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Abstract

We analyze the convergence of the alternating direction method of multipliers (ADMM) for

solving the problem of minimizing a nonsmooth convex separable function subject to linear

constraints. Previous analysis of the ADMM typically assumes that the objective function is

the sum of only two convex functions defined on two separable blocks of variables even though

the algorithm works well in numerical experiments for three or more blocks. Moreover, there

has been no rate of convergence analysis for the ADMM without strong convexity. In this paper,

we consider using the ADMM to minimize the sum of two or more convex separable functions

with a composite structure (subject to linear constraints) and establish its global convergence.

Moreover, if the objective function is differentiable, we further show that the ADMM attains a

global linear rate of convergence. These results settle a key question regarding the convergence

of the ADMM when the number of blocks is more than two. Our proof is based on estimating

the distance from a dual feasible solution to the optimal dual solution set by the norm of a

certain residual.
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1 Introduction

Consider the problem of minimizing a separable nonsmooth convex function subject to linear equal-

ity constraints:

minimize f(x) = f1(x1) + f2(x2) + · · ·+ fK(xK)

subject to Ex = E1x1 + E2x2 + · · ·+ EKxK = q

(1.1)

where each fk is a nonsmooth convex function (possibly with extended values), x = (xT1 , ..., x
T
K)T ∈

ℜn is a partition of the optimization variable x, and E = (E1, E2, ..., EK) ∈ ℜm×n is an appropriate

partition of matrix E (consistent with the partition of x) and q ∈ ℜm is a vector. Notice that the

model (1.1) can easily accommodate general linear inequality constraints Ex ≥ q by adding one

extra block. In particular, we can introduce a slack variable xK+1 ≥ 0 and rewrite the inequality

constraint as Ex − xk+1 = q. The constraint xK+1 ≥ 0 can be enforced by adding a new convex

component function fK+1(xK+1) = iℜm

+
(xK+1) to the objective function f(x), where iℜm

+
(xK+1) is

the indicator function for the nonnegative orthant ℜm
+

iℜm
+
(xK+1) =

{

0, if xK+1 ≥ 0 (entry wise),

∞, otherwise.

In this way, the inequality constrained problem with K blocks is reformulated as an equivalent

equality constrained convex minimization problem with K + 1 blocks.

Optimization problems of the form (1.1) arise in many emerging applications involving struc-

tured convex optimization. For instance, in compressive sensing applications, we are given an

observation matrix A and a noisy observation vector b ≈ Ax. The goal is to estimate the sparse

vector x by solving the following ℓ1 regularized linear least squares problem:

minimize ‖y‖2 + λ‖x‖1
subject to Ax+ y = b,

where λ > 0 is a penalty parameter. Clearly, this is a structured convex optimization problem of

the form (1.1) with K = 2. If the variable x is further constrained to be nonnegative, then the

corresponding compressive sensing problem can be formulated as a three block (K = 3) convex

separable optimization problem (1.1) by introducing a slack variable. Similarly, in the stable

version of the robust principal component analysis (PCA) [2], we are given an observation matrix

M ∈ ℜm×n which is a noise-corrupted sum of a low rank matrix L and a sparse matrix S. The

goal is recover L and S by solving the following nonsmooth convex optimization problem

minimize ‖L‖∗ + ρ‖S‖1 + λ‖Z‖2F
subject to L+ S + Z = M
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where ‖·‖∗ denotes the matrix nuclear norm (defined as the sum of the matrix singular eigenvalues),

while ‖ · ‖1 and ‖ · ‖F denote, respectively, the ℓ1 and the Frobenius norm of a matrix (equal to the

standard ℓ1 and ℓ2 vector norms when the matrix is viewed as a vector). In the above formulation,

Z denotes the noise matrix, and ρ, λ are some fixed penalty parameters. It is easily seen that the

stable robust PCA problem corresponds to the three block case K = 3 in the problem (1.1) with

x = (L,S,Z) and

f1(L) = ‖L‖∗, f2(S) = ‖S‖1, f3(Z) = ‖Z‖2F , (1.2)

while the coupling linear constraint is given L + S + Z = M . In image processing applications

where the low rank matrix L is additionally constrained to be nonnegative, then the above problem

can be reformulated as

minimize ‖L‖∗ + ρ‖S‖1 + λ‖Z‖2F + iℜmn

+
(C)

subject to L+ S + Z = M, L− C = 0,

where C is a slack matrix variable of the same size as L, and iℜmn
+

(·) is the indicator function for

the nonnegative orthant ℜmn
+ . In this case, the stable robust PCA problem is again in the form

of (1.1). In particular, it has 4 block variables (L,S,Z,C) and the first three convex functions are

the same as in (1.2), while the fourth convex function is given by f4(C) = iℜmn

+
(C). The coupling

linear constraints are L+S +Z = M, L−C = 0. Other applications of the form (1.1) include the

latent variable Gaussian graphical model selection problem, see [3].

A popular approach to solving the separable convex optimization problem (1.1) is to attach a

Lagrange multiplier vector y to the linear constraints Ex = q and add a quadratic penalty, thus

obtaining an augmented Lagrangian function of the form

L(x; y) = f(x) + 〈y, q − Ex〉+ ρ

2
‖q − Ex‖2, (1.3)

where ρ ≥ 0 is a constant. The augmented dual function is given by

d(y) = min
x

f(x) + 〈y, q − Ex〉+ ρ

2
‖q − Ex‖2 (1.4)

and the dual problem (equivalent to (1.1) under mild conditions) is

max
y

d(y). (1.5)

Moreover, if ρ > 0, then Ex is constant over the set of minimizers of (1.4) (see Lemma 2.1 in

Section 2). This implies that the dual function d(y) is differentiable with

∇d(y) = q −Ex(y)

where x(y) is a minimizer of (1.4). Given the differentiability of d(y), it is natural to consider the

following dual ascent method to solve the primal problem (1.1)

y := y + α∇d(y) = y + α(q −Ex(y)), (1.6)
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where α > 0 is a suitably chosen stepsize. Such a dual ascent strategy is well suited for structured

convex optimization problems that are amenable to decomposition. For example, if the objective

function f is separable (i.e., of the form given in (1.1)) and if we select ρ = 0, then the minimization

in (1.3) decomposes into K independent minimizations whose solutions frequently can be obtained

in a simple form. In addition, the iterations can be implemented in a manner that exploits the

sparsity structure of the problem and, in certain network cases, achieve a high degree of parallelism.

Popular choices for the ascent methods include (single) coordinate ascent (see [9, 12, 13, 20, 25, 27,

34, 35, 39]), gradient ascent (see [20, 27, 37]) and gradient projection [15, 19]. (See [11, 20, 36] for

additional references.)

