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Many man-made and natural phenomena, including the intensity
of earthquakes, population of cities, and size of international wars, are
believed to follow power-law distributions. The accurate identification
of power-law patterns has significant consequences for developing an
understanding of complex systems. However, statistical evidence for
or against the power-law hypothesis is complicated by large fluctua-
tions in the empirical distribution’s tail, and these are worsened when
information is lost from binning the data. We adapt the statistically
principled framework for testing the power-law hypothesis, developed
by Clauset, Shalizi and Newman, to the case of binned data. This ap-
proach includes maximum-likelihood fitting, a hypothesis test based
on the Kolmogorov-Smirnov goodness-of-fit statistic and likelihood
ratio tests for comparing against alternative explanations. We evalu-
ate the effectiveness of these methods on synthetic binned data with
known structure and apply them to twelve real-world binned data
sets with heavy-tailed patterns.

1. Introduction. Power-law distributions have attracted broad scien-
tific interest [36] both for their mathematical properties, which sometimes
lead to surprising consequences, and for their appearance in a wide range
of natural and man-made phenomena, spanning physics, chemistry, biology,
computer science, economics and the social sciences [21, 23, 33, 13].

Quantities that follow a power-law distribution are sometimes said to
exhibit “scale invariance”, indicating that common, small events are not
qualitatively distinct from rare, large events. Identifying this pattern in em-
pirical data can indicate the presence of unusual underlying or endogenous
processes, e.g., feedback loops, network effects, self-organization or optimiza-
tion, although not always [29]. Knowing that a quantity does or does not
follow a power law provides important theoretical clues about the underlying
generative mechanisms we should consider. It can also facilitate statistical
extrapolations about the likelihood of very large events [7].
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The task of deciding if some quantity does or does not plausibly fol-
low a power law is complicated by the existence of large fluctuations in
the empirical distribution’s upper tail, precisely where we wish to have the
most accuracy. These fluctuations are amplified when the empirical data are
binned, i.e., converted into a series of counts over a set of non-overlapping
ranges in event size. As a result, the upper tail’s true shape is often obscured
and we may be unable to distinguish a power-law pattern from alternative
heavy-tailed distributions like the stretched exponential or the log-normal.
Here, we present a set of principled statistical methods, adapted from [6],
for answering these questions when the data are binned.

Statistically, power-law distributions generate large events orders of mag-
nitude more often than would be expected under a Normal distribution,
and thus such quantities are not well-characterized by quoting a typical or
average value. For instance, the 2000 U.S. Census indicates that the aver-
age population of a city, town or village in the United States contains 8226
individuals, but this value gives no indication that a significant fraction of
the U.S. population lives in cities like New York and Los Angeles, whose
populations are roughly 1000 times larger than the average. Extensive dis-
cussions of this and other properties of power laws can be found in reviews
by Mitzenmacher [21], Newman [23], Sornette [33] and Gabaix [13].

Mathematically, a quantity x obeys a power law if it is drawn from a
probability distribution with a form

Pr(x) ∝ x−α ,(1.1)

where α > 1 is the exponent or scaling parameter and x > 0. In practice,
few empirical phenomena obey power laws for all values of x. More often,
the power-law pattern holds only above some value xmin, in which case we
say that the tail of the distribution follows a power law.

Recently, Clauset, Shalizi and Newman [6] introduced a set of statisti-
cally principled methods for fitting and testing the power-law hypothesis
for continuous or discrete-valued data. Their approach combines maximum-
likelihood techniques for fitting a power-law model to the distribution’s up-
per tail, a distance-based method [30] for automatically identifying the point
xmin above which the power-law behavior holds [12], a goodness-of-fit test
based on the Kolmogorov-Smirnov (KS) statistic for characterizing the fitted
model’s statistical plausibility, and a likelihood ratio test [37] for comparing
it to alternative heavy-tailed distributions.

Here, we adapt these methods to the less common but important case of
binned empirical data, i.e., when we see only the frequency of events within
a set of non-overlapping ranges. Our goal is not to provide an exhaustive
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evaluation of all possible principled approaches to considering power-law
distributions in binned empirical data, but rather the more narrow aim of
adapting the popular framework of [6] to binned data. Such data often occur
when direct measurements are impractical or impossible and only the order
of magnitude is known, or when we recover measurements from an existing
histogram. Sometimes, when the original measurements are unavailable, this
is simply the form of the data we receive and despite the loss of informa-
tion due to binning, we would still like to make strong statistical inferences
about power-law distributions. This requires specialized tools not currently
available.

Toward this end, we present maximum-likelihood techniques for fitting
the power-law model to binned data, for identifying the smallest bin bmin

for which the power-law behavior holds, for testing its statistical plausibility,
and for comparing it with alternative distributions.1 These methods make no
assumptions about the type of binning scheme used, and can thus be applied
to linear, logarithmic or arbitrary bins. We evaluate the effectiveness of our
techniques on synthetic data with known structure, showing that they are
highly accurate when given a sample of sufficient size. Their effectiveness
does depend on the amount of information lost due to binning, and we
quantify this loss of accuracy and statistical power in several ways.

Following [6], we advocate the following recipe for investigating the power-
law hypothesis in binned empirical data.

