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THE MAXIMUM LIKELIHOOD DRIFT ESTIMATOR FOR MIXED

FRACTIONAL BROWNIAN MOTION

C. CAI, P. CHIGANSKY, AND M. KLEPTSYNA

Abstract. The paper is concerned with the maximum likelihood estimator (MLE) of
the unknown drift parameter θ ∈ R in the continuous-time regression model

Xt = θt+Bt +B
H

t , t ∈ [0, T ]

where Bt is the Brownian motion and BH

t is independent fractional Brownian motion
with the Hurst parameter H ∈ ( 1

2
, 1). We derive the exact formula for the MLE in

terms of the solution of an integral equation and find the asymptotic distribution of the
estimation error. In particular, it turns out that the Brownian part does not contribute
to the asymptotic variance of the MLE.

1. Introduction and the main result

Consider the continuous-time regression model

Xt = θt+ σBt +BH
t , t ∈ [0, T ], (1.1)

where Bt is the Brownian motion and BH
t is independent fractional Brownian motion

(fBm) with the Hurst parameter H ∈ (12 , 1), i.e. zero mean Gaussian process with the
correlation function

EBH
t B

H
s =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ [0, T ].

As is well known, for H ∈ (12 , 1) the process BH
t exhibits the long-range dependence

property
∞∑

j=1

EBH
1

(
BH

j+1 −BH
j

)
= ∞,

and hence ξt := σBt +BH
t , called in [5] the mixed fractional Brownian motion (fBm), can

be thought of as observation noise with both “white” and heavily correlated components.
The mixed fBm has a number of peculiar probabilistic properties, studied in e.g. [5], [2],
[15], which have some relevance to mathematical finance (see e.g. [3]).

The constant σ > 0, controlling intensity of the Brownian part, and the Hurst parameter
H can be reconstructed precisely from the trajectory XT := {Xt, t ∈ [0, T ]} (see e.g. [1])
and hence are assumed to be known.
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Given the sample pathXT , it is required to estimate the unknown drift parameter θ ∈ R.
The parameter estimation problems in models with mixed fBm have been considered
in the recent monographs [8] and [12], where construction of the maximum likelihood
estimator (MLE) of θ appears as an open problem (see Remark (iii) page 181 in [12] and
the discussion on page 354 in [8]). Our main result aims at filling this gap:

Theorem 1.1. The MLE of θ is given by

θ̂T = σ

∫ T
0 g(t, T )dXt∫ T
0 g(t, T )dt

, (1.2)

where1 the function g(t, T ), t ∈ [0, T ] is the unique L2[0, T ] solution of the integral equation

σ2g(t, T ) +H(2H − 1)

∫ T

0
g(s, T )|s − t|2H−2ds = σ, for a.a. t ∈ [0, T ]. (1.3)

The corresponding estimation error is normal

θ̂T − θ ∼ N

(
0,

σ
∫ T
0 g(t, T )dt

)
(1.4)

with the asymptotic variance

lim
T→∞

T 2−2H
Eθ(θ̂T − θ)2 =

2HΓ(H + 1
2)Γ(3− 2H)

Γ(32 −H)
(1.5)

where Γ(x) is the standard Gamma function.

Remark 1.2. The asymptotic variance in (1.5) is independent of σ and coincides with the
asymptotic variance of the MLE in the problem with σ = 0, i.e. estimating the drift of
fBm without additional Brownian component (see Section 5.1 in [9]). This means that the
Brownian part is asymptotically negligible. The MLE for the model with σ = 0 is given
by (see Remark 2 page 270 in [6]):

θ̂T =
ℓH

kHT 2−2H

∫ T

0
t
1

2
−H(T − t)

1

2
−HdXt, (1.6)

where ℓH and kH are some constants. It is easy to check that this estimator is applicable to
the data X, generated by the model with any σ > 0 and its asymptotic variance coincides
with (1.5). In other words, the estimator (1.6) has the same asymptotic accuracy as the
genuine MLE.

The proof of Theorem 1.1 suggests an approximation procedure for the function g(t, T )
(see (2.4) and (2.5)). Its typical form, depicted in Figure 1 versus the weight function
from the estimator (1.6), indicates significant difference in the non-asymptotic regime.