For large scale optimization problems, it is numerically advantageous to select ρ > 0. Unfor-

tunately, this also introduces variable coupling in the augmented Lagrangian (1.3), which makes

the exact minimization step in (1.4) no longer decomposable across variable blocks even if f has

a separable structure. In this case, it is more economical to minimize (1.4) inexactly by updating

the components of x cyclically via the coordinate descent method. In particular, we can apply

the Gauss-Seidel strategy to inexactly minimize (1.4), and then update the multiplier y using an

approximate optimal solution of (1.4) in a manner similar to (1.6). The resulting algorithm is

called the Alternating Direction Method of Multipliers (ADMM) and is summarized as follows

(see [40–43]). In the general context of sums of monotone operators, the work of [54] describes a

large family of splitting methods for K ≥ 3 blocks which, when applied to the dual, result in similar

but not identical methods to the ADMM algorithm (1.7) below.

Alternating Direction Method of Multipliers (ADMM)

At each iteration r ≥ 1, we first update the primal variable blocks in the Gauss-

Seidel fashion and then update the dual multiplier using the updated primal

variables:


















xr+1
k = argmin

xk

L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K ; yr), k = 1, 2, ...,K,

yr+1 = yr + α(q − Exr+1) = yr + α

(

q −
K
∑

k=1

Ekx
r+1
k

)

,
(1.7)

where α > 0 is the step size for the dual update.

Notice that if there is only one block (K = 1), then the ADMM reduces to the standard

augmented Lagrangian method of multipliers [1] for which the global convergence is well understood.

In particular, it is known that, under mild assumptions on the problem, this type of dual gradient

ascent methods generate a sequence of iterates whose limit points must be optimal solutions of the

original problem (see [12,34,36]). For the special case of ordinary network flow problems, it is further

known that an associated sequence of dual iterates converges to an optimal solution of the dual
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(see [9]). The rate of convergence of dual ascent methods has been studied in the reference [4] which

showed that, under mild assumptions on the problem, the distance to the optimal dual solution

set from any y ∈ ℜm near the set is bounded above by dual optimality the ‘residual’ ‖∇d(y)‖. By
using this bound, it can be shown that a number of ascent methods, including coordinate ascent

methods and a gradient projection method, converge at least linearly when applied to solve the

dual problem (see [21,22]; also see [8,14,17] for related analysis). (Throughout this paper, by ‘linear

convergence’ we mean root–linear convergence (denoted by R-linear convergence) in the sense of

Ortega and Rheinboldt [26].)

When there are two blocks (K = 2), the convergence of the ADMM was studied in the context

of Douglas-Rachford splitting method [5–7] for finding a zero of the sum of two maximal monotone

operators. It is known that in this case every limit point of the iterates is an optimal solution of

the problem. The recent work of [44–46] have shown that the objective values generated by the

ADMM algorithm and its accelerated version converge at a rate of O(1/r) and O(1/r2) respectively.

Moreover, if the objective function f(x) is strongly convex and the constraint matrix E is row

independent, then the ADMM is known to converge linearly to the unique minimizer of (1.1). [One

notable exception to the strong convexity requirement is in the special case of linear programming

for which [6] established the linear convergence of ADMM.] More recent convergence rate analysis

of the ADMM still requires at least one of the component functions (f1 or f2) to be strongly

convex and have a Lipschitz continuous gradient. Under these and additional rank conditions

on the constraint matrix E, some linear convergence rate results can be obtained for a subset of

primal and dual variables in the ADMM algorithm (or its variant); see [50–52]. However, when

there are more than two blocks involved (K ≥ 3), the convergence (or the rate of convergence) of

the ADMM method is unknown, and this has been a key open question for several decades. The

recent work [53] describes a list of novel applications of the ADMM with K ≥ 3 and motivates

strongly for the need to analyze the convergence of the ADMM in the multi-block case. The recent

monograph [55] contains more details of the history, convergence analysis and applications of the

ADMM and related methods.

A main contribution of this paper is to establish the global (linear) convergence of the ADMM

method for a class of convex objective functions involving any number of blocks (K is arbitrary).

The key requirement for the global (linear) convergence is the satisfaction of a certain error bound

condition that is similar to that used in the analysis of [4]. This error bound estimates the distance

from an iterate to the optimal solution set in terms of a certain proximity residual. The class

of objective functions that are known to satisfy this error bound condition include many of the

compressive sensing applications, such as LASSO [32], Group LASSO [38] or Sparse Group LASSO

[23].

In our notation, all vectors are column vectors and ℜn denotes the n–dimensional Euclidean
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space. For any vector x ∈ ℜn, we denote by xi the ith coordinate of x and, for any I ⊆ {1, ..., n},
by xI the vector obtained after removing from x those xi with i 6∈ I. We also denote by ‖x‖ the

usual Euclidean norm of x, i.e., ‖x‖ =
√

〈x, x〉 with 〈x, y〉 =
∑

i xiyi. For any h × k matrix A,

we denote by Ai the ith row of A, and by AI the submatrix of A obtained by removing all rows

Ai with i 6∈ I. For any function h with gradient ∇h, the notations ∇ih and ∇Ih carry analogous

meaning. For any closed convex set X and any vector x in the same space, we denote by [x]+X the

orthogonal projection of x onto X.

2 Technical Preliminaries

Let f be a closed proper convex function in ℜn, let E be an m×n matrix, let q be a vector in ℜm.

Let dom f denote the effective domain of f and let int(dom f) denote the interior of dom f . We

make the following standing assumptions regarding f :

Assumption A.

(a) The global minimum of (1.1) is attained and so is its dual optimal value. The intersection

int(dom f) ∩ {x | Ex = q} is nonempty.

(b) f = f1(x1) + f2(x2) + · · ·+ fK(xK), with each fk further decomposable as

fk(xk) = gk(Akxk) + 〈bk, xk〉+ hk(xk)

where gk and hk are both convex and continuous over their domains, and Ak are some

given matrices (not necessarily full column rank), while bk’s are given vectors of appropriate

dimensions.

(c) Each gk is strictly convex and continuously differentiable on int(dom gk) with a uniform

Lipschitz continuous gradient

‖∇gk(zk)−∇gk(z
′
k)‖ ≤ L‖zk − z′k‖, ∀ zk, z

′
k ∈ int(dom gk),

where L > 0 is a constant. Moreover, ‖∇gk(zk)‖ → ∞ whenever zk approaches the boundary

of int(dom f) or ‖zk‖ → ∞.

We remark that the inclusion of a linear term 〈bk, xk〉 in Assumption A(b) is needed to cover

cases where bk lies outside the row span of Ak. In the subsequent analysis, however, we shall assume

bk = 0 for all k to simplify the notations. All the ensuing proofs and results will remain true with

trivial modifications for bk 6= 0 case.
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Under Assumption A, both the primal optimum and the dual optimum values of (1.1) are

attained and are equal (i.e., the strong duality holds for (1.1)) so that

d∗ = max
y

L(x; y) = max
y

(

f(x) + 〈y, q − Ex〉+ ρ

2
‖Ex− q‖2

)

= min
Ex=q

f(x),

where d∗ is the optimal value of the dual of (1.1).

Roughly speaking, Assumption A requires that the smooth part of f (i.e., the gk’s), in addition

to satisfying certain regularity conditions, be a co–finite, strictly convex essentially smooth function

or, in the terminology of Rockafellar [29, Sec. 26], a co–finite convex function of the Legendre type.