1. Fit the power law. Section 3. Estimate the parameters bmin and α of
the power-law model.

2. Test the power law’s plausibility. Section 4. Conduct a hypothesis test
for the fitted model. If p ≥ 0.1, the power-law is a plausible statistical
hypothesis for the data; otherwise, it is rejected.

3. Compare against alternative distributions. Section 5. Compare the power
law to alternative heavy-tailed distributions via a likelihood ratio test.
For each alternative, if the log-likelihood ratio is significantly away
from zero, then its sign indicates whether or not the alternative is
favored over the power-law model.

The model comparison step could be replaced with another statistically prin-
cipled approach for model comparison, e.g., fully Bayesian, cross-validation
or minimum description length. We do not describe these techniques here.

Practicing what we advocate, we then apply our methods to 12 real-world
data sets, all of which exhibit heavy-tailed, possibly power-law behavior.
Many of these data sets were obtained in their binned form. We also include a

1Our code is available at http://www.santafe.edu/~aaronc/powerlaws/bins/



4 Y. VIRKAR AND A. CLAUSET

few examples from [6] to demonstrate consistency with their results. Finally,
to highlight the concordance of our binned methods with the continuous or
discrete-valued methods of [6], we organize our paper in a similar way.

2. Binned Power-Law Distributions. Conventionally, a power-law
distributed quantity can be either continuous or discrete. For continuous
values, the probability density function (pdf) of a power law is defined as

p(x) dx = Pr(x ≤ X < x+ dx) = C x−α dx ,(2.1)

where X is the observed value and C is the normalization constant. This
density diverges as x → 0 and so Equation (2.1) cannot hold for all x ≥ 0.
Instead, there must exist some lower-bound to the power-law behavior, which
we denote xmin. In this case, so long as α > 1, it is easy to calculate the
normalizing constant, yielding

Pr(x) =
α− 1

xmin

(

x

xmin

)−α

.(2.2)

For discrete values, the probability mass function is defined as

Pr(x) =
x−α

ζ(α, xmin)
,(2.3)

where ζ(α, xmin) =
∑∞

n=0(n + xmin)
−α is the generalized or Hurwitz zeta

function, and serves as the normalization constant.
Because formulae for continuous distributions, like Eq. (2.2), tend to be

simpler than those for discrete distributions, which often involve special
functions, in the remainder of the paper, we present analysis only of the
continuous case. The methods, however, are entirely general and can easily
be adapted to the discrete case.

A binned data set is sequence of counts of observations over a set of non-
overlapping ranges. Let {xi} denote our N original empirical observations.
After binning, we discard these observations and retain only the given ranges
or bin boundaries B and the counts within them H. Letting k be the number
of bins, the bin boundaries B are denoted

B = (b1, b2, . . . , bk) ,(2.4)

where b1 > 0, k > 1, the ith bin covers the interval x ∈ [bi, bi+1), and by
convention we assume the kth bin extends to +∞. The bin counts H are
denoted

H = (h1, h2, . . . , hk) ,(2.5)
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where hi = #{bi ≤ xi < bi+1} counts the number of raw observations in the
ith bin.

The probability that some observation falls within the ith bin is the frac-
tion of total density in the corresponding interval:

Pr(bi < x < bi+1) =

∫ bi+1

bi

p(x) dx

= xα−1
min

[

bi
1−α − bi+1

1−α
]

.(2.6)

Subsequently, we assume that the binning scheme B is fixed by an external
source, as otherwise we would have access to the raw data and we could
apply direct methods to test the power-law hypothesis [6].

To test the power-law hypothesis using binned data, we must first estimate
the scaling exponent α, which requires choosing the smallest bin for which
the power law holds, which must be a member of the sequence B, i.e., it
must be a bin boundary. We denote this choice bmin in order to distinguish
it from xmin.

3. Fitting Power Laws to Binned Empirical Data. Many studies
of empirical distributions and power laws use poor statistical methods for
this task. The most common approach is to first tabulate the histogram
and then fit a regression line to the log-frequencies. Taking the logarithm of
both sides of Equation (2.1), we see that the power-law distribution obeys
the relation ln p(x) = lnC − α lnx, implying that it follows a straight line
on a doubly logarithmic plot. Fitting such a straight line may seem like a
reasonable approach to estimate the scaling parameter α, perhaps especially
in the case of binned data where binning will tend to smooth out some of
the sampling fluctuations in the upper tail. Indeed, this procedure has a
long history, being used by Pareto in the analysis of wealth distributions in
the late 19th century [1], by Richardson in analyzing the size of wars in the
early 20th century [31], and by many researchers since.

This method and its variations, however, generate significant errors un-
der relatively common conditions and give no warning of their mistakes, and
their results should not be trusted (see [6] for a detailed explanation). In this
section, we describe a generally accurate method for fitting a power-law dis-
tribution to binned data, based on maximum likelihood. Using synthetically
generated binned data, we illustrate its accuracy and the inaccuracy of the
linear regression approach.

3.1. Estimating the Scaling Parameter. First, we consider the task of
estimating the scaling parameter α. Correctly estimating α requires a good
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choice for the lower bound bmin, but for now we will assume that this value is
known. In cases where it is not known, we may estimate it using the methods
given in Section 3.3.