Remark 1.3. The equation (1.3) is known as Fredholm type two equation with weakly
singular kernel (see [11]). Sometimes it is also referred to as the Wiener-Hopf equation on
the finite interval. It’s solution can be expressed in terms of the solution to a particular
instance of the Riemann boundary value problem, which unfortunately doesn’t seem to be

1the stochastic integral in the numerator is defined through the usual limit procedure, recalled in
Subsection 2.2
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Figure 1. The MLE weight function for mixed fBM versus fBm (σ = 1,
T = 1, H = 3/4)

helpful in our case. It is well known, however, that (1.3) has a unique continuous solution,
which even enjoys some regularity properties (see [14]).

Some preliminary calculations show that the asymptotic properties of the MLE in other
models with mixed fBm depend on the way the solution of (1.3) approaches the solution of
the corresponding first type equation. In particular, the analysis of the MLE for the drift
parameter of the stable mixed fractional Ornstein-Uhlenbeck process depends on how fast
g(0, T ) diverges to +∞ as T → ∞. The latter in turn reduces to the analysis of a singular
perturbed second type integral equation with weak singularity such as (2.13) below. This
is an interesting problem on its own, which to the best of our knowledge, has never been
considered.

2. Proof of Theorem 1.1

2.1. The likelihood function and the MLE. Let B̃ = (B̃t)t∈[0,T ] and B = (BH
t )t∈[0,T ]

be processes defined on a measurable space (Ω,F) and Pθ be a probability, under which B̃
and BH are independent, BH is the fractional Brownian motion with the Hurst parameter

H ∈ (12 , 1) and B̃ is the Brownian motion with drift θ
σ , i.e.

σB̃t = θt+ σBt, t ∈ [0, T ].
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Under Pθ, the process X = σB̃ + BH is the mixed fBm with drift θ as defined in (1.1).

By Girsanov’s theorem and independence of B̃ and BH

dPθ

dP0
= exp

(
θ

σ
B̃T −

1

2

θ2

σ2
T

)
.

Denote by µθ the probability induced by X on the space of continuous functions with
the usual supremum topolgy. Then for a measurable set A,

µθ(A) =Pθ(X ∈ A) = E0
dPθ

dP0
1{X∈A} = E0

(dPθ

dP0

∣∣FX
T

)
1{X∈A} =

∫

A
Φ(x)µ0(dx),

where F
X
T = σ{Xt, t ∈ [0, T ]} and Φ(x) is a measurable functional, such that

Φ(X) =
(dPθ

dP0

∣∣FX
T

)
, P0 − a.s.

The latter means that µθ ≪ µ0 for any θ ∈ R and, since B̃ = B under P0, the corresponding
likelihood function is given by

LT (X; θ) =E0

(dPθ

dP0

∣∣FX
)
= E0

(
exp

(
θ

σ
BT −

1

2

θ2

σ2
T

) ∣∣∣FX
T

)
=

exp

(
θ

σ
MT +

1

2

θ2

σ2
(
VT − T

))
.

The latter equality holds with MT := E0(BT |F
X
T ) and VT = E0

(
BT −MT

)2
, since the

process (B,X) is Gaussian and hence the conditional distribution of BT given F
X
T is

Gaussian as well.
Let Ft and F

X
t be the natural filtrations of (B,BH) and X respectively and set

Mt = E0

(
Bt|F

X
t

)
, t ∈ [0, T ].

Since B is an F-martingale and F
X ⊂ F, the process Mt is an F

X -martingale. Moreover,
since Vt = E0(B

2
t |F

X
t )−M2

t and B2
t − t is an F-martingale, for s ≤ t,

E0

(
M2

t − (t− Vt)|F
X
s

)
= E0

(
E0(B

2
t |F

X
t )− t|FX

s

)
= E0(B

2
t − t|FX

s ) =

E0(B
2
s |F

X
s )− s =M2

s − (s− Vs),

i.e. the quadratic variation process of the martingaleM is 〈M〉t = t−Vt and the likelihood
function reads

LT (X; θ) = exp

(
θ

σ
MT −

1

2

θ2

σ2
〈M〉T

)
.