In general, Assumption A(c) is satisfied whenever the smooth part of f is strongly convex twice

differentiable or whenever its Hessian is positive definite everywhere on the interior of its effective

domain.

Although Assumption A may seem restrictive, there are a number of important special cases

that satisfy this assumption. These include (i) strictly convex quadratic programs (see [20]), (ii)

certain problems of matrix balancing and image reconstruction, where f(x) is the entropy function
∑n

j=1 xj lnxj (see [16, 18, 30]), (iii) a problem of optimal routing on data networks, where f(x) is

the inverse barrier function
∑n

j=1 1/(cj − xj) with cj > 0 (see [4]), and (iv) the Hazen–Williams’

model of flow through pipe networks, where f(x) is the power function
∑n

j=1 aj(xj)
c with aj > 0

and c ≈ 2.85 (see [31]).

Under Assumption A, there may still be multiple optimal solutions for both the primal problem

(1.1) and its dual problem. We first claim that the dual functional

d(y) = min
x

L(x; y) = min
x

f(x) + 〈y, q − Ex〉+ ρ

2
‖q −Ex‖2, (2.1)

is differentiable everywhere. Let X(y) denote the set of optimal solutions for (2.1).

Lemma 2.1 For any y ∈ ℜm, both Ex and Akxk, k = 1, 2, ...,K, are constant over X(y). More-

over, the dual function d(y) is differentiable everywhere and

∇d(y) = q − Ex(y),

where x(y) ∈ X(y) is any minimizer of (2.1).

Proof. Fix y ∈ ℜm. We first show that Ex is invariant over X(y). Suppose the contrary, so that

there exist two optimal solutions x and x′ from X(y) with the property that Ex 6= Ex′. Then, we

have

d(y) = L(x; y) = L(x′; y).
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Due to the convexity of L(x; y) with respect to the variable x, the solution set X(y) must be convex,

implying x̄ = (x+ x′)/2 ∈ X(y). By the convexity of f(x), we have

1

2

[

(f(x) + 〈y, q − Ex〉) + (f(x′) + 〈y, q −Ex′〉)
]

≥ f(x̄) + 〈y, q −Ex̄〉.

Moreover, by the strict convexity of ‖ · ‖2 and the assumption Ex 6= Ex′, we have

1

2

(

‖Ex− q‖2 + ‖Ex′ − q‖2
)

> ‖Ex̄− q‖2.

Multiplying this inequality by ρ/2 and adding it to the previous inequality yields

1

2

[

L(x; y) + L(x′; y)
]

> L(x̄; y),

which further implies

d(y) > L(x̄; y).

This contradicts the definition d(y) = minx L(x; y). Thus, Ex is invariant over X(y). Notice that

d(y) is a concave function and its subdifferential is given by

∂d(y) = Closure of the convex hull { q − Ex(y) | x(y) ∈ X(y) }.

Since Ex(y) is invariant over X(y), the subdifferential ∂d(y) is a singleton. By Danskin’s Theorem,

this implies that d(y) is differentiable and the gradient is given by ∇d(y) = q − Ex(y), for any

x(y) ∈ X(y).

A similar argument (and using the strict convexity of gk) shows that Akxk is also invariant over

X(y). The proof is complete. Q.E.D.

To show the linear convergence of the ADMM method, we need a local error bound around

the optimal solution set X(y). To describe this local error bound, we first define the notion of a

proximity operator. Let h : dom (h) 7→ ℜ be a (possibly nonsmooth) convex function. For every

x ∈ dom (h), the proximity operator of h is defined as

proxh(x) = argmin
u∈ℜn

h(u) +
1

2
‖x− u‖2.

Notice that if h(x) is the indicator function of a closed convex set X, then

proxh(x) = projX(x),

so the proximity operator is a generalization of the projection operator. In particular, it is known

that the proximity operator satisfies the nonexpansiveness property:

‖proxh(x)− proxh(x
′)‖ ≤ ‖x− x′‖, ∀ x, x′. (2.2)
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The proximity operator can be used to characterize the optimality condition for a nonsmooth

convex optimization problem. Suppose a convex function f is decomposed as f(x) = g(Ax) + h(x)

where g is strongly convex and differentiable, h is a convex (possibly nonsmooth) function, then

we can define the proximal gradient of f with respect to h as

∇̃f(x) := x− proxh(x−∇(f(x)− h(x))) = x− proxh(x−AT∇g(Ax)).

If h ≡ 0, then the proximal gradient ∇̃f(x) = ∇f(x). In general, ∇̃f(x) can be used as the

(standard) gradient of f for the nonsmooth minimization minx∈X f(x). For example, ∇̃f(x∗) = 0

iff x∗ is a global minimizer.

For the Lagrangian minimization problem (2.1) and under Assumption A, the work of [4,23,33]

suggests that the size of the proximal gradient

∇̃xL(x; y) := x− proxh (x−∇x(L(x; y)− h(x)))

= x− proxh
(

x−AT∇g(Ax) + ET y − ρET (Ex− q)
)

(2.3)

can be used to upper bound the distance to the optimal solution set X(y) of (2.1). Here

h(x) =

K
∑

k=1

hk(xk), g(Ax) =

K
∑

k=1

gk(Akxk)

represent the nonsmooth and the smooth parts of f(x) respectively.

Assumption B. For any δ > 0, there exists a positive scalar τ such that, for any (x, y) satisfying

‖x‖+ ‖y‖ ≤ δ, the following error bounds hold

dist (y, Y ∗) = ‖y − y∗‖ ≤ τ‖∇d(y)‖,

and

dist (x,X(y)) ≤ τ‖∇̃xL(x; y)‖,

where Y ∗ denotes the dual optimal solution set and the proximal gradient ∇̃xL(x; y) is given by

(2.3). Moreover, the constant τ is independent of the choice of y.

The next lemma says if the nonsmooth part of fk takes a certain form, then Assumption B

holds.

Lemma 2.2 Suppose Assumption A holds. Then the local error bounds in Assumption B hold if

the nonsmooth component functions hk(xk) of the objective function satisfy one of the following

properties:

(1) Either the epi-graph of hk(xk) is a polyhedral set;
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(2) Or hk(xk) = λk‖xk‖1 +
∑

J ωJ‖xk,J‖2, where xk = (· · · , xk,J , · · · ) is a partition of xk with J

being the partition index.

The proof of Lemma 2.2 is identical to that of [4,23,33] for any fixed y. The only new ingredient

in Lemma 2.2 is the additional claim that the constants δ, τ are both independent of the choice of

y. This property follows directly from a similar property of Hoffman’s error bound (on which the

error bounds of [4, 23,33] are based) for a feasible linear system P := {x | Ax ≤ b}:

dist (x, P ) ≤ τ‖[Ax− b]+‖, ∀ x ∈ ℜn,

where τ is independent of b. In fact, a careful checking of the proof of [4, 23, 33] shows that the

corresponding error constants δ and τ for the augmented Lagrangian function L(x; y) can be indeed

made independent of y. We omit the proof of Lemma 2.2 for space consideration.

