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Abstract

We study causal dynamic approximation of non-bandlimited discrete time processes by

band-limited discrete time processes such that a part of the historical path of the underlying

process is approximated in Euclidean norm by the trace of a band-limited process. We

obtain some conditions of solvability and uniqueness of optimal solution for this problem.

An unique extrapolation to future times of the optimal approximating band-limited process

can be interpreted as an optimal forecast.
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1 Introduction

We study causal dynamic approximation of non-bandlimited discrete time processes by band-

limited discrete time processes. This task has many practical applications and was studied

intensively, mostly in continuous time setting. It is known that it is not possible to find an

ideal low-pass causal linear time-invariant filter. In continuous time setting, it is known that

the distance of the set of ideal low-pass filters from the set of all causal filters is positive [1]

and that the optimal approximation of the ideal low-pass filter is not possible [3]. Our goal
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is to substitute the solution of these unsolvable problems by solution of an easier problem in

discrete time setting where the filter is not necessary time invariant. Our motivation is that, for

some problems, time invariancy for a filter is not crucial. For example, a typical approach to

forecasting in finance is to approximate the known path of the stock price process by a process

that has an unique extrapolation. This extrapolation can be used as a forecast. This procedure

has to be done at current time; it is not required that the same forecasting rule will be applied at

future times. The present paper suggests to approximate discrete time processes by the discrete

time band-limited processes. More precisely, we suggest to approximate the known historical

path of the process by the trace of a band-limited process. In this setting, the approximating

sequence does not necessary match the underlying process at sampling points. This is different

from classical sampling approach (see, e.g., [9],[6],[7]). In [6]-[7], the estimate of the error norm is

given. In our setting, it is guaranteed that the approximation generates the error of the minimal

norm.

We obtain sufficient conditions of existence and uniqueness of an optimal approximating pro-

cess. The optimal process is derived in time domain in a form of sinc series. To accommodate the

current flow of observations, the coefficients of these series and have to be changed dynamically.

The approximating band-limited process can be interpreted as a causal and linear filter that

is not time invariant. An unique extrapolation to future times of the optimal approximating

band-limited process can be interpreted as an optimal forecast.

This paper develops further the approach suggested in [2], where the continuous time setting

was considered. We extend now this approach on discrete time processes.

2 Definitions

For a Hilbert space H, we denote by (·, ·)H the corresponding inner product. We use notation

sinc (x) = sin(x)/x.

Let Z be the set of all integers, and let Z+ be the set of all positive integers. We denote by

ℓr the set of all sequences x = {x(t)}t∈Z ⊂ R, such that ‖x‖ℓr =
(∑∞

t=−∞ |x(t)|r
)1/r

< +∞ for

r ∈ [1,∞) or ‖x‖ℓ∞ = supt |x(t)| < +∞ for r = +∞.

Let ℓ+r be the set of all sequences x ∈ ℓr such that x(t) = 0 for t = −1,−2,−3, ....

For x ∈ ℓ1 or x ∈ ℓ2, we denote by X = Zx the Z-transform

X(z) =
∞∑

t=−∞

x(t)z−t, z ∈ C.
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Respectively, the inverse Z-transform x = Z−1X is defined as

x(t) =
1

2π

∫ π

−π
X

(
eiω

)
eiωtdω, t = 0,±1,±2, ....

If x ∈ ℓ2, then X|T is defined as an element of L2(T).

Let τ ∈ Z ∪ {+∞} and θ < τ ; the case where θ = −∞ is not excluded. We denote

by ℓ2(θ, τ) the Hilbert space of complex valued sequences {x(t)}τt=θ such that ‖x‖ℓ2(θ,τ) =
(∑τ

t=θ |x(t)|
2
)1/2

< +∞.

Let UΩ,∞ be the set of all mappingsX : T → C such that X
(
eiω

)
∈ L2(−π, π) and X

(
eiω

)
=

0 for |ω| > Ω. Note that the corresponding processes x = Z−1X are said to be band-limited.

Let UΩ,N be the set of all X ∈ UΩ,∞ such that there exists a sequence {yk}
N
k=−N ∈ C2N+1

such that X
(
eiω

)
=

∑N
k=−N yke

ikω/Ω
I{|ω|≤Ω}, where I is the indicator function.

We assume that we are given Ω ∈ (π/2, π), N ∈ Z
+ ∪ {+∞}, s ∈ Z and q < s. The case of

q = −∞ is not excluded.

