (9), (10), (17), (22), and (24). In
the lower panel, the gray numbers are SNPs that were exactly 0 in the true model, and
the black numbers are SNPs with nonzero effects. The circled numbers are the SNPs that
were in the best model found by the procedure. The best model found by BIMBAM contains
only SNP (22), whereas the best model found by BAMD contains SNPs (9), (10), (17),
and (22).

formative prior. This suggests that for these data, the effect of the prior
information is important. The QTDT test resulted in 4 significant SNPs,
(3), (5), (29), (31), all of which were detected by BAMD which, in addi-
tion, found SNP (6). Moreover, it is important to note that BAMD detected
these SNPs simultaneously, an indication that their collective effect on the
phenotype is being detected.
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Table 4

Significant SNPs from QTDT tests and the results from the BAMD association model,
with 95% confidence intervals

SNP

Informative prior Uninformative prior
95% C.I. 95% C.I. Type‡

(3) caf1 s1∗ (−0.008, 0.110) (0.013, 0.129) Syn

(5) ccoaomt s10∗† (−0.103, −0.012) (−0.097, −0.005) NC(intron)
(6) cpk3 s5 (−0.052, −0.004) (−0.048, 0.001) Syn

(29) dhn1 s2∗† (0.065, 0.113) (0.044, 0.092) NC(3′UTR)

(31) ein2 s1∗† (0.077, 0.142) (0.067, 0.126) NC(3′UTR)

∗ Indicates significant in González-Mart́ınez et al. (2008). Bold type indicates significant
at the 5% level from our association testing, the rest being nonsignificant. † indicates
presence in best model found by variable selector. As indicated in González-Mart́ınez
et al. (2008), there are additional SNPs that are marginally significant at α= 0.1, which
we also detected. ‡: Syn, synonymous SNP; NC, noncoding; UTR, untranslated region.

The use of tag SNPs in a pedigree does not allow for “fine mapping” to
SNP effects [Neale and Ingvarsson (2008), Flint-Garcia, Thornsberry and
Buckler (2003)]. Thus, the effects of these SNPs on carbon isotope discrimi-
nation may reflect the involvement of many linked genes on the phenotype.

We also provide Figures 3 and 4, showing the results for all of the SNPs
in the data set. Figure 3 is based on using uninformative SNP priors, while
Figure 4 uses informative priors. Although there are few differences in the
graphs (showing the strength of the data with respect to the model), we
see that the prior can matter. For example, SNP (3) is significant when the
noninformative prior is used, but not so when we use the informative prior.
The opposite finding holds for SNP (6). Looking at the figures, we see that
the significant intervals only barely cross zero; thus, the inclusion of relevant
prior information can be quite important.

The four SNPs picked out when using the informative prior were (5), (6),
(29), and (31). Due to the small number of variables under consideration, the
variable selector procedure was able to run through all 16 possible models.
The one with the highest Bayes factor was found to contain SNPs (5), (29),
and (31).

6. Discussion. Association testing is being applied to discover relation-
ships among SNPs and complex traits in plants and animals [Flint-Garcia,
Thornsberry and Buckler (2003), Hirschhorn and Daly (2005), Balding (2006),
Zhu et al. (2008)]. Our model was developed specifically for detecting asso-
ciations in loblolly pine data, but can be applied to other species as well.
Here we discuss some features and limitations of the method.
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Fig. 3. 95% Confidence intervals for the 44 SNPs from the carbon isotope data, based on
10,000 Gibbs samples from the BAMD model using uninformative priors (equal probability)
for the missing SNPs. The significant SNPs are those with intervals that do not cross 0,
SNPs (3) caf1, (5) ccoaomt, and (31) ein2.

Multiple imputation. Multiple imputation of missing SNP data is the
best way to ensure unbiased parameter estimates, which is an important
consideration given that SNP effects tend to be small for complex traits
of greatest biological interest, and given that results of association studies
typically motivate more detailed and labor-intensive investigations of how
and why associations were detected.