The chosen method for fitting parameterized models to empirical data is
the method of maximum likelihood, which provably gives accurate parameter
estimates in the limit of large sample size [3, 38]. Specifically, it can be shown
that the maximum likelihood estimate θ̂ is asymptotically consistent, i.e., in
the limit of large sample size n → ∞, the estimate converges on the truth
θ̂ → θ. Details of our derivations are given in Appendix A. In this section,
we focus on the resulting formula’s use. Here and elsewhere, we use “hatted”
symbols to denote estimates derived from data; hatless symbols denote the
true values, which are typically unknown.

Assuming that our observations are drawn from a power-law distribution
above the value bmin, the log-likelihood function is

L = n(α− 1) ln bmin +
k
∑

i=min

hi ln
[

bi
(1−α) − bi+1

(1−α)
]

,(3.1)

where n =
∑k

i=min hi is the number of observations in the bins at or above

bmin. (We reserve N for the total sample size, i.e., N =
∑k

i=1 hi.) For most
binning schemes, including linearly-spaced bins, a closed form solution for
the maximum likelihood estimator (MLE) will not exist, and the choice of
α̂ must be made by numerically maximizing Equation (3.1) over α.

When the binning scheme is logarithmic, i.e., when bin boundaries are
successive powers of some constant c, an analytic expression for α̂ may be
obtained. Letting the bin boundaries be B =

(

cs, cs+1, . . . , cs+k
)

, where s is
the power of the smallest bin (often 0), the MLE for α̂ is

α̂ = 1 + logc

[

1 +
1

(s− 1)− logc bmin +
1
n

∑k
i=min i hi

]

.(3.2)

The standard error associated with α̂ is:

σ̂ =
cα̂ − c

c(1+α̂)/2 ln c
√
n

.(3.3)

(Note: this expression becomes positively biased for very small values of n,
e.g., c = 2, n . 50.)

The choice of the logarithmic spacing c plays an important role in Eq. (3.3);
it also has a significant impact on our ability to distinguish between differ-
ent types of tail behavior (see Section 5). The larger c, i.e., the greater bin
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Fig 1. Estimates of α from linearly and logarithmically binned data using maximum like-
lihood and both ordinary least-squares (OLS) and weighted least-squares (WLS) linear
regression methods, using either (a) the pdf or (b) the complementary cdf. We omit error
bars when they are smaller than the symbol size. In all cases, the MLE is most accurate,
sometimes dramatically so.

widths, the more we combine observations of different sizes into the same
bin and the more information we lose from binning. This loss of information
increases our statistical uncertainty and makes it more difficult to distin-
guish power-law from non-power-law tail behavior. For instance, compared
to a scheme with c = 2 (powers of two), a scheme with c = 10 (powers
of ten) can require nearly eight times as many observations to achieve the
same accuracy in α̂ (see Appendix A.2). If a choice of c may be made before
the data are collected, it should be as small as possible in order to minimize
statistical uncertainty and maximize subsequent statistical power.

3.2. Performance of Scaling Parameter Estimators. To demonstrate the
accuracy of the maximum likelihood approach, we conducted a set of numer-
ical experiments using synthetical data drawn from a power-law distribution,
which were then binned for analysis. In practical situations, we typically do
not know a priori, as we do in this section, that our data are truly drawn
from a power-law distribution. Our estimation methods choose the parame-
ter of the best fitting power-law form but will not tell us if the power law is a
good model of the data (or more precisely, if the power law is not a terrible
model), or if it is a better model than some alternatives. These questions
are addressed in Sections 4 and 5.

We drew N = 104 random deviates from a continuous power-law distribu-
tion [6] with xmin = 10 and a variety of choices for α. We then binned these
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data using either a linear scheme, with bi = 10i (constant width of ten), or
a logarithmic scheme, with c = 2 (powers of two such that bi = 10× 2(i−1)).
Finally, we fitted the power-law form to the resulting bin counts using the
techniques given in Section 3.1. To illustrate the errors produced by regres-
sion methods, we also estimated α using ordinary least-squares (OLS), on
both the pdf and the complementary cdf, and weighted least-squares (WLS)
regression, in which we weight each bin in the pdf by the number of obser-
vations it contains.

Figure 1 shows the results, illustrating that maximum likelihood produces
highly accurate estimates, while the regression methods all yield significantly
biased values, sometimes dramatically so. The especially poor estimates for
a linearly binned pdf are due to the tail’s very noisy behavior: many of the
upper-tail bins have counts of exactly zero or one, which induces significant
bias in both the ordinary and weighted approaches. The regression methods
yield relatively modest bias in fitting to a logarithmically binned pdf and
a complementary cdf (also called a “rank-frequency plot”—see [23]), which
smooth out some of the noise in the upper tail. However, even in these cases,
maximum likelihood is still more accurate.

3.3. Estimating the Lower Bound on Power-Law Behavior. Few empiri-
cal quantities follow a power-law distribution for all values of x. More com-
monly, the power law holds only above some value, in the upper tail, while
the body follows some other distribution. Our goal is not to model the entire
distribution, which may have very complicated structure. Instead, we aim
for the simpler task of identifying some value bmin above which the power-
law behavior holds, estimate the scaling parameter α from those data, and
discard the non-power-law data below it.