We assume that if N = +∞ then q = −∞.

Let T = {t ∈ Z : q ≤ t ≤ s} if q > −∞ and T = {t ∈ Z : t ≤ s} if q = −∞.

Let ZN be the set of all integers k such that |k| ≤ N if N < +∞, and let ZN be the set Z

of all integers if N = +∞.

Let YN be the Hilbert space of sequences {yk}
N
k=−N ⊂ C provided with the Euclidean norm,

i.e., such that ‖y‖YN
=

(∑
k∈ZN

|yk|
2
)1/2

< +∞.

Consider the Hilbert spaces of sequences X = ℓ2 and X− = ℓ2(q, s).

Let XΩ,N be the subset of X− consisting of sequences {x(t)}|t∈T , where x ∈ X are such that

x(t) = (Z−1X)(t) for t ∈ T for some X
(
eiω

)
∈ UΩ,N .

Up to the end of this paper, we assume that the following condition is satisfied.

Condition 2.1 Either N = +∞ or N < +∞ and the matrix {sinc (kπ + Ωm)}Nk,m=−N is

nondegenerate.

Proposition 2.1 Let N < +∞, and let Ω0 ∈ (π/2, π) be selected such that there exists p ∈ (0, 1)

such that

min
k∈ZN

|sinc (πk − Ωk)| ≥ p,

max
k,m∈ZN , t6=−k

|sinc (πk +Ωm)| <
p

2N
for all Ω ∈ [Ω0, π). (2.1)

Then the matrix {sinc (kπ +Ωm)}Nk,m=−N is nondegenerate for all Ω ∈ [Ω0, π).
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Clearly, (2.1) holds for any Ω0 that is close enough to π, since sinc (x) → 1 as x → 0 and

sinc (x) → 0 as x → πm, where m ∈ Z, m 6= 0. Therefore, Condition 2.1 can be satisfied with

selection of Ω being close enough to π.

Proposition 2.2 (i) If N = +∞ and q = −∞, then for any x ∈ XΩ,N there exists an unique

X ∈ UΩ,N such that x(t) = (Z−1X)(t) if t ≤ s.

(ii) If N is finite and s − q ≥ 2N + 1, then for any any x ∈ XΩ,N , there exists an unique

X ∈ UΩ,N such that x(t) = (Z−1X)(t).

(iii) Assume that N is finite and s− q ≤ 2N +1. In this case, {x(t)}t∈T ∈ XΩ,N for any x ∈ ℓ2

and any Ω ∈ [Ω0, π). If, in addition, s − q = 2N + 1, then there is an unique X ∈ UΩ,N

such that x(t) = (Z−1X)(t). If s − q < 2N + 1, then there are many X ∈ UΩ,N such that

x(t) = (Z−1X)(t); they form a linear manifold in XΩ,N .

By Proposition 2.2(i), the future {x(t)}t>s of a band-limited process x ∈ XΩ is uniquely

defined by its entire history {x(t), t ≤ s} for any Ω ∈ (0, π). By Proposition 2.2(ii)-(iii), the

future of even more ”smooth” processes from XΩ,N is uniquely defined by a finite set of historical

values that has at least 2N + 1 elements for any N < +∞ and Ω ∈ [Ω0, π).

3 Main results

3.1 Optimal band-limited approximation

Let x ∈ X be a process. We assume that the sequence {x(t)}t∈T represents available historical

data. Let Hermitian form F : XΩ,N × X− → R be defined as

F (x̂, x) =

s∑

t=q

|x̂(t)− x(t)|2.

Theorem 3.1 (i) For any N ≤ +∞, there exists an optimal solution x̂ of the minimization

problem

Minimize F (x̂, x) over x̂ ∈ XΩ,N . (3.1)

(ii) If either N = +∞ and s = −∞ or N is finite and s− q ≥ 2N +1, then the corresponding

optimal process x̂ is uniquely defined.
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(iii) If N is finite and s − q < 2N + 1 then there are many optimal processes x̂; they form a

linear manifold in XΩ,N .

Remark 3.1 By Proposition 2.2, there exists an unique extrapolation of the band-limited solu-

tion x̂ of problem (3.1) on the future times t > s, under the assumptions of Theorem 3.1(ii). It

can be interpreted as the optimal forecast (optimal given Ω and N).

3.2 Optimal sinc coefficients

Up to the end of this section, we assume that either N = +∞ or N < +∞, s− q ≥ 2N + 1.