We used simulation to compare BAMD and BIMBAM for their detec-
tion of “correct” vs. “incorrect” SNPs, and found that BAMD performed
better than BIMBAM. In practice, this advantage of BAMD over BIMBAM
would likely be greatest when missing SNPs are not in LD with nearby SNPs
(or adjacency cannot be determined). This is the case in many species, in-
cluding loblolly pine, in which LD is low and genomic resources such as
high-resolution genomic maps and high-density SNP chips for genome scan-
ning are not as well developed as they are for the human genome. The higher
computational intensity required for formal multiple imputation in BAMD
is a trade-off, however, this has not restricted its practical use in most data
sets. For very large data sets, parallel processing seems a logical next step
in further increasing the computational efficiency of BAMD.
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Fig. 4. 95% Confidence intervals for the 44 SNPs from the carbon isotope data, based
on 10,000 Gibbs samples from the BAMD model using informative priors (Mendelian
randomization) for the missing SNPs. The significant SNPs are those with intervals that
do not cross 0, SNPs (5) ccoaomt, (6) cpk3, (29) dhn1, and (31) ein2.

Family structure. Our method can be applied to family-based associa-
tion populations, populations of unrelated genotypes, or combination pop-
ulations. It can incorporate prior information if known. [The application of
BAMD in Quesada et al. (2010) was to a population of unrelated genotypes,
where significant SNPs related to disease resistance were found.]

Probit models. Although here we assume a continuous response variable,
the method can be adapted to discrete phenotypes using a probit link. For
example, in a case control study, the response would be either case or con-
trol status, and with a probit model we add a latent variable in the Gibbs
sampler.

SNP detection. Although BAMD successfully detected the same sig-
nificant SNPs as were previously detected using the family-based method
QTDT [González-Mart́ınez et al. (2008)], as well as an additional significant
SNP, the BAMD variable selector indicated that a subset of the significant
SNPs was sufficient to explain variation in the phenotype carbon isotope
discrimination. This is a useful tool for biologists because a simultaneous so-
lution for SNP effects enables detection of numerous SNPs that collectively
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explain phenotypes, which in turn enables further biological experiments to
investigate their underlying basis.

However, the candidate SNPs found by BAMD and QTDT cannot nec-
essarily be deemed “correct” or “incorrect” without additional biological
experiments. As such, little more can be stated about the correctness of
SNPs 3, 5, 29, and 31 without validation experiments. In the broader con-
text of association testing, it is relevant to note that the use of QTDT is
limited to families, whereas BAMD and BIMBAM can be used to detect
associations in families as well as populations of unrelated individuals. The
ability to use BAMD and BIMBAM in many different types of populations
is appealing.

Simultaneous vs. genome-wide. Genome-wide association studies are, typ-
ically, marginal processors of the data. That is, each SNP is assessed indi-
vidually for its association, so simultaneous assessment, or epistasis, cannot
be detected. A model such as (1) is assessing the SNPs simultaneously—
that is its strength. But how many SNPs should we expect to be able to
handle in one model? Computational issues aside, if the number of SNPs is
greatly increased, we are then susceptible to the usual regression pitfalls—
multicollinearity being the most prevalent. Thus, we recommend using BAMD
on smaller sets of SNPs that have had some preprocessing. Thus far, BAMD
has been used successfully on a model with 400 SNPs [Quesada et al. (2010)],
and we have tested it on as many as 800 SNPs.

Missing data. The missing data problem is common across all genomics
data sets, so there is broad potential utility of this method. The assumption
of MAR (missing at random), which is reasonable in these contexts, may
bear additional research attention. If there are quality concerns about SNP
data, there are some statistical steps forward, as noted by Wilson et al.
(2010), such as using indicator variables of missingness as predictors. This
approach can even be extended to test if missingness is a heritable trait and,
if so, the MAR assumption is invalid. Next generation sequencing platforms
may generate sufficient data to enable this assumption to be tested and, if
borne out, may motivate placement of priors on SNP calls in certain sequence
contexts.

Last, software to run the Gibbs sampler and variable selector is available
in the R package BAMD.

APPENDIX A: CALCULATING THE NUMERATOR
RELATIONSHIP MATRIX

The algorithm is due to Henderson (1976) and Quaas (1976). The indi-
viduals within 61 families and the parents for the 61 families are ordered
together such that the first 1, . . . , a subjects are unrelated and are used as
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a “base” population. Let the total number of subjects within families and
parents of the 61 families be n, and we will get a numerator relationship ma-
trix with dimension n×n. As the first a subjects (being part of the parents
of the 61 families ) are unrelated, the upper left submatrix with dimension
a×a of the numerator relationship matrix is identity matrix I . This identity
submatrix will be expanded iteratively until it reaches to dimension n× n.