The method of choosing bmin has a strong impact on both our estimate for
α and the results of our subsequent tests. Choosing bmin too low may bias α̂
by including non-power-law data in the fit, while choosing too high throws
away legitimate data and increases our statistical uncertainty. From a prac-
tical perspective, we should prefer to be slightly conservative, throwing away
some good data if it means avoiding bias. Unfortunately, maximum likeli-
hood fails for estimating the lower bound because bmin truncates the sample
and the maximum likelihood choice is always bmin = bk, i.e., the last bin.
Some non-likelihood-based method must be used. The common approach of
choosing bmin by visual inspection on a log-log plot of the empirical data is
obviously subjective, and thus should also be avoided.

The approach advocated in [6], originally proposed in [8], is a distance-
based method [30] that chooses xmin by minimizing the distributional dis-
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tance between the fitted model and the empirical data above that choice.
This approach has been shown to perform well on both synthetic and real-
world data. Other principled approaches exist [4, 10, 11, 12, 16], although
none is universally accepted. A detailed comparison of these alternatives is
beyond the scope of this paper, and henceforth we focus on adapting the
distance-based method of [6] to binned empirical data.

Our recipe for choosing bmin is as follows.

1. For each possible bmin ∈ (b1, b2, b3, . . . , bk−1), estimate α̂ using the
methods described in Section 3.2 for the counts hmin and higher. (For
technical reasons, we require the fit to span at least two bins.)

2. Compute the Kolmogorov-Smirnov (KS) goodness-of-fit statistic2 be-
tween the fitted cdf and the empirical distribution.

3. Choose as b̂min the bin boundary with the smallest KS statistic.

The KS statistic is defined in the usual way [27]. Let P (b | α̂, bmin) be the cdf
for the binned power law, with parameter α̂ and current choice bmin, and let
S(b) be the cumulative binned empirical distribution for counts in bins bmin

and higher. We choose b̂min as the value that minimizes

D = max
b≥bmin

|S(b)− P (b |α, bmin)| .(3.4)

Thus, when bmin is too low, reaching into the non-power-law portion of the
empirical data, the KS distance will be high because the power-law model
is a poor fit to those data; similarly, when bmin is too high, the sample size
is small and the KS distance will also be high. Both effects are small when
bmin coincides with the beginning of the power-law behavior.

3.4. Performance of Lower Bound Estimator. Following [6], we evaluate
the accuracy of this method using synthetic data drawn from a composite
distribution that follows a power law above some choice of bmin but some
other distribution below it. We then apply both linear and logarithmic bin-
ning schemes, for a variety of choices of the true bmin. The form of our test
distribution is

p(x) =

{

C e−α(x/bmin−1) b1 ≤ x < bmin

C (x/bmin)
−α otherwise ,

(3.5)

which has a continuous slope at bmin and thus departs slowly from the power-
law form below this point. This provides a difficult task for the estimation.

2Other choices of distributional distances [27] are possible options, e.g., Pearson’s χ2

cumulative test statistic. In practice, like [6], we find the KS statistic is superior.
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Fig 2. Estimated bmin using the KS-minimization method; (a) the true bin number versus
estimated bin number and (b) true α versus α̂ for true bin number 10 (dashed line shows
α̂ = α). In both cases, we show results for logarithmic and linear binning schemes.

In our numerical experiments, we fix the sample size at N = 10, 000
and use a linear scheme, bi = 1 + 10(i − 1) (constant width of 10) and a
logarithmic one, bi = 2(i−1) (powers of 2). For our first experiment, we hold
the scaling parameter fixed at α = 2.5 and characterize the method’s ability
to recover the true threshold bmin, which we vary across the values of B. In
a second experiment, we fix bmin at the tenth bin boundary and characterize
the impact of misestimating bmin on the estimated scaling parameter, and
so vary α over the interval [1.5, 3.5].

In both experiments, the KS-minimization approach generally yields ac-
curate estimates of both the threshold and scaling parameters. Figure 2a
shows the results for estimating the threshold, which is reliably identified
in the logarithmic binning scheme and slightly underestimated in the linear
scheme. Figure 2b shows that in either case, if we treat bmin as a nuisance
parameter, the scaling parameter itself is accurately estimated.

The slight deviations from the y = x line in both figures highlight some of
the pitfalls of working with binned data and power-law distributions. First,
in estimating bmin, the linear binning scheme yields a slight but consistent
underestimate, thereby including some non-power-law data in the estima-
tion, while the logarithmic scheme shows no such bias. This arises from the
differences in linear versus logarithmic binning. Because logarithmic bins
span increasingly large intervals, the distribution’s curvature around bmin

is accentuated, presenting a more obvious target for the algorithm, while
a linear scheme spreads this curvature across several bins. The algorithm’s
choice of b̂min slightly below bmin, however, does not induce a substantial
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bias in α, which remains close to the true value (Fig. 2b).
Second, when the true value is α & 3, the slight over-estimate of α under

a logarithmic scheme is caused by a special kind of small sample bias. This
bias appears either when either the number of observations or the number
of bins in the tail region is small.