To solve problem (3.1) numerically, it is convenient to expand X
(
eiω

)
via Fourier series.

Consider the mapping Q : YN → XΩ,N such that x̂ = Qy is such that x̂(t) = (Z−1X̂)(t) for

t ∈ (q, s], where

X̂
(
eiω

)
=

∑

k∈ZN

yke
ikω/Ω

I{|ω|≤Ω}. (3.2)

Clearly, this mapping is linear and continuous.

Let Hermitian form G : YN × X− → R be defined as

G(y, x) = F (Qy, x) =

s∑

t=q

|x̂(t)− x(t)|2, x̂ = Qy. (3.3)

Corollary 3.1 There exists an unique solution y of the minimization problem

Minimize G(y, x) over y ∈ YN . (3.4)

Problem (3.1) can be solved via problem (3.4); its solution can be found numerically if

N < +∞.

3.3 Solution of problem (3.4)

Let X̂ be defined by (3.2), where {yk} ∈ YN . Let x̂ = Z−1X̂. We have that

x̂(t) =
1

2π

∫ Ω

−Ω


 ∑

k∈ZN

yke
ikωπ/Ω


 eiωtdω =

1

2π

∑

k∈ZN

yk

∫ Ω

−Ω
eikωπ/Ω+iωtdω

=
1

2π

∑

k∈ZN

yk
eikπ+iΩt − e−ikπ−iΩt

ikπ/Ω + it
=

Ω

π

∑

k∈ZN

yksinc (kπ +Ωt). (3.5)
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We have that

G(y, x) =

s∑

t=q

|x̂(t)− x(t)|2 =

s∑

t=q

∣∣∣∣∣∣
Ω

π

∑

k∈ZN

yksinc (kπ +Ωt)− x(t)

∣∣∣∣∣∣

2

= (y,Ry)YN
− 2Re (y, rx)X−

+ (ρx, x)X−
. (3.6)

Here R : YN × YN → YN is a linear bounded Hermitian operator, r : X− → YN is a bounded

linear operator, ρ : X− × X− → X− is a linear bounded Hermitian operator.

It follows from the definitions that the operator R is non-negatively defined (it suffices to

substitute x(t) ≡ 0 into the Hermitian form).

3.4 The case when N < +∞

Up to the end of this section, we assume that N < +∞ and s − q ≥ 2N + 1. In this case, the

space YN is finite dimensional. It follows that the operator R can be represented via a matrix

R = {Rkm} ∈ C2N+1,2N+1, where Rkm = Rmk. In this setting, (Ry)k =
∑N

k=−N Rkmym.

Theorem 3.2 (i) For any N < +∞, the operator R is positively defined.

(ii) Problem (3.4) has a unique solution ŷ = R−1rx.

(iii) The components of the matrix R can be found from the equality

Rkm =
Ω2

π2

s∑

t=q

sinc (mπ +Ωt)sinc (kπ +Ωt). (3.7)

(iv) The components of the vector rx = {(rx)k}
N
k=−N can be found from the equality

(rx)k =
Ω

π

s∑

t=q

sinc (kπ +Ωt)x(t). (3.8)

Corollary 3.2 Let ŷ be the vector calculated as in Theorem 3.2, ŷ = {ŷk}
N
k=−N . The process

x̂(t) = x̂(t, q, s) =
Ω

π

∑

k∈ZN

yksinc (kπ +Ωt)

represents the output of a causal filter that is linear but not time invariant.
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4 Numerical experiments

In the numerical experiments described below, we have used MATLAB.

The experiments show that some eigenvalues of R are quite close to zero despite the fact that,

by Theorem 3.2, R > 0. Respectively, the error E = ‖Rŷ − rx‖ℓ2(q,s) for the MATLAB solution

of the equation Rŷ = rx does not vanish. Further, in our experiments, we found that the error

E can be decreased by the replacing R in the equation x̂ = R−1rx by Rε = R + εI, where I is

the unit matrix and where ε > 0 is small. In particular, for ε = 0.001, the corresponding error

E(ε) = ‖R−1
ε rx − ŷ‖ℓ2(q,s) < ‖R−1rx − ŷ‖ℓ2(q,s), i.e., the approximation for q ≤ t ≤ s is better

for ŷ = R−1
ε rx calculated for ε = 0.001 than for ŷ = R−1rx calculated for ε = 0. We have used

ε = 0.001 and N = 15.