By using Lemma 2.1, we show below a Lipschitz continuity property of ∇f(x(y)) and ∇d(y),

for y over any level set of d.

Lemma 2.3 Fix any scalar η ≤ f(x∗) and let U = { y ∈ ℜm | d(y) ≥ η }. Then there holds

‖∇d(y′)−∇d(y)‖ ≤ 1

ρ
‖y′ − y‖, ∀ y′ ∈ U , y ∈ U .

Proof. Fix any y and y′ in U . Let x = x(y) and x′ = x(y′) be two minimizers of L(x; y) and

L(x; y′) respectively. By convexity, we have

∇f(x)− ET y + ρET (Ex− q) = 0 and ∇f(x′)− ET y′ + ρET (Ex′ − q) = 0,

where ∇f(x) and ∇f(x′) are some subgradient vectors in the subdifferential ∂f(x) and ∂f(x′)

respectively. Thus, we have

〈∇f(x)− ET y + ρET (Ex− q), x′ − x〉 = 0

and

〈∇f(x′)− ET y′ + ρET (Ex′ − q), x− x′〉 = 0.

Adding the above two equalities yields

〈∇f(x)−∇f(x′) + ET (y′ − y)− ρETE(x′ − x), x′ − x〉 = 0.

Upon rearranging terms and using the convexity property

〈∇f(x′)−∇f(x), x′ − x〉 ≥ 0,
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we get

〈y′ − y,E(x′ − x)〉 = 〈∇f(x′)−∇f(x), x′ − x〉+ ρ‖E(x′ − x)‖2 ≥ ρ‖E(x′ − x)‖2.

Thus, ρ‖E(x′ − x)‖ ≤ ‖y′ − y‖ which together with ∇d(y′) −∇d(y) = E(x − x′) (cf. Lemma 2.1)

yields

‖∇d(y′)−∇d(y)‖ = ‖E(x′ − x)‖ ≤ 1

ρ
‖y − y′‖.

The proof is complete. Q.E.D.

In our analysis of ADMM, we will also need an error bound for the dual function d(y). Notice

that a y ∈ ℜm solves (1.5) if and only if y satisfies the system of nonlinear equations

∇d(y) = 0.

This suggests that the norm of the ‘residual’ ‖∇d(y)‖ may be a good estimate of how close y is

from solving (1.5). We show that this is true in the sense that, for all y such that the above residual

is small and d(y) is bounded below, the distance from y to Y ∗ (dual optimal solution set), defined

by

dist (y, Y ∗) = min
y∗∈Y ∗

‖y − y∗‖,

is bounded above by the norm of this residual. Error bounds like this are similar to that in

Assumption B and have been studied previously by Pang [28] and by Mangasarian and Shiau [24],

though in different contexts. The above error bound is ‘local’ in that it holds only for those y that

are bounded or near Y ∗ (as opposed to a ‘global’ error bound which would hold for all y in ℜm).

This local error bound was established in [22] (see Theorem 2.1 therein) which does not require f

to be co–finite.

Corollary 2.1 Let d∗ denote the dual optimal value. Then, Assumptions A and B imply that for

any scalar δ > 0, there exists a positive scalar τ ′ such that

d∗ − d(y) ≤ τ ′‖∇d(y)‖2 = τ ′‖Ex(y)− q‖2, (2.4)

for any y ∈ ℜm with ‖y‖ ≤ δ. Moreover, if h(x) =
∑K

k=1 hk(xk) = 0 (i.e., the objective function

f(x) of (1.1) is smooth), then for any x ∈ ℜn, y ∈ ℜm with ‖x‖ + ‖y‖ ≤ δ, there holds

L(x; y)− L(x(y); y) ≤ τ ′ (dist (x,X(y)))2 , (2.5)

for any x(y) ∈ X(y).

Proof. By Assumption A, the strong duality holds so that f(x∗) = d(y∗) where y∗ is any dual
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optimal solution for (1.5). Fix any y, and let y∗ be the optimal dual solution closest to y. Then it

follows from the mean value theorem that there exists some ỹ in the line segment joining y and y∗

such that

f(x∗)− d(y) = d(y∗)− d(y)

= 〈∇d(ỹ), y∗ − y〉
= 〈∇d(ỹ)−∇d(y∗), y∗ − y〉
≤ ‖∇d(ỹ)−∇d(y∗)‖‖y∗ − y‖

≤ 1

ρ
‖ỹ − y∗‖‖y∗ − y‖

≤ 1

ρ
‖y − y∗‖‖y∗ − y‖

=
1

ρ
‖y∗ − y‖2

where the second inequality follows from Lemma 2.3. Recall from Assumption B that there exists

some τ such that

dist (y, Y ∗) = ‖y − y∗‖ ≤ τ‖∇d(y)‖.

Combining the above two inequalities yields

d∗ − d(y) = f(x∗)− d(y) ≤ τ ′‖∇d(y)‖2,

where τ ′ ≥ τ2/ρ is a constant. This establishes the bound on the size of dual gap (2.4).

It remains to prove the bound on the primal-gap (2.5). To this end, we fix any x and y with

‖x‖+ ‖y‖ ≤ δ. Let x̄ be defined as

x̄ := argmin
u∈X(y)

‖u− x‖

so that dist (x,X(y)) = ‖x− x̄‖. Since the nonsmooth part of f(x) is absent, that is,

h(x) =
K
∑

k=1

hk(xk) = 0,

it follows that the augmented Lagrangian function is differentiable. Since x̄ is an minimizer of

minu L(u; y), it follows from the optimality condition that

〈∇xL(x̄; y), x− x̄〉 = 0.

Also, we have from the Mean Value theorem

L(x; y)− L(x̄; y) = 〈∇xL(x̃; y), x− x̄〉.

11



Combining the above two expressions yields

L(x; y) − L(x̄; y)

= 〈∇xL(x̃; y)−∇xL(x̄; y), x− x̄〉
≤ ‖∇xL(x̃; y)−∇xL(x̄; y)‖‖x− x̄‖

=

∥

∥

∥

∥

∥

K
∑

k=1

AT
k∇gk(Akx̃k) + ρET (Ex̃− q)−

(

K
∑

k=1

AT
k∇gk(Akx̄k) + ρET (Ex̄− q)

)∥

∥

∥

∥

∥

‖x− x̄‖

≤
(

K
∑

k=1

L‖AT
k ‖‖Ak‖+ ρ‖ETE‖

)

‖x̃− x̄‖‖x − x̄‖

≤
(

K
∑

k=1

L‖AT
k ‖‖Ak‖+ ρ‖ETE‖

)

‖x− x̄‖2,

where the second inequality follows from the Lipschitz continuity of ∇gk and the last step is due

to the fact that x̃ lies in the line segment joining x and x̄ so that ‖x̃ − x̄‖ ≤ ‖x − x̄‖. Setting

τ ′ ≥
(

∑K
k=1 L‖AT

k ‖‖Ak‖+ ρ‖ETE‖
)

proves (2.5). Q.E.D.

Assumption C. Each submatrix Ek has full column rank.