To illustrate this “few bins” bias, even when sample size is large, we
conduct a third experiment: using the same powers-of-two binning scheme,
we now fix bmin = 29 and α = 3.5, while varying the sample size N . As
N increases, a larger number of bins above bmin will be populated, and we
measure the accuracy of α̂ as this number increases. Figure 3 shows that the
bias in α̂ decreases with sample size, as we expect, but with a second-order
variation that decreases as the average number of bins in the tail region
increases. The implication is that, researchers must be cognizant of both
small sample issues and having too few bins in the scaling region.

4. Testing the Power-Law Hypothesis. The methods of Section 3
allow us to accurately fit a power-law tail model to binned empirical data.
These methods, however, provide no warning if the fitted model is a poor
fit to the data, i.e., when the power-law model is not a plausible generating
distribution for the observed bin counts. Because a wide variety of heavy-
tailed distributions, such as the log-normal and the stretched exponential
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(also called the Weibull), among others, can produce samples that resemble
power-law distributions (see Fig. 4a), this is a critical question to answer.

Toward this end, we adapt the goodness-of-fit test of [6] to the context of
binned data. Demonstrating that the power-law model is plausible, however,
does not determine whether it is a more plausible than alternatives. To
answer this question, we adapt the likelihood ratio test of [6] to binned data
in Section 5. For both, we additionally explore the impact of information
loss from binning on the statistical power of these tests.

4.1. Goodness-of-Fit Test. Given the observed bin counts and a hypoth-
esized power-law distribution from which the counts were drawn, we would
like to know whether the power law is plausible, given the counts.

A goodness-of-fit test provides a quantitative answer to this question in
the form of a p-value, which in turn represents the likelihood that the hy-
pothesized model would generate data with a more extreme deviation from
the hypothesis than the empirical data. If p is large (close to 1), the difference
between the data and model may be attributed to statistical fluctuations;
if it is small (close to 0), the model is rejected as an implausible generat-
ing process for the data. From a theoretical point of view, failing-to-reject
is sufficient license to proceed, provisionally, with considering mechanistic
models that assume or generate a power law for the quantity of interest.

Our approach for determining whether a quantity is plausibly power-law
distributed adapts that of [6] to binned data. The first step is to fit the
power-law model to the bin counts, using methods described in Section 3 to
choose α̂ and b̂min. Given this hypothesized model M , the remaining steps
are as follows; in each case, we always use the fixed binning scheme B given
to us with the empirical data.

1. Compute the distanceD∗ between the estimated modelM and the em-
pirical bin counts H, using the KS goodness-of-fit statistic, Eq. (3.4).3

2. Using a semi-parametric bootstrap, generate a synthetic data set with
N values that follows a binned power-law distribution with parameter
α̂ at and above b̂min, but follows the empirical distribution below b̂min.
Call these synthetic bin counts H ′.

3. Fit the power-law model to H ′, yielding a new model M ′ with param-
eters b̂′min and α′.

4. Compute the distance D between M ′ and H ′.
5. Repeat Steps 2–4 many times, and report p = Pr(D ≥ D∗), the frac-

tion of these distances that are at least as large at D∗.

3The Pearson’s χ2 statistic could also be used, however we do not recommend it, due
to its high central tendency and variance [24].
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To generate synthetic binned data, the semi-parametric bootstrap in Step 2
is as follows. Recall that n counts the number of observations from the
data H that fall in the power-law region. With probability n/N , generate
a non-binned power-law random deviate [6] from M and increment the cor-
responding bin count in the synthetic data set; otherwise, with probability
1− n/N , increment the count of a bin i below b̂min chosen with probability
proportional to its empirical count hi. Repeating this process N times, we
generate a complete synthetic data set with the desired properties.

We note that such a Monte Carlo procedure is necessary to produce an
unbiased estimate of p because our original model parameters M are esti-
mated from the empirical data. The semi-parametric bootstrap ensures that
the subsequent values D are estimated in precisely the same way—by es-
timating both bmin and α from the synthetic data—that we estimated D∗

from H. Failure to estimate b̂′min from H ′, using b̂min from H instead, yields
a biased and thus unreliable p-value.

How many such synthetic data sets should we generate? The answer given
by [6] also holds in the case of binned data. We should generate at least 1

4ǫ
−2

synthetic data sets to achieve an accuracy of knowing p to within ǫ of the
true value. For example, if we wish to know p to within ǫ = 0.01, we should
generate about 2500 synthetic data sets.

Given an estimate of p, we must decide if it is small enough to reject the
power-law hypothesis. We recommend the relatively conservative choice of
ruling out the power law if p < 0.1. This is, when we reject the power law
hypothesis, the probability is 1 in 10 or less that we would get data that
agree as poorly with the fitted model as the data we have. Smaller rejec-
tion thresholds are conventional in some domains, but here we recommend
against a smaller cutoff as it would let through some quantities that in fact
have only a small chance of actually following a power law.