Figures 5.1-5.2 show a example of a process x(t) and the corresponding band-limited process

x̂(t) approximating x(t) at times t ∈ {−25, ..., 15} (i.e, with q = −25, s = 15).

Figure 5.1 shows the result for Ω = 0.4; Figure 5.2 shows the result for Ω = 1. The values

of x̂(t) for t > 15 were calculated using the history {x(s)}−25≤s≤15 and can be considered as an

optimal forecast of x(t).

We have verified numerically that the matrix {sinc (kπ + Ωm)}Nk,m=−N is nondegenerate

in both cases. Therefore, Condition 2.1 is satisfied. In fact, we found that this matrix was

nondegenerate in all experiments for all kinds of Ω and N .

By Remark 3.1, the extrapolation of the process x̂ ∈ XΩ,N to the future times t > s can be

interpreted as the optimal forecast (optimal given Ω and N).

Remark 4.1 We have used the procedure of replacement R by Rε = R+εI with small ε > 0 to

reduce the error of calculation of the inverse matrix for the matrix R that is positively defined

but is close to a degenerate matrix. It can be noted that the same replacement could lead to a

meaningful setting for the case when ε > 0 is not small. More precisely, it leads to optimization

problem

Minimize G(y, x) + ε2
N∑

k=−N

|yk|
2 over y ∈ YN . (4.1)

The solution restrains the norm of y, and, respectively, the norm of x̂.

5 Proofs

Proof of Proposition 2.1. Let αm,k = sinc (πk + Ωm). By (2.1), there exists p ∈ (0, 1) and
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k ∈ ZN such that

|ak,−k| = |sinc (−πk +Ωk)| ≥ p,
∑

k∈ZN , k 6=−m

|am,k| =
∑

k∈ZN , k 6=−m

|sinc (πk +Ωm)| < 2N
p

2N
= p.

It follows that the matrix {αm,k}
N
m,k=−N can be transformed into a strictly diagonally dominant

matrix, i.e., a non-degenerate matrix. �

Proof of Proposition 2.2. The statement of this proposition for N = +∞ and q = −∞ is

known in principle. It suffices to consider s = 0 only. Without a loss of generality, we assume

that s = 0. Further, we assume that T = {t : t ≤ 0}, i.e., it is defined for q = −∞. It

suffices to prove that if x(·) ∈ XΩ,N is such that x(t) = 0 for t ∈ T , then x(t) = 0 for t > 0.

For the sake of completeness, we give below a proof based on Theorem 1 [4]. By this theorem,

processes x(·) ∈ XΩ,N are weakly predictable in the following sense: for any T > 0 , ε > 0, and

κ ∈ ℓ∞(0, T ), there exists κ̂(·) ∈ ℓ2(0,+∞) ∩ ℓ∞(0,+∞) such that

‖y − ŷ‖ℓ2 ≤ ε,

where

y(t)
∆

=

t+T∑

m=t

κ(t−m)x(m), ŷ(t)
∆

=

t∑

m=−∞

κ̂(t−m)x(m).

Let us apply this to a process x(·) ∈ XΩ,N such that x(t) = 0 for t ∈ T . Let us observe first

that

ŷ(t) = 0 ∀t < 0. (5.1)

Let T > 0 be given. Let us show that x(t) = 0 if 0 ≤ t ≤ T . Let {κi(·)}
+∞
i=1 be a basis in

ℓ2(−T, 0). Let yi(t)
∆

=
∑t+T

m=t κi(t−m)x(m). It follows from (5.1) that yi(t) = 0 if t ≤ 0. Since

yi(t) is a continuous function, it follows that yi(t) = 0 for t ≤ 0. It follows that x(t) = 0 if t ≤ T .

Further, let us apply the proof given above to the function x1(t) = x(t + T ). Clearly,

x1(·) ∈ XΩ,N and x1(t) = 0 for t < 0. Similarly, we obtain that x1(t) = 0 for all t ≤ T , i.e.,

x(t) = 0 for all t < 2T . Repeating this procedure n times, we obtain that x(t) = 0 for all t < nT

for all n ≥ 1. This completes the proof of Proposition 2.2 for N = +∞ and q = −∞.

It can be noted that, instead of [4], we could use predictability of band-limited processes

established in [5].