The MLE of θ, being the maximizer the above expression, is given by

θ̂T := σ
MT

〈M〉T
.
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This estimator is unbiased:

Eθσ
MT

〈M〉T
= σE0LT (X; θ)

MT

〈M〉T
=

σ2
1

〈M〉T
exp

(
−
1

2

θ2

σ2
〈M〉T

)
d

dθ
E0 exp

(
θ

σ
MT

)
=

σ2
1

〈M〉T
exp

(
−
1

2

θ2

σ2
〈M〉T

)
d

dθ
exp

(
1

2

θ2

σ2
〈M〉T

)
= θ,

with the variance

Eθ

(
θ̂T − θ

)2
= Eθθ̂

2
T − θ2 = σ2Eθ

M2
T

〈M〉2T
− θ2 =

σ2 exp

(
−
1

2

θ2

σ2
〈M〉T

)
E0 exp

(
θ

σ
MT

)
M2

T

〈M〉2T
− θ2 =

σ4

〈M〉2T
exp

(
−
1

2

θ2

σ2
〈M〉T

)
d2

dθ2
E0 exp

(
θ

σ
MT

)
− θ2 =

σ4

〈M〉2T

(
θ2

σ4
〈M〉2T +

〈M〉T
σ2

)
− θ2 =

σ2

〈M〉T

(2.1)

To recap, the MLE error is a zero mean Gaussian random variable with variance σ2/〈M〉T .
Next we shall derive an explicit characterization of the martingale M in terms of the
solution of the integral equation (1.3) and will find the appropriate asymptotic as T → ∞.

2.2. The martingale representation. Let us recall briefly some relevant properties of
the integrals with respect to fractional Brownian motion. Following the notations of [10],
define the spaces

L2[0, T ] :=
{
f : [0, T ] 7→ R such that

∫ T

0
f2(u)du <∞

}

|Λ|
H− 1

2

T :=
{
f : [0, T ] 7→ R such that

∫ T

0

∫ T

0
|f(u)||f(v)||u − v|2H−Hdudv <∞

}

Λ
H− 1

2

T :=
{
f : [0, T ] 7→ R such that

∫ T

0

(
s

1

2
−H
(
I
H− 1

2

T− uH− 1

2 f(u)
)
(s)
)2
ds <∞

}
,

where I
H− 1

2

T− is the fractional integral operator, whose definition is recalled in Subsection

2.3 below. For H ∈ (12 , 1) the inclusions L2[0, T ] ⊂ |Λ|
H− 1

2

T ⊂ Λ
H− 1

2

T hold (see Remark 4.2
in [10]).

For the simple function of the form,

f(u) =
n∑

k=1

fk1{[uk,uk+1)}(u), fk ∈ R, 0 = u1 < u2 < ... < uk = T
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the stochastic integral with respect to BH is defined by

∫ T

0
f(t)dBH

t :=

n∑

k=1

fk
(
BH

uk+1
−BH

uk

)
.

Since the simple functions are dense in Λ
H− 1

2

T (see Theorem 4.1 in [10]) , the definition of
∫ T
0 f(t)dBH

t is extended to f ∈ Λ
H− 1

2

T through the limit

∫ T

0
f(t)dBH

t := lim
n

∫ T

0
fndB

H ,

where fn is any sequence of the simple functions, such that limn ‖f − fn‖
Λ
H−

1
2

T

= 0.

It turns out however (see Section 5 of [10]), that the image of Λ
H− 1

2

T under the map

f 7→
∫ T
0 f(t)dBH

t is a strict subset of sp[0,T ](B
H), the closure in L2(Ω,F,P0) of all possible

linear combinations of the increments of BH . In other words, some linear functionals of
BH cannot be realized as stochastic integrals of the above type. Nevertheless we have the
following:

Lemma 2.1. Assume H ∈ (12 , 1) and let η be a Gaussian random variable, such that

(η,Xt), t ∈ [0, T ] is a Gaussian random process. Then there exists a function g(·, T ) ∈
L2[0, T ], such that

E0(η|F
X
T ) = E0η +

∫ T

0
g(s, T )dXs, P0 − a.s (2.2)

Proof. Following the arguments of the proof of Lemma 10.1 in [7], let (ti), i = 0, ..., 2n be
the dyadic partition of [0, T ], i.e. ti = i2−n, i = 0, ..., 2n and F

X
T,n = σ{Xti − Xti−1

, i =

1, ..., 2n}. Then F
X
T,n ր F

X
T and by the martingale convergence

lim
n

E0(η|F
X
T,n) = E0(η|F

X
T ), P0 − a.s. (2.3)

as well as in L2(Ω,F,P0), since E0(η|F
X
T,n) are uniformly integrable. By the Normal

Correlation theorem,

E0(η|F
X
T,n) = E0η +

2n∑

i=1

gni−1

(
Xti −Xti−1

)
, (2.4)

with constants gni−1, i = 1, ..., 2n. Define

gn(t, T ) :=
2n∑

i=1

gni−11{[ti−1,ti)}(t), (2.5)

then

E0

(
η|FX

T,n

)
= E0η + σ

∫ T

0
gn(t, T )dBt +

∫ T

0
gn(t, T )dB

H
t ,
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and

E0

(
E0

(
η|FX

T,n

)
− E0

(
η|FX

T,m

))2
= σ2

∫ T

0

(
gn(t, T )− gm(t, T )