Under Assumption C, the augmented Lagrangian function L(x; y) (cf. (1.3)) is strongly convex

with respect to each subvector xk. As a result, each alternating minimization iteration of ADMM

(1.7)

xr+1
k = argmin

xk

L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K ; yr), k = 1, ...,K.

has a unique optimal solution. Thus the sequence of iterates {xr} of the ADMM are well defined.

The following lemma shows that the alternating minimization of the Lagrangian function gives a

sufficient descent of the Lagrangian function value.

Lemma 2.4 Suppose Assumption C holds. Then fix any index r, we have

L(xr; yr)− L(xr+1; yr) ≥ γ‖xr − xr+1‖2, (2.6)

where the constant γ > 0 is independent of r and yr.

Proof. By Assumption C, the augmented Lagrangian function

L(x; y) =
K
∑

k=1

(fk(xk) + 〈yk, qk − Ekxk〉) +
ρ

2

∥

∥

∥

∥

∥

K
∑

k=1

Ekxk − q

∥

∥

∥

∥

∥

2
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is strongly convex per each variable xk and has a uniform modulus ρλmin(E
T
k Ek) > 0. Here, the

notation λmin(·) denotes the smallest eigenvalue of a symmetric matrix. This implies that, for each

k,

L(x; y)− L(x1, .., xk−1, x̄k, xk+1, ..., xK ; y) ≥ ρλmin(E
T
k Ek)‖xk − x̄k‖2, (2.7)

for all x, where x̄k is the minimizer of minxk
L(x; y) (when all other variables {xj}j 6=k are fixed).

Fix any index r. For each k ∈ {1, ...,K}, by ADMM (1.7), xr+1
k+1 is the minimizer of

L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, x

r
k+2, ..., x

r
K ; yr). It follows from (2.7)

L(xr+1
1 , ..., xr+1

k−1, x
r
k, ..., x

r
K ; yr)− L(xr+1

1 , ..., xr+1
k , xrk+1, ..., x

r
K ; yr) ≥ γ‖xrk − xr+1

k ‖2, ∀ k, (2.8)

where

γ = ρmin
k

λmin(E
T
k Ek)

is independent of r and yr. Summing this over k, we obtain the sufficient decrease condition

L(xr; yr)− L(xr+1; yr) ≥ γ‖xr − xr+1‖2.

This completes the proof of Lemma 2.4.

Q.E.D.

To prove the linear convergence of the ADMM algorithm, we also need the following lemma

which bounds the size of the proximal gradient ∇̃L(xr; yr) at an iterate xr.

Lemma 2.5 Suppose Assumption A holds. Let {xr} be generated by the ADMM algorithm (1.7).

Then there exists some constant σ > 0 (independent of yr) such that

‖∇̃L(xr; yr)‖ ≤ σ‖xr+1 − xr‖ (2.9)

for all r ≥ 1.

Proof. Fix any r ≥ 1 and any 1 ≤ k ≤ K. According to the ADMM procedure (1.7), the variable

xk is updated as follows

xr+1
k = argmin

xk



hk(xk) + gk(Akxk)− 〈yr, Ekxk〉+
ρ

2

∥

∥

∥

∥

∥

∥

Ekxk +
∑

j<k

Ejx
r+1
j +

∑

j>k

xrj − q

∥

∥

∥

∥

∥

∥

2

 .

The corresponding optimality condition can be written as

xr+1
k = proxhk



xr+1
k −AT

k∇xk
gk(Akx

r+1
k ) + ET

k y
r − ρET

k





∑

j≤k

Ejx
r+1
j +

∑

j>k

Ejx
r
j − q







 . (2.10)
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Therefore, we have

∥

∥xr+1
k − proxhk

(

xrk −AT
k∇xk

gk(Akx
r
k) + ET

k y
r − ρET

k (Exr − q)
)∥

∥ =
∥

∥

∥

∥

∥

proxhk



xr+1
k −AT

k∇xk
gk(Akx

r+1
k ) +ET

k y
r + ρET

k





∑

j≤k

Ejx
r+1
j +

∑

j>k

Ejx
r
j − q









−proxhk

(

xrk −AT
k∇xk

gk(Akx
r
k) + ET

k y
r + ρET

k (Exr − q)
)

∥

∥

∥

∥

∥

≤
∥

∥

∥(xr+1
k − xrk)−AT

k (∇xk
gk(Akx

r+1
k )−∇xk

gk(Akx
r
k)) + ρET

k

∑

j≤k

Ej(x
r+1
j − xrj)

∥

∥

∥

≤ ‖xr+1
k − xrk‖+ L‖AT

k ‖‖Ak‖‖xr+1
k − xrk‖+ ρ‖ET

k ‖
∑

j≤k

‖Ej‖‖xr+1
j − xrj‖

≤ c‖xr+1 − xr‖, for some c > 0 independent of yr,

where the first inequality follows from the nonexpansive property of the prox operator (2.2), and

the second inequality is due to the Lipschitz property of the gradient vector ∇gk (cf. Assumption

A). Using this relation and the definition of the proximal gradient ∇̃L(xr; yr), we have

‖∇̃xk
L(xr; yr)‖ =

∥

∥xrk − proxhk

(

xrk −AT
k∇xk

gk(Akx
r
k) + ET

k y
r − ρET

k (Exr − q)
)∥

∥

≤ ‖xrk − xr+1
k ‖+

∥

∥xr+1
k − proxhk

(

xrk −AT
k∇xk

gk(Akx
r
k) + ET

k y
r − ρET

k (Exr − q)
)∥

∥

≤ (c+ 1)‖xr+1 − xr‖, ∀ k = 1, 2, ...,K.

This further implies that the entire proximal gradient vector can be bounded by ‖xr+1 − xr‖:

‖∇̃L(xr; yr)‖ ≤ (c+ 1)
√
K‖xr+1 − xr‖.

Setting σ = (c+ 1)
√
K (which is independent of yr) completes the proof. Q.E.D.

3 (Linear) Convergence of ADMM

Let d∗ denote the dual optimal value and {xr, yr} be the sequence generated by the ADMM method

(1.7). Further we denote

∆r
d = d∗ − d(yr) (3.1)

which represents the gap from dual optimality at the r-th iteration. The primal gap to optimality

at iteration r is defined as

∆r
p = L(xr+1; yr)− d(yr), r ≥ 1. (3.2)

Clearly, we have both ∆r
d ≥ 0 and ∆r

p ≥ 0 for all r. To establish the linear convergence of ADMM,

we need several lemmas to estimate the size of primal and dual optimality gap. We first bound the

decrease of the dual optimality gap.
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Lemma 3.1 For each r ≥ 1, there holds

∆r
d −∆r−1

d ≤ −α(Exr − q)T (Ex̄r − q). (3.3)

Proof. Let X(yr) denote the set of optimal solutions for the following optimization problem

min
x

L(x; yr) = min
x

f(x) + 〈yr, q − Ex〉+ ρ

2
‖Ex− q‖2.

We denote

x̄r = argmin
x̄∈X(yr)

‖x̄− xr‖.