Finally, a large value of p does not imply the correctness of the power
law for the data. A large p can arise for at least two reasons. First, there
may be alternative distributions that fit the data as well or better than the
power law, and other tests are necessary to make this determination (which
we cover in Section 5). Second, for small values of n, or for a small number
of bins above bmin, the empirical distribution may closely follow a power-
law shape, yielding a large p, even if the underlying distribution is not a
power law. This happens not because the goodness-of-fit test is deficient,
but simply because it is genuinely hard to rule out the power law if we have
very little data. For this reason, a large p should be interpreted cautiously
either if n or the number of bins in the fitted region is small.
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Fig 4. (a) Logarithmic histograms for two N = 100 samples from a power law and a log-
normal distribution. Both exhibit a linear pattern on log-log axes, despite only one being
a power law. (b) Mean p for fitting the power-law hypothesis to these distributions, as a
function of sample size N ; dashed line gives the threshold for rejecting the power law. For
power-law data, p is typically high, while for the non-power-law data, p is a decreasing
function of sample size. Notably, the binning scheme’s coarseness determines the sample
size required to correctly reject the power-law model.

4.2. Performance of the Goodness-of-Fit Test. To demonstrate the ef-
fectiveness of our goodness-of-fit test for binned data, we drew various-sized
synthetic data from two distributions: a power law with α = 2.5 and a log-
normal distribution with µ = 0.3 and σ = 2.0, both with bmin = 16. The
choice of log-normal provides a strong test because for a wide range of sam-
ple sizes, it produces bin counts that are reasonably power-law-like when
plotted on log-log axes (Fig. 4a).

Figure 4b shows the average p-value, as a function of sample size N ,
for fitting the power-law hypotheses to data drawn from these distributions.
When we fit the correct model to the data, the resulting p-value is uniformly
distributed, and 〈p〉 = 0.5, as expected. When applied to log-normal data,
however, the p-value remains above our threshold for rejection only for small
samples (N . 300), and we correctly reject the power law for larger samples.
We note, however, that the sample size at which the p-value leads to a correct
rejection of the power law depends on the binning scheme, requiring a larger
sample size when the binning scheme is more coarse (larger c).

5. Alternative Distributions. The methods described in Section 4
provide a way to test whether our binned data plausibly follow a power
law. However, many distributions, not all of them heavy tailed, can produce
data that appear to follow a power law when binned. A large p-value for the
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name
distribution p(x) = Cf(x)

f(x) C

power law
with cutoff

x−αe−λx λ1−α

Γ(1−α,λxmin)

exponential e−λx λeλxmin

stretched
exponential xβ−1e−λxβ

βλeλx
β
min

log-normal 1
x
exp

[

− (lnx−µ)2

2σ2

] √

2
πσ2

[

erfc
(

lnxmin−µ
√

2σ

)]−1

Table 1

Definitions of alternative distributions for our likelihood ratio tests. For each, we give the
basic functional form f(x) and the appropriate normalization constant C such that

∫∞

xmin

Cf(x) dx = 1 for the continuous case. In application to binned data, a piecewise

integration over bins, like Eq. (2.6), was carried out and parameters estimated via
numerically maximizing the log-likelihood function.

power-law model provides no information about whether some other distri-
bution might be an equally plausible or even a better explanation. Demon-
strating that such alternatives are worse models of the data strengthens the
statistical argument in favor of the power law.

There are several principled approaches to comparing the power-law model
to alternatives, e.g., cross validation [34], minimum description length [15],
or Bayesian techniques [20]. Following [6], we constructed a likelihood ratio

test [37] (LRT) for binned data. This approach has several attractive fea-
tures, including the ability to fail to distinguish between the power-law and
an alternative, e.g., due to small sample sizes. Information loss from binning
reduces the statistical power of the LRT, and thus its results for binned data
should be interpreted cautiously. Further, although there are generally an
unlimited number of alternative models, only a few are commonly proposed
alternatives or correspond to common theoretical mechanisms. We focus our
efforts on these, although in specific applications, a researcher must use their
expert judgement as to what constitutes a reasonable alternative.

In what follows, we will consider four alternative distributions, the ex-
ponential, the log-normal and the stretched exponential (Weibull) distribu-
tion, plus a power-law distribution with exponential cutoff. Table 1 gives the
mathematical forms of these models.

5.1. Direct Comparison of Models. Given a pair of parametric models
A and B for which we may compute the likelihood of our binned data, the
model with the larger likelihood is a better fit. The logarithm of the ratio
of the two likelihoods R provides a natural test statistic for making this
decision: it is positive or negative depending on which distribution is better,
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and it is indistinguishable from zero in the event of a tie.
Because our empirical data are subject to statistical fluctuations, the sign

of R also fluctuates. Thus, its direction should not be trusted unless we may
determine that its value is probably not close to R = 0. That is, in order to
make a firm choice between distributions, we require a log-likelihood ratio
that is sufficiently positive or negative that it could not plausibly be the
result of a chance fluctuation from a true result close to zero.