As we know the sub-numerator relationship matrix for the first unrelated a
subjects is the identity, next we will give the details how to calculate the
remaining cells of the numerator relationship matrix for the related subjects.
Consider the jth and the ith subject from the above ordered subjects:

(1) If both parents of the jth individual are known, say, g and h, then

Rji =Rij = 0.5(Rig +Rih), i= 1, . . . , j − 1;

Rjj = 1+ 0.5Rgh,

where Rji is the cell of the numerator relationship matrix in the jth row
and ith column.

(2) If only one parent is known for the jth subject, say, it is g, then

Rji =Rij = 0.5Rig, i= 1, . . . , j − 1;

Rjj = 1.

(3) If neither parent is known for the jth subject,

Rji =Rij = 0, i= 1, . . . , j − 1;

Rjj = 1.

For the loblolly pine data, we have 44 pines acting as grandparents and they
produce 61 pine families. The 61 families contains 888 individual pine trees
all together, also called clones. The phenotypic responses are taken from the
individual clones. So our interest is in calculating the relationship matrix
for the 888 clones and it would have a dimension 888 × 888. According to
Henderson’s method, we ordered the 44 grandparent pines and 888 individ-
ual pines together such that the first a pines are not related. Starting from
the (a+1)th pine, we applied the above iteration calculation algorithm, and
in the end had a relationship matrix with dimension 932× 932 for all the
grandparent pines and all individual clones. We took a submatrix from the
right bottom of the previous numerator relationship matrix with dimension
888×888 and it is the numerator relationship matrix we used in the loblolly
pine data analysis.

APPENDIX B: ESTIMATION WITH THE EM ALGORITHM

B.1. Missing data. The EM algorithm begins by building the complete
data likelihood, which is the likelihood function that would be used if the
missing data were observed. When we fill in the missing data we write Z∗

i =
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(Zo
i ,Z

m
i ), and the complete data are (Y,Z∗) with likelihood function

LC ∝
∏

i∈I0

exp

(
−

1

2σ2
(Yi −Xiβ −Ziγ)

2

)

(11)

×
∏

i∈IM

exp

(
−

1

2σ2
(Yi −Xiβ −Z∗

i γ)
2

)
,

where Io indexes those individuals with complete SNP data, and IM indexes
those individuals with missing SNP information.

The observed data likelihood, which is the function that we eventually use
to estimate the parameters, must be summed over all possible values of the
missing data. So we have

Lo ∝
1

(2πσ2)n/2

∏

i∈I0

exp

(
−

1

2σ2
(Yi −Xiβ −Ziγ)

2

)

×
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∑

Z∗
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exp

(
−

1
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(Yi −Xiβ −Z∗

i γ)
2

)
.

The distribution of the missing data Z∗

i is given by the ratio of LC/Lo:

P (Z∗

i ) =
exp(−(Yi −Xiβ −Z∗

i γ)
2/(2σ2))∑

Z∗
i
exp(−(Yi −Xiβ −Z∗

i γ)
2/(2σ2))

,(12)

where the sum in the denominator is over all possible realizations of Z∗

i .
This is a discrete distribution on the missing SNP data for each individual.
To understand it, look at one individual.

Suppose that there are g possible genotypes (typically g = 2 or 3) and
individual i has missing data on k SNPs. So the data for individual i is
Zi = (Zo,Zm), where Zm has k elements, each of which could be one of g
classes. For example, if g = 3 and k = 7, then Zm can take values in the
following:

SNP
∗ ∗

Genotype ∗ ∗ ∗
∗ ∗

where the ∗ show one possible value of the Zm
i . For the example, there

are 37 = 2187 possible values for Zm
i . In a real data set this could grow

out of hand. For example, if there were 12 missing SNPs, then there are
531,441 possible values for Zm

i ; with 20 missing SNPs the number grows to
3,486,784,401 (3.5 billion).

B.2. An EM algorithm. To the expected value of the log of the complete
data likelihood (11), we only deal with the second term (with the missing
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data). This expected value does not change the piece with no missing data,
but does change the second piece. Standard calculations give

E

(
1

2σ2
(Yi −Xiβ −Z∗

i γ)
2

)
=

1

2σ2
(Yi −Xiβ −E(Z∗

i )γ)
2 +Var(Z∗

i γ),

where

E(Z∗

i ) = (Zo
i ,E(Z

m
i )) and Var(Z∗

i γ) = Var(Zm
i γmi ).(13)

If we define

Yn×1 =




Y1

Y2
...
Yn


 , Xn×p =




X1

X2
...