The reduction of the optimality gap in the dual space can be bounded as follows:

∆r
d −∆r−1

d = [d∗ − d(yr)]− [d∗ − d(yr−1)]

= d(yr−1)− d(yr)

= L(x̄r−1; yr−1)− L(x̄r; yr)

= [L(x̄r; yr−1)− L(x̄r; yr)] + [L(x̄r−1; yr−1)− L(x̄r; yr−1)]

= (yr−1 − yr)T (q − Ex̄r) + [L(x̄r−1; yr−1)− L(x̄r; yr−1)]

= −α(Exr − q)T (Ex̄r − q) + [L(x̄r−1; yr−1)− L(x̄r; yr−1)]

≤ −α(Exr − q)T (Ex̄r − q), ∀ r ≥ 1,

where the last equality follows from the update of the dual variable yr−1. Q.E.D.

Lemma 3.1 shows that if q − Exr is close to the true dual gradient ∇d(yr) = q − Ex̄r, then

the dual optimal gap is reduced after each ADMM iteration. However, since ADMM updates the

primal variable by only one Gauss-Seidel sweep, the primal iterate xr is not necessarily close the

minimizer x̄r of L(x; yr). Thus, unlike the method of multipliers (for which xr = x̄r for all r), there

is no guarantee that the dual optimality gap ∆r
d is indeed reduced after each iteration of ADMM.

Next we proceed to bound the decrease in the primal gap ∆r
p.

Lemma 3.2 For each r ≥ 1, we have

∆r
p −∆r−1

p ≤ α‖Exr − q‖2 − γ‖xr+1 − xr‖2 − α(Exr − q)T (Ex̄r − q) (3.4)

for some γ independent of yr.

Proof. Fix any r ≥ 1, we have

15



L(xr; yr−1) = f(xr) + 〈yr−1, q − Exr〉+ ρ

2
‖Exr − q‖2

and

L(xr+1; yr) = f(xr+1) + 〈yr, q − Exr+1〉+ ρ

2
‖Exr+1 − q‖2.

By the update rule of yr (cf. (1.7)), we have

L(xr; yr) = f(xr) + 〈yr−1, q −Exr〉+ ρ

2
‖Exr − q‖2 + α‖Exr − q‖2.

This implies

L(xr; yr) = L(xr; yr−1) + α‖Exr − q‖2.

Recall from Lemma 2.4 that the alternating minimization of the Lagrangian function gives a suffi-

cient descent. In particular, we have

L(xr+1; yr)− L(xr; yr) ≤ −γ‖xr+1 − xr‖2,

for some γ > 0 that is independent of r and yr. Therefore, we have

L(xr+1; yr)− L(xr; yr−1) ≤ α‖Exr − q‖2 − γ‖xr+1 − xr‖2, ∀ r ≥ 1.

Hence, we have the following bound on the reduction of primal optimality gap

∆r
p −∆r−1

p = [L(xr+1; yr)− d(yr)]− [L(xr; yr−1)− d(yr−1)]

= [L(xr+1; yr)− L(xr; yr−1)]− [d(yr)− d(yr−1)]

≤ α‖Exr − q‖2 − γ‖xr+1 − xr‖2 − α(Exr − q)T (Ex̄r − q), ∀ r ≥ 1,

where the last step is due to Lemma 3.1. Q.E.D.

Notice that when α = 0 (i.e., no dual update in the ADMM algorithm), Lemma 3.2 reduces

to the sufficient decrease estimate (2.6) in Lemma 2.4. When α > 0, the primal optimality gap is

not necessarily reduced after each ADMM iteration due to the positive term α‖Exr − q‖2 in (3.4).

Thus, in general, we cannot guarantee a consistent decrease of either the dual optimality gap ∆r
d

or the primal optimality gap ∆r
p. However, somewhat surprisingly, the sum of the primal and dual

optimality gaps decreases for all r, as long as the dual step size α is sufficiently small. This is used

to establish the linear convergence of ADMM method.

Theorem 3.1 Suppose Assumptions A, B, C hold and that the level set of ∆d + ∆p is bounded,

i.e.,

δ :=
{

‖x‖ + ‖y‖ | [L(x; y)− d(y)] + [d∗ − d(y)] ≤ ∆0
p +∆0

d

}

< ∞. (3.5)

Then we have the following:
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(a) Every limit point of the sequence of iterates {xr, yr} generated by the ADMM algorithm (1.7)

is a primal-dual optimal solution pair for (1.1), provided the stepsize α is sufficiently small.

(b) If, additionally, the nonsmooth parts of f(x) are zero (i.e., hk(xk) = 0, for all k), then the

sequence of iterates {xr, yr} generated by the ADMM algorithm (1.7) converge linearly to an

optimal primal-dual solution for (1.1). Moreover, the sequence of function values {f(xr)}
also converges linearly.

Proof. We first prove part (a). We show by induction that the sum of optimality gaps ∆r
d +∆r

p is

reduced after each ADMM iteration, as long as the stepsize α is chosen sufficiently small. For any

r ≥ 1, we denote

x̄r = argmin
x̄∈X(yr)

‖x̄− xr‖. (3.6)

By induction, suppose ∆r−1
d +∆r−1

p ≤ ∆0
d+∆0

p for some r ≥ 1. Then, ‖xr‖ ≤ δ and it follows from

Assumption B that

‖xr − x̄r‖ ≤ τ‖∇̃L(xr; yr)‖ (3.7)

for some τ > 0 (independent of yr). To prove Theorem 3.1, we combine the two estimates (3.3)

and (3.4) to obtain

[∆r
p +∆r

d]− [∆r−1
p +∆r−1

d ] = [∆r
p −∆r−1

p ] + [∆r
d −∆r−1

d ]

≤ α‖Exr − q‖2 − γ‖xr+1 − xr‖2 − 2α(Exr − q)T (Ex̄r − q)

= α‖Exr − Ex̄r‖2 − α‖Ex̄r − q‖2 − γ‖xr+1 − xr‖2. (3.8)

Now we invoke (3.7) and Lemma 2.5 to lower bound ‖xr+1 − xr‖:

‖xr − x̄r‖ ≤ τ‖∇̃L(xr; yr)‖ ≤ τσ‖xr+1 − xr‖. (3.9)

Substituting this bound into (3.8) yields

[∆r
p +∆r

d]− [∆r−1
p +∆r−1

d ] ≤ (α‖E‖2τ2σ2 − γ)‖xr+1 − xr‖2 − α‖Ex̄r − q‖2. (3.10)

Thus, if we choose the stepsize α sufficiently small so that

0 < α < γτ−2σ−2‖E‖−2, (3.11)

then the above estimate shows that

[∆r
p +∆r

d] ≤ [∆r−1
p +∆r−1

d ],

which completes the induction. Moreover, the induction argument shows that if the stepsize α

satisfies the condition (3.11), then the descent condition (3.10) holds for all r ≥ 1.
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Now we argue that the sequence {xr, yr} converge to a primal-dual optimal solution pair for

the original optimization problem (1.1). By the descent estimate (3.10), we have

‖xr+1 − xr‖ → 0, ‖Ex̄r − q‖ → 0. (3.12)

By the assumption (3.5) and the above induction argument, the sequence {xr, yr} is bounded. Let

(x̄, ȳ) be any limit point of the sequence {xr, yr} so that

lim
r∈R,r→∞

(xr, yr) = (x̄, ȳ)

for some subsequence R. By (2.4), we obtain

d∗ − d(yr) ≤ τ ′‖Ex̄r − q‖2, r ∈ R.