The log-likelihood ratio is defined as

R = ln

(

LA(H | θ̂A)
LB(H | θ̂B)

)

,(5.1)

where by convention LA is the likelihood of the model under the power-law
hypothesis, fitted using the methods in Section 3, and LB is the likelihood
under the alternative distribution, again fitted by maximum likelihood. To
guarantee the comparability of the models, we further require that they be
fitted to the same bin counts, i.e., to those at or above b̂min chosen by the
power law model.4

Given R, we use the method proposed by Vuong [37] to determine if the
observed sign of R is statistically significant. This yields a p-value: if p is
small (say, p < 0.1), then the observed sign is not likely due to chance
fluctuations around zero; if p is large, then the sign is not reliable and the
test fails to favor one model over the other. Technical details of the likelihood
ratio test are given in Appendix B. Results from [6] show that this hypothesis
test provides a substantial boost in the reliability of the likelihood ratio
test, yielding accurate answers for much smaller data sets than if the sign is
interpreted without regard to its statistical significance.

Before evaluating the performance of the LRT on binned data, a few
cautionary remarks about nested models. When one model is strictly a subset
of the other, as in the case of a power law and a power law with exponential
cutoff, even if the smaller model is the true model, the larger model will
always yield at least as large a likelihood. In this case, we must slightly
modify the hypothesis test for the sign of R, and use a little more caution
in interpreting the results; see Appendix B.

5.2. Performance of the Likelihood Ratio Test. We evaluate the perfor-
mance of the likelihood ratio test for binned data using two experiments.

4This requirement is particular to the problem of fitting tail models, where a threshold
that truncates the data must be chosen. An interesting problem for future work is thus
to determine how to compare models with different numbers of observations, as would be
the case if we let bmin vary between the two models.
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Fig 5. Behavior of normalized log-likelihood ratio n−1/2R/σ, for synthetic data sets drawn
from (a) power-law and (b) log-normal distributions. Both were then binned using a log-
arithmic binning scheme, with bin boundaries in powers of c = {2, 5, 8}. Dashed line
indicates the threshold at which the sign of R becomes trustworthy.

In one, we draw a sample from a power-law distribution, with α = 2.5 and
xmin = 1, while in the second, we draw a sample from a log-normal distri-
bution, with µ = 0.3 and σ = 2. We then bin these samples logarithmically,
with c = {2, 4, 8}, and fit and compare the power law and log-normal models.
The normalized log-likelihood ratio n−1/2R/σ (see Appendix B) provides a
concrete measure by which to compare outcomes at different sample sizes. If
the test performs well, in the first case, R will tend to be positive, correctly
favoring the power law as the better model, while in the second, the ratio
will tend to be negative, correctly rejecting the power law.

Figure 5 shows the results. When the power-law hypothesis is correct
(Fig. 5a), the sign of R allows us to correctly rule in favor of the power
law when the sample size is sufficiently large. However, the size required for
an unambiguously correct decision grows with the coarseness of the binning
scheme (larger c). Interestingly, a reliably correct decision in favor of the
power law (Fig. 5a) requires much larger sample size (n ≈ 20, 000 here)
than a decision against it (Fig. 5b) (n . 200). This illustrates the difficulty
of rejecting alternative distributions like the log-normal, which can imitate
a power law over a wide range of sample sizes.

6. Applications to Real-World Data. Having adapted the methods
of [6] for working with power-law distribution to the case of binned data, we
now apply them to analyze several real-world binned data sets to determine
which of them do and do not follow power-law distributions. As we will see,
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the results indicate that some of these quantities are indeed consistent with
the power-law hypothesis, while other are not.

The 12 data sets we study are drawn from a broad variety of scientific
domains, including medicine, genetics, geology, ecology, meteorology, earth
sciences, demographics and the social sciences. They are as follows.

1. Estimated number of personnel in a terrorist organization [2], binned
by powers of ten, expect that the first two bins are merged.

2. Diameter of branches in the plant species Cryptomeria [32], binned in
30mm intervals.

3. Volume of ice in an iceberg calving event [5], binned by powers of ten.
4. Length of a patient’s hospital stay within a year [17], arbitrarily binned

as natural numbers from 1 to 15, plus one bin spanning 16–365 days.
(Stays of length 0 are omitted.)

5. Wind speed (mph) of a tornado in the United States from 2007 to
2011 [35], binned into categories according to the Enhanced Fujita
(EF) scale, a roughly logarithmic binning scheme.5

6. Maximum wind speed (knots) of tropical storms and hurricanes in the
United States between 1949 and 2010 [19], binned in 5-knot intervals.

7. The human population of U.S. cities in the 2000 U.S. Census.
8. Size (acres) of wildfires occurring on U.S. federal land from 1986–

1996 [23].
9. Intensity of earthquakes occurring in California from 1910–1992, mea-

sured as the maximum amplitude of motion during the quake [23].
10. Area (sq. km) of glaciers in Scandinavia [42].
11. Number of cases per 100,000 of various rare disease [25].
12. Number of genes associated with a disease [14].

Data sets 1–6 are naturally binned, i.e., bins are fixed as given and either
the raw observations are unavailable or analyses of such data typically focus
on binned observations. Raw values for data sets 7–12 are available, and
these quantities are included for other reasons. Data sets 7–9 were also
analyzed by Clauset, Shalizi and Newman [6], and we reanalyze them in
order to illustrate that similar conclusions may be extracted despite binning
or to highlight differences induced by binning. Data sets 10–12 were analyzed
as binned data by their primary sources, and we do the same to ensure
comparability of our results.