)2
dt+

cH

∫ T

0

∫ T

0

(
gn(t, T )− gm(t, T )

)(
gn(s, T )− gm(s, T )

)
|s− t|2H−2dsdt,

where cH := H(2H − 1). Since the kernel in the last integral is positive definite

lim
n

sup
m≥n

σ2
∫ T

0

(
gn(t, T )− gm(t, T )

)2
dt ≤ lim

n
sup
m≥n

E0

(
E0

(
η|FX

T,n

)
− E0

(
η|FX

T,m

))2
= 0,

where the latter equality holds by (2.3), since L2(Ω,F,P0) is complete. Since L2[0, T ] is
a complete space, there exists a function g(t, T ) ∈ L2[0, T ], such that limn ‖g − gn‖2 = 0.
Then

E0

(
E0(η|F

X
T )− E0η − σ

∫ T

0
g(t, T )dBt −

∫ T

0
g(t, T )dBH

t

)2

≤

3E0

(
E0(η|F

X
T )− E0(η|F

X
T,n)

)2
+ 3σ2

∫ T

0

(
gn(t, T )− g(t, T )

)2
dt+

3cH

∫ T

0

∫ T

0

(
gn(t, T )− g(t, T )

)(
gn(s, T )− g(s, T )

)
|s − t|2H−2dsdt

n→∞
−−−→ 0,

where the latter convergence holds, since L2[0, T ] ⊂ |Λ|
H− 1

2

T . �

Applying the above lemma, we obtain the claimed formulas (1.2) and (1.4):

Lemma 2.2. For H ∈ (12 , 1) the equation (1.3) has a unique solution g(·, T ) ∈ L2([0, T ]).
Moreover,

MT =

∫ T

0
g(t, T )dXt. (2.6)

and

〈M〉T = σ

∫ T

0
g(t, T )dt. (2.7)

Proof. By Lemma 2.1, there exists g(·, T ) ∈ L2[0, T ], such that

MT = E(BT |F
X
T ) =

∫ T

0
g(t, T )dXt, P0 − a.s.

holds. For an arbitrary function h ∈ L2[0, T ],

E0

(
BT −

∫ T

0
g(r, T )dXr

)∫ T

0
h(s)dXs =

E0

(∫ T

0
dBt − σ

∫ T

0
g(t, T )dBt −

∫ T

0
g(t, T )dBH

t

)(
σ

∫ T

0
h(t)dBt +

∫ T

0
h(t)dBH

t

)
=

∫ T

0
h(s)

(
σ − σ2g(s, T )− cH

∫ T

0
g(r, T )|s − r|2H−2dr

)
ds.
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By the orthogonality property of the conditional expectation and by arbitrariness of h, it
follows that g(t, T ) satisfies (1.3) for almost all t ∈ [0, T ].

To argue the uniqueness, suppose that there is a function g̃ ∈ L2[0, T ], which also solves
(1.3). Then ∆(t) := g(t, T ) − g̃(t, T ) solves

∆(t) + cH

∫ T

0
∆(s)|s − t|2H−2ds = 0.

Multiplying by ∆(t) and integrating we get
∫ T

0
∆2(t)dt+ cH

∫ T

0

∫ T

0
∆(s)∆(t)|s− t|2H−2dsdt = 0.

Since the kernel in the second integral is positive definite, it follows that ∆(t) = 0 a.e.,
i.e. g̃ coincides with g a.e.

Finally, since M is a Gaussian martingale,

〈M〉T = E0M
2
T = E0

(∫ T

0
g(s, T )dXs

)2

=

∫ T

0
g(t, T )

(
σ2g(t, T ) + cH

∫ T

0
g(s, T )|s − t|2H−2ds

)
dt = σ

∫ T

0
g(t, T )dt

�

2.3. The explicit solution to an auxiliary equation. Consider the integral equation
∫ 1

0
cH |s− r|2H−2φ(r)dr = ψ(s), 0 ≤ s ≤ 1 (2.8)

where ψ is a given function. This equation is known to admit explicit solution (see e.g.
Lemma 3 in [6]), which is the key to the closed form asymptotic formula (1.5). For reader’s
convenience we give a short self-contained derivation.