By taking limit along this subsequence R, we have

0 ≤ lim
r∈R,r→∞

(d∗ − d(yr)) ≤ τ ′ lim
r∈R,r→∞

‖Ex̄r − q‖2 = 0.

This further implies that

lim
r∈R,r→∞

(d∗ − d(yr)) = d∗ − d(ȳ) = 0.

Thus, each limit point of the sequence {yr} is a dual optimal solution. Similarly, by taking limit

in (3.9) and using (3.12), we obtain

lim
r∈R,r→∞

‖xr − x̄r‖ = 0.

Thus, ‖x̄ − x̄r‖ ≤ ‖xr − x̄‖ + ‖xr − x̄r‖ → 0 as r → ∞ and r ∈ R. Since x̄r ∈ X(yr), it follows

that the limit point of {x̄r}r∈R must be an element of X(ȳ). Thus, x̄ ∈ X(ȳ), implying that x̄ is a

primal optimal solution for (1.1). This completes the proof of part (a).

Now we establish part (b) under the additional assumption that the nonsmooth part of f is

absent (i.e.,
∑K

k=1 hk(xk) = 0). We will show that the sum of optimality gaps ∆r
d + ∆r

p in fact

contracts geometrically after each ADMM iteration. To this end, we first notice that the inequalities

(3.9) and (3.10) imply

[∆r
p +∆r

d]− [∆r−1
p +∆r−1

d ] ≤ (α‖E‖2 − γτ−2σ−2)‖xr − x̄r‖2 − α‖Ex̄r − q‖2. (3.13)

Moreover, the condition

[L(xr+1; yr)− d(yr)] + [d∗ − d(yr)] = ∆r
d +∆r

p ≤ ∆0
d +∆0

p

implies ‖xr+1‖+ ‖yr‖ ≤ δ for all r ≥ 0. This further implies ‖xr‖ ≤ δ and ‖yr‖ ≤ δ for all r ≥ 1.

Therefore, it follows from (2.4) of Corollary 2.1 that we have the following cost-to-go estimate

∆r
d = d∗ − d(yr) ≤ τ ′‖∇d(yr)‖2 = τ ′‖Ex̄r − q‖2, (3.14)
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for some τ ′ > 0 and for all r ≥ 1. Moreover, we can use Corollary 2.1 to bound ‖xr − x̄r‖2 from

below by ∆r
p. In particular, we have from (2.5) that

‖xr − x̄r‖2 ≥ 1

τ ′
(L(xr; yr)− L(x̄r; yr))

=
1

τ ′
(

∆r
p + L(xr; yr)− L(xr+1; yr)

)

≥ 1

τ ′
(

∆r
p + γ‖xr − xr+1‖2

)

≥ 1

τ ′
∆r

p,

where the second step follows from the definition of ∆r
p (cf. (3.2)), while the third step is due to

Lemma 2.4. Rearranging the terms yields

‖xr − x̄r‖2 ≥ (τ ′)−1∆r
p, ∀ r.

Substituting this bound and (3.14) into (3.13), we obtain

[∆r
p +∆r

d]− [∆r−1
p +∆r−1

d ] ≤ (α‖E‖2 − τ−2σ−2γ)‖x̄r − xr‖2 − α‖Ex̄r − q‖2

≤ −(τ−2σ−2γ − α‖E‖2)(τ ′)−1∆r
p − α(τ ′)−1∆r

d

≤ −min{τ−2σ−2γ − α‖E‖2, α}(τ ′)−1[∆r
p +∆r

d].

Let us choose a sufficiently small α > 0 such that (3.11) holds. Then we have

λ := min{τ−2σ−2γ − α‖E‖2, α}(τ ′)−1 > 0.

Consequently, we have

[∆r
p +∆r

d]− [∆r−1
p +∆r−1

d ] ≤ −λ[∆r
p +∆r

d]

which further implies

0 ≤ [∆r
p +∆r

d] ≤
1

1 + λ
[∆r−1

p +∆r−1
d ].

This shows that the sequence {∆r
p+∆r

d} is Q-linearly convergent to zero. As a result, we conclude

that both ∆r
p and ∆r

d converge to zero R-linearly. By the inequality (3.10), we can further conclude

that

‖xr+1 − xr‖2 → 0, ‖Ex̄r − q‖ → 0

R-linearly. It then follows that the primal sequence {xr} converges R-linearly to a primal optimal

solution.

We next show that the dual iterate sequence {yr} is also R-linearly convergent. First, by

(3.13), we see that both ‖xr − x̄r‖ → 0 and ‖Ex̄r − q‖ → 0 R-linearly. This further implies that

Exr − q → 0 R-linearly. By the ADMM dual update formula (1.7), the linear convergence of

‖Exr − q‖ → 0 implies that ‖yr+1 − yr‖ → 0 R-linearly. Thus, the dual iterate sequence {yr} is
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R-linearly convergent. Furthermore, by part (a), the limit of the iterate sequence {xr, yr} must be

a primal-dual optimal solution pair for (1.1).

Finally, since

f(xr+1)− d∗ = [f(xr+1)− d(yr)] + [d(yr)− d∗]

= [L(xr+1; yr)− d(yr)]− [d∗ − d(yr)]− 〈yr, q − Exr+1〉 − ρ

2
‖Exr+1 − q‖2

= ∆r
p −∆r

d − 〈yr, q − Exr+1〉 − ρ

2
‖Exr+1 − q‖2

and

∆r
p → 0, ∆r

d → 0, ‖q − Exr‖ → 0

linearly, it follows that f(xr+1)− d∗ → 0 R-linearly (recall that yr is bounded by δ). The proof is

complete. Q.E.D.

An immediate corollary of Theorem 3.1 and Lemma 2.2 is that the ADMM algorithm is globally

convergent if the objective function f satisfies any of the two conditions of Lemma 2.2. If f is

additionally continuously differentiable, then the ADMM is globally linearly convergent.

4 Extensions to Other Variants of ADMM

The convergence analysis of Section 3 can be extended to some variants of the ADMM. We briefly

describe two of them below.

4.1 Proximal ADMM

In the original ADMM (1.7), each block xk is updated by solving a convex optimization subproblem

exactly. For large scale problems, this subproblem may not be easy to solve unless the matrix Ek

is unitary (i.e., ET
k Ek = I) in which case the variables in xk can be further decoupled (assuming fk

is separable). If the matrix Ek is not unitary, we can still employ a simple proximal gradient step

to inexactly minimize L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K). More specifically, we update each block of

xk according to the following procedure

xr+1
k = argmin

xk

{

hk(xk) + 〈yr, q − Ekxk〉+
〈

AT
k∇gk(Akx

r
k), xk − xrk

〉

+
β

2
‖xk − xrk‖2

+
〈

ρET
k

(

∑

j<k

Ejx
r+1
j −

∑

j≥k

Ejx
r
j − q

)

, xk − xrk

〉}

(4.15)
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in which the smooth part of the objective function in the k-th subproblem, namely,

gk(Akxk) + 〈yr, q − Ekxk〉+
ρ

2

∥

∥

∥Ekxk +
∑

j<k

Ejx
r+1
j +

∑

j>k

Ejx
r
j − q

∥

∥

∥

2

is linearized locally at xrk, and a proximal term β
2 ‖xk − xrk‖2 is added. Here, β > 0 is a positive

constant. With this change, updating xk is easy when hk (the nonsmooth part of fk) is separable.