Let us prove the statements (ii) for a finite N . Let us consider first the case when s − q =

2N + 1. Without a loss of generality, we assume that s = N . It suffices to consider q = −N
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only; in this case, the set T = {t : q ≤ t ≤ s} = {t : −N ≤ t ≤ N}, i..e, T = ZN and it has

2N − 1 elements. It suffices to prove that if x(·) ∈ XΩ,N is such that x(t) = 0 for t ∈ T , then

x(t) = 0 for t > 0. By (3.5), we have that

∑

k∈ZN

at,kyk = 0, −N ≤ t ≤ N, (5.2)

for some set {yk}. By Proposition 2.1, linear system (5.2) is a system with a non-degenerate

matrix. Hence yk = 0 for all k. This completes the proof of Proposition 2.2 (ii) for the case

when s− q = 2N + 1.

Let us consider the case when s − q > 2N + 1. We assume again that s = N In this case,

the linear system (5.2) has considered jointly with the system

∑

k∈ZN

at,kyk = 0, −q ≤ t < −N. (5.3)

Clearly, system (5.2)-(5.3) admits only zero solution again. This completes the proof of Propo-

sition 2.2 (ii).

Let us prove statement (iii). Let us consider first the case when s − q = 2N + 1. Since

homogeneous linear system (5.2) allows only zero solution for Ω ∈ [Ω0, π) for some Ω0, it follows

that the non-homogeneous system

∑

k∈ZN

at,kyk = x(tk), −N ≤ t ≤ N (5.4)

admits a unique solution {yk} for any set {x(tk)}, Therefore, we proved that {x(t)}t∈T ∈ XΩ,N

for any x ∈ ℓ2. If s − q < 2N + 1, then there are many solutions of (5.4), and these solutions

form a linear manifold. This completes the proof of Proposition 2.2. �

Proof of Theorem 3.1. Let us prove statement (i). It suffices to prove that XΩ,N is a closed

linear subspace of ℓ2(q, s). In this case, there exists a unique projection x̂ of {x(t)}t∈T on XΩ,N ,

and the theorem is proven.

Clearly, for any N ≤ +∞, the set UΩ,N is a closed linear subspace of L2(−π, π). Consider

a mapping Q : UΩ,N → XΩ,N such that x(t) = (QX)(t) = (Z−1X)(t) for t ∈ T . It is a linear

continuous operator. By Proposition 2.2, it is a bijection. Since this mapping is continuous, it

follows that the inverse mapping Q−1 : XΩ,N → UΩ,N is also continuous (see Corollary in Ch.II.5

[10], p.77). Since the set UΩ,N is a closed linear subspace of L2(−π, π), it follows that XΩ,N is a

closed linear subspace of X−. This completes the proof of Theorem 3.1(i).

Statements (ii)-(iii) follows immediately from Proposition 2.2. This completes the proof of

Theorem 3.1. �
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Proof of Theorem 3.2. Let us prove statement (i). We know that R ≥ 0. Suppose that there

exists ȳ ∈ C2N+1 such that ȳ 6= 0 and Rȳ = 0. Let r∗ : YN → X− be the adjoint operator to the

operator r∗ : X− → YN . If r∗ȳ 6= 0 then there exists x ∈ X− such that G(ȳ, x) < 0, which is not

possible since G(y, x) ≥ 0 for all y, x. Therefore, r∗ȳ = 0, i.e., G(ȳ, x) = (ρx, x)X−
. Further, let

ŷ be a solution of problem (3.4). We have that G(ŷ, x) = G(ŷ+ ȳ, x). Hence ŷ+ ȳ 6= ŷ is another

solution of problem (3.4). This contradicts to Corollary 3.1 that states that this problem has

an unique solution. Statement (ii) follows from (i) and from classical theory of quadratic forms.

Statements (iii)-(iv) follow immediately from representation (3.6). This completes the proof of

Theorem 3.2. �
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Figure 5.1: Example of x(t) and band-limited process x̂(t) approximating x(t) for t ∈ {−25, .., 15},

with Ω = 0.4, and N = 15. The values of x̂(t) for t > 15 were calculated using {x(s)}s≤15 and can be

considered as an optimal forecast of x(t).
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Figure 5.2: Example of x(t) and band-limited process x̂(t) approximating x(t) for t ∈ {−25, .., 15},

with Ω = 1, and N = 15. The values of x̂(t) for t > 15 were calculated using {x(s)}s≤15 and can be

considered as an optimal forecast of x(t).
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