Recall the definition of the Riemann-Liouville fractional integrals (see [13]): for a func-
tion ϕ ∈ L1(a, b) and µ > 0, the left-sided and right-sided integrals are defined as

I
µ
a+ϕ(x) :=

1

Γ(µ)

∫ x

a

ϕ(t)

(x− t)1−µ
dt, x > a

and

I
µ
b−ϕ(x) :=

1

Γ(µ)

∫ b

x

ϕ(t)

(t− x)1−µ
dt, x < b,

respectively. The corresponding left and right fractional derivatives of a function f on
[a, b] are defined for µ ∈ (0, 1):

D
µ
a+f(x) =

1

Γ(1− µ)

d

dx

∫ x

a

f(t)

(x− t)µ
dt

and

D
µ
b−f(x) = −

1

Γ(1− µ)

d

dx

∫ b

x

f(t)

(t− x)µ
dt.

The following composition rules hold: for any µ > 0 and any integrable ϕ

D
µ
a±I

µ
a±ϕ(x) = ϕ(x). (2.9)
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We shall also need the representation formula (eq. (2.1) page 24 in [4])

|r − u|2H−2 =
(ru)H− 1

2

β(2− 2H,H − 1
2)

∫ r∧u

0
v1−2H(r − v)H−3/2(u− v)H−3/2dv,

where β(α, γ) = Γ(α)Γ(γ)
Γ(α+γ) .

Plugging this expression into the left hand side of (2.8) and setting C1(H) := cH/β(2−
2H,H − 1

2 ), we obtain
∫ 1

0
cH |s− r|2H−2φ(r)dr =

C1(H)

∫ 1

0
(rs)H− 1

2

∫ s∧r

0
(s− τ)H−3/2(r − τ)H−3/2τ1−2Hdτφ(r)dr =

C1(H)

∫ s

0
(rs)H− 1

2

∫ r

0
(s− τ)H−3/2(r − τ)H−3/2τ1−2Hdτφ(r)dr+

C1(H)

∫ 1

s
(rs)H− 1

2

∫ s

0
(s − τ)H−3/2(r − τ)H−3/2τ1−2Hdτφ(r)dr =

C1(H)

∫ s

0

∫ s

τ
(rs)H− 1

2 (s− τ)H−3/2(r − τ)H−3/2τ1−2Hφ(r)drdτ+

C1(H)

∫ s

0

∫ 1

s
(rs)H− 1

2 (s − τ)H−3/2(r − τ)H−3/2τ1−2Hφ(r)drdτ =

C1(H)sH− 1

2

∫ s

0
τ1−2H(s− τ)H−3/2

∫ 1

τ
rH− 1

2 (r − τ)H−3/2φ(r)drdτ =

C1(H)Γ2(H −
1

2
)sH− 1

2 I
H− 1

2

0+ g(s),

where

g(τ) = τ1−2HI
H− 1

2

1− f(τ) and f(r) = rH− 1

2φ(r).

Hence the equation (2.8) reads

C2(H)sH− 1

2 I
H− 1

2

0+ g(s) = 1, 0 ≤ s ≤ t.

where C2(H) := C1(H)Γ2(H − 1
2) is set for brevity. Assuming integrability required by

the rule (2.9) and applying it to both sides of this equation, we obtain

g(τ) =
1

C2(H)
D

H− 1

2

0+ G(τ),

where G(s) = s
1

2
−Hψ(s). Differentiating once again gives

f(r) =
1

C2(H)
D

H− 1

2

1− F (r),

with F (τ) = τ2H−1D
H− 1

2

0+ G(τ) and the solution of (2.8) is

φ(r) = r
1

2
−Hf(r).
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In what follows we will need the solution of (2.8) for ψ(s) ≡ 1. In this case, G(s) = s
1

2
−H

and

g(τ) =
1

C2(H)
D

H− 1

2

0+ G(τ) =
1

C2(H)

Γ(32 −H)

Γ(2− 2H)
τ1−2H

where we used the formulas from Section 2.5 in [13]. Hence

F (τ) = τ2H−1D
H− 1

2

0+ G(τ) =
Γ(32 −H)

Γ(2− 2H)

and the corresponding solution is

φ(r) =r
1

2
−Hf(r) = r

1

2
−H 1

C2(H)
D

H− 1

2

t− F (r) =

1

C2(H)

Γ(32 −H)

Γ(2− 2H)
r

1

2
−HD

H− 1

2

t− 1(r) =
1

C2(H)

1

Γ(2− 2H)
r

1

2
−H(1− r)

1

2
−H .