For example, this is the case for compressive sensing applications where hk(xk) = ‖xk‖1, and the

resulting subproblem admits a closed form solution given by the component-wise soft thresholding

(also known as the shrinkage operator).

We claim that Theorem 3.1 holds for the proximal ADMM algorithm. Indeed, to establish the

(linear) convergence of the proximal ADMM (4.15), we can follow the same proof steps as that for

Theorem 3.1, with the only changes in the proof Lemmas 2.4-2.5. To see why Lemma 2.4 holds,

we just need to argue that there is a sufficient descent:

L(xr+1; yr)− L(xr; yr) ≤ −γ‖xr+1 − xr‖2, for some γ > 0 independet of yr. (4.16)

This property can be seen by bounding the smooth part of L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K), which

is given by

sk(xk) := gk(Akxk) + 〈yr, q − Ekxk〉+
ρ

2

∥

∥

∥

∑

j<k

Ejx
r+1
j +

∑

j>k

Ejx
r
j + Ekxk − q

∥

∥

∥

2
,

with the Taylor expansion at xrk:

sk(x
r+1
k ) ≤ sk(x

r
k) + 〈∇sk(x

r
k), x

r+1
k − xrk〉+

ν

2
‖xr+1

k − xrk‖2

where

ν := L‖Ak‖‖AT
k ‖+ ρ‖ET

k Ek‖

is the Lipschitz constant of sk(·) and L is the Lipschitz constant of ∇gk(·). Making the above

inequality more explicit yields

L(xr+1
1 , ..., xr+1

k−1, x
r+1
k , xrk+1, ..., x

r
K ; yr)− L(xr+1

1 , ..., xr+1
k−1, x

r
k, x

r
k+1, ..., x

r
K ; yr)

≤ hk(x
r+1
k )− hk(x

r
k) + 〈yr, Ek(x

r
k − xr+1

k )〉+
〈

AT
k∇gk(Akx

r
k), x

r+1
k − xrk

〉

+

〈

ρET
k





∑

j<k

Ejx
r+1
j +

∑

j≥k

Ejx
r
j − q



 , xr+1
k − xrk

〉

+
ν

2
‖xr+1

k − xrk‖2

≤ −β

2
‖xr+1

k − xrk‖2 +
1

2
(L‖Ak‖‖AT

k ‖+ ρ‖ET
k Ek‖)‖xr+1

k − xrk‖2

= −γ‖xr+1
k − xrk‖2, ∀ k, (4.17)
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provided the regularization parameter β satisfies

γ :=
1

2

(

β

2
− (L‖Ak‖‖AT

k ‖+ ρ‖ET
k Ek‖)

)

> 0.

In the above derivation of (4.17), the first step is due to the fact that the gradient of the smooth

part of L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K ; yr) is Lipschitz continuous with a modulus of L‖Ak‖‖AT

k ‖+
ρ‖ET

k Ek‖, while the second inequality follows from the definition of xr+1
k (cf. (4.15)). Summing

(4.17) over all k yields the desired estimate of sufficient descent (4.16).

It remains to verify that Lemma 2.5 still holds for the proximal ADMM algorithm. To this end,

we note from the corresponding optimality condition for (4.15)

xr+1
k = proxhk



xr+1
k −AT

k∇xk
gk(Akx

r
k) +ET

k y
r − ρET

k





∑

j<k

Ejx
r+1
j +

∑

j≥k

Ejx
r
j − q



− β(xr+1
k − xrk)



 .

Using this relation in place of (2.10) and following the same proof steps, we can easily prove that

the bound (2.9) in Lemma 2.5 can be extended to the proximal ADMM algorithm. Thus, the

convergence results in Theorem 3.1 remain true for the proximal ADMM algorithm (4.15).

4.2 Jacobi Update

Another popular variant of the ADMM algorithm is to use a Jacobi iteration (instead of a Gauss-

Seidel iteration) to update the primal variable blocks {xk}. In particular, we modify the ADMM

iteration (1.7) as follows:

xr+1
k = argmin

xk



hk(xk) + gk(Akxk)− 〈yr, Ekxk〉+
ρ

2

∥

∥

∥

∥

∥

∥

Ekxk +
∑

j 6=k

Ejx
r
j − q

∥

∥

∥

∥

∥

∥

2

 , ∀ k. (4.18)

In this case, we claim both Lemma 2.4 and Lemma 2.5 still hold. In particular, the strong convexity

of L(x; y) with respect to the variable block xk shows (2.7) still holds. The rest of the proof is the

same as that of Lemma 2.4 except one obvious (and minor) modification in (2.8).

The proof of Lemma 2.5 also requires only minor modifications. In particular, we use the

optimality condition for (4.18)

xr+1
k = proxhk



xr+1
k −AT

k∇xk
gk(Akx

r+1
k ) + ET

k y
r − ρET

k





∑

j 6=k

Ejx
r
j + Ekx

r+1
k − q









to replace (2.10). The remaining proof steps are quite similar to those in the proof of Lemma 2.5

and are omitted. Since both Lemma 2.4 and Lemma 2.5 hold for the ADMM algorithm with Jacobi

updates, we conclude that the convergence results of Theorem 3.1 remain true in this case.
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5 Concluding Remarks

In this paper we have established the convergence and the rate of convergence of the classical

ADMM algorithm when the number of variable blocks are more than two and in the absence

of strong convexity. Our analysis is a departure of the conventional analysis of ADMM algorithm

which relies on the descent of a weighted (semi-)norm of (xr−x∗, yr−y∗), see [40–43,46–49]. In our

analysis, we require neither the strong convexity of the objective function nor the row independence

assumption of the constrained matrix E. Instead, we use a local error bound to show that the sum of

the primal and the dual optimality gaps decreases after each ADMM iteration (even geometrically

under smooth conditions), although separately they may individually increase. An interesting

issue for further research is whether and how we can relax the smoothness condition in the linear

convergence analysis. In particular, it would be interesting to extend the convergence rate analysis

to allow nonsmooth components in the objective function f(x) of (1.1). The latter is important

in several emerging applications of ADMM (e.g., the group LASSO or matrix completion). Notice

that, when the nonsmooth components are present in f(x), our current analysis does establish the

global convergence of the ADMM algorithm and allows an arbitrary number of variable blocks.

However, the convergence rate analysis requires the objective function to be smooth.

Acknowledgement: The author is grateful to Dr. Min Tao of Nanjing University for her con-

structive comments.
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