Xn


 , Zn×s =




(Zo
1 ,E(Z

m
1 ))

(Zo
2 ,E(Z

m
2 ))

...
(Zo

n,E(Z
m
n ))


 ,

the expected complete data log likelihood is

E logLC =−
n

2
logσ2 −

1

2σ2
|Y −Xβ −Zγ|2 −

1

2σ2
γ′VZγ,(14)

where VZi
is the variance–covariance matrix of the vector Zi with elements

given by

VZijj′
=

{
0, if either Zij or Zij′ is observed,

Cov(Zij ,Zij′), if neither Zij nor Zij′ is observed,

and VZ =
∑

i∈IM
VZi

. Standard calculus will show that the MLEs from (14)
are given by

β̂ = (X ′X)−1X ′(Y −Zγ̂),

γ̂ = (Z′
Z− VZ)

−1
Z
′(I −H)Y,(15)

σ̂2 =
1

n
(|Y −Xβ̂ −Zγ̂|2 + γ̂′VZ γ̂).

The algorithm now iterates between (12), (13), and (15) until convergence.

B.3. Implementation. To implement the EM algorithm, we must be able
to either:

(1) calculate the expectation and variance in (13), or
(2) generate a random sample from (12) and calculate the terms in (13)

by simulation.

The first option is impossible and the second is computationally intensive,
but the only way.

Going back to (12), note that this is the distribution of the vector of
missing values for individual i. If the data are Z∗

i = (Zo
i ,Z

m
i ), we are only
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concerned with Zm
i = (Zm

i1 , . . . ,Z
m
ik ), and for c= (c1, . . . , ck),

P (Zm
i = c0) =

exp(−(Yi −Xiβ −Zo
i γ

o
i − c0γ

m
i )2/(2σ2))∑

all c
exp(−(Yi −Xiβ −Zo

i γ
o
i − cγmi )2/(2σ2))

,

where the sum in the denominator can easily have over 1 billion terms.
A possible alternative is to use a Gibbs sampler to simulate the distribu-

tion of Zm
i by calculating the distribution of each element conditional on the

rest of the vector. For a particular element Zm
ij , the conditional distribution

given the rest of the vector Zm
i(−j) is given in (3). So to produce a sample

of Zm
i , we loop through a Gibbs sampler.

Unfortunately, there may be problems with this algorithm in that it may
still be too computationally intensive. The Gibbs samplers (2) and (3) need
to be run for every iteration of the EM algorithm. For each iteration of EM
we may need 20–50 thousand Gibbs iterations. If there is a lot of missing
data, this could result in a very slow algorithm.

APPENDIX C: MATRIX INVERSE UPDATES

We are interested in matrices of the form A0 +
∑p

k=1 ukv
′

k, where uk, vk,
k = 1, . . . , p, are vectors. For this form we have the following lemma, which
follows from Woodbury’s formula.

Lemma 1. Let A0 be invertible, and uj, vj , j = 1, . . . , p, be vectors. De-
fine

Ak =A0 +

k∑

j=1

ujv
′

j.

Then for k = 1, . . . , p,

A−1
k =A−1

k−1 −
A−1

k−1ukv
′

kA
−1
k−1

1 + v′kA
−1
k−1uk

.(16)

Then, to calculate A−1
p = (A0+

∑p
k=1 ukv

′

k)
−1, we can start with A−1

0 , and

use the recursion to get to A−1
p . Note that each step of the recursion requires

only multiplication of matrices by vectors. Moreover, in many applications
the vectors uk, vk are sparse, so the multiplication amounts to extracting
elements.

SUPPLEMENTARY MATERIAL

Theory and additional simulations (DOI: 10.1214/11-AOAS516SUPP; .pdf).
The Supplemental Information contains details on the variable selector, and
the proof of convergence of the two Markov chains (the Gibbs sampler
and the model search). In addition, there are further comparisons between
BAMD and BIMBAM.

http://dx.doi.org/10.1214/11-AOAS516SUPP
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