(2.10)

Now with this solution at hand, it is easy to trace back all the integrability assumptions
need for (2.9) to apply. Plugging in all the constants, we also obtain

∫ 1

0
φ(r)dr =

1

C2(H)

1

Γ(2− 2H)

∫ 1

0
r

1

2
−H(1− r)

1

2
−Hdr =

1

H(2H − 1)

β(2− 2H,H − 1
2)

Γ2(H − 1
2 )

1

Γ(2− 2H)
β
(3
2
−H,

3

2
−H

)
=

1

H(2H − 1)

Γ(2− 2H)Γ(H − 1
2)

Γ(32 −H)Γ2(H − 1
2)

1

Γ(2− 2H)

Γ2(32 −H)

Γ(3− 2H)
=

Γ(32 −H)

H(2H − 1)Γ(H − 1
2)Γ(3− 2H)

=
Γ(32 −H)

2HΓ(H + 1
2)Γ(3− 2H)

,

(2.11)

where we used the property Γ(x+ 1) = xΓ(x), x > 0.

2.4. The large sample asymptotic. Finally we are ready to derive the asymptotic
announced in (1.5). Let µ := T 2H−1 and define gµ(u) := T 2H−1g(uT, T ), u ∈ [0, 1]. Then
(1.3) reads

1

µ
σ2gµ(u) + cH

∫ 1

0
gµ(v)|u− v|2H−2dv = σ, u ∈ [0, 1], (2.12)

and, moreover,

〈M〉T = σ

∫ T

0
g(s, T )ds = σT 2−2H

∫ 1

0
gµ(u)du. (2.13)

Define the operator

Kf(u) = cH

∫ 1

0
f(v)|u− v|2H−2dv, f ∈ |Λ|

H− 1

2

T ,

and the scalar products

〈f, h〉 :=

∫ 1

0
f(s)h(s)ds, f, h ∈ L2[0, 1]



MLE OF THE DRIFT OF MIXED FBM 11

and

〈f, h〉K := cH

∫ 1

0

∫ 1

0
f(v)h(u)|u − v|2H−2dvdu, h, f ∈ |Λ|

H− 1

2

T .

In terms of these notations, the equation (2.12) becomes

σ2

µ
gµ +Kgµ = σ.

By linearity, the solution of the equation Kg = σ is g(u) = σφ(u), where φ is given by the
formula (2.10), and δµ := gµ − g satisfies

σ2

µ
δµ +Kδµ = −

σ2

µ
g.

Since g ∈ L2[0, 1] ⊂ |Λ|
H− 1

2

1 , multiplying by δµ and integrating we obtain

σ2

µ
‖δµ‖

2
2 + ‖δµ‖

2
K =

σ2

µ

∣∣〈g, δµ〉
∣∣.

and, in particular, ‖δµ‖
2
2 ≤

∣∣〈g, δµ〉
∣∣. On the other hand, by the Cauchy-Schwarz inequality∣∣〈g, δµ〉

∣∣ ≤ ‖g‖2‖δµ‖2 and hence ‖δµ‖2 ≤ ‖g‖2. Note that δµ also satisfies

σ2

µ
gµ +Kδµ = 0.

Multiplying both sides of this equation by g and integrating, we get

σ2

µ
〈gµ, g〉 + 〈Kδµ, g〉 = 0.

But
∣∣〈gµ, g〉

∣∣ ≤
∣∣〈δµ, g〉

∣∣ + ‖g‖22 ≤ ‖δµ‖2‖g‖2 + ‖g‖22 ≤ 2‖g‖22 <∞

and hence

σ|〈δµ, 1〉| = |〈δµ,Kg〉| = |〈Kδµ, g〉| =
σ2

µ

∣∣〈gµ, g〉
∣∣ ≤ σ2

µ
2‖g‖22

µ→∞
−−−→ 0.

In other words,

lim
µ→∞

∫ 1

0
gµ(u)du =

∫ 1

0
g(u)du = σ

∫ 1

0
φ(u)du.

Finally, by the formulas (2.1) and (2.13)

T 2−2H
Eθ

(
θ̂T − θ

)2
= T 2−2H σ2

〈M〉T
=

σ2

σ
∫ 1
0 gµ(u)du

T→∞
−−−−→

σ2

σ2
∫ 1
0 g(u)du

,

and, in view of (2.11), the asymptotic (1.5) follows.
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