Table 2 summarizes each data set and gives the parameters of the best fit-
ting power law. Figures 6 and 7 plot the empirical bin counts and the fitted

5Tornado data spanning 1950–2006, binned using the deprecated Fujita scale, are also
available. Repeating our analysis on these yields the same conclusions.
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quantity N binning scheme B α̂ std. err. b̂min n, tail p (±0.03)

personnel in a terrorist group 393 logarithmic, c = 10 1.75 (0.11) 1000 56 0.13

— 1.29 (0.01) ◦ 1 393 0.00
plant branch diameter (mm) 3,897 linear, 30 mm 2.34 (0.02) 0.3 3,897 0.00
volume in iceberg calving (×103m3) 5,837 arbitrary 1.29 (0.02) 1.26 × 1012 143 0.49

— 1.155 (0.002) ◦ 1.097 × 101 5,837 0.00
length of hospital stay 11,769 arbitrary [17] 3.24 (0.27) 14 303 0.40

— 2.020 (0.007) ◦ 1 11,769 0.00
wind speed, tornado (mph) 7,231 EF-scale [35] 7.1 (0.20) 111 980 0.03
— 4.58 (0.03) ◦ 65 7,231 0.00
max. wind speed, hurricane (knots) 879 linear, 5 knots 14.20 (1.69) 122.5 56 0.36

— 2.44 (0.03) ◦ 32.5 879 0.00
population of city 19,447 logarithmic, c = 2 2.38 (0.07) 65536 426 0.72

size of wildfire (acres) 203,785 logarithmic, c = 2 1.482 (0.002) 2 52,004 0.00
intensity of earthquake 19,302 logarithmic, c = 10 1.82 (0.02) 104 2,659 0.18

size of glacier (km2) 2,428 logarithmic, c = 2 1.95 (0.04) 1 635 0.04
rare disease prevalence 675 logarithmic, c = 2 2.88 (0.14) 16 99 0.00
genes associated with disease 1,284 logarithmic, c = 2 2.72 (0.12) 8 217 0.87

— 1.75 (0.01) ◦ 1 1,284 0.00

Table 2. Details of the data sets described in Section 6, along with their power-law fits and the corresponding p-values (bold values
indicate statistically plausible fits). N denotes the full sample size, while n is the size of the fitted power-law region. Cases where we
additionally considered a restricted power-law fit (see text), with fixed bmin = b1, are denoted by ◦ next to the b̂min value. Standard error
(std. err.) estimates were derived from a bootstrap using 1000 replications. Conclusively, all your bins are belong to us.
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Fig 6. Empirical distributions (as complementary cdfs) Pr(X ≥ x) for data sets 1–6: the
(a) number of personnel in a terrorist organization, (b) diameter of branches in plants
of the species Cryptomeria, (c) volume of ice in an iceberg calving event, (d) length of
a patient’s hospital stay, (e) wind speed of tornados, and (f) maximum wind speed of
tropical storms and hurricanes, along with the best fitting power-law distribution with bmin

estimated (black) and bmin fixed at the smallest bin boundary (red).
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Fig 7. Empirical distributions (as complementary cdfs) Pr(X ≥ x) for data sets 7–12:
the (a) human population of U.S. cities, (b) size of wildfires on U.S. federal land, (c)
intensity of earthquakes in California, (d) area of glaciers in Scandanavia, (d) prevalence
of rare diseases, and (f) number of genes associated with a disease, along with the best
fitting power-law distribution with bmin estimated (black) and bmin fixed at the smallest bin
boundary (red).
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power law log-normal exponential stretched exp. power law + cutoff support for
quantity p LR p LR p LR p LR p power law

personnel in a terrorist group 0.13 -2.011 0.04 3.91 0.00 -1.934 0.05 -2.57 0.11 weak
— 0.00 -4.32 0.00 4.59 0.00 -4.47 0.00 -26.26 0.00 none
plant branch diameter 0.00 -9.71 0.00 1.99 0.05 -9.478 0.00 -123.76 0.00 none
volume in iceberg calving 0.49 -1.116 0.26 10.612 0.00 -1.164 0.24 -1.699 0.19 moderate
— 0.00 0.846 0.40 43.02 0.00 2.263 0.01 -13.29 0.00 none
length of hospital stay 0.40 -0.978 0.33 -1.018 0.31 -1.012 0.31 -0.231 0.63 moderate
— 0.00 -18.37 0.00 -1.86 0.06 -18.69 0.00 -602.86 0.00 none
wind speed, tornado 0.03 -3.16 0.00 -3.32 0.00 -2.72 0.01 -7.92 0.01 none
— 0.00 -17.36 0.00 -19.22 0.00 -13.85 0.00 −214.64 0.00 none
max. wind speed, hurricane 0.36 -0.352 0.73 6.17 0.00 -0.715 0.48 -0.298 0.59 moderate
— 0.00 -13.26 0.00 -20.712 0.00 -13.78 0.00 -117.07 0.00 with cutoff
population of city 0.72 -0.069 0.95 16.25 0.00 -0.081 0.94 -0.229 0.63 moderate
size of wildfire 0.00 -16.03 0.00 9.26 0.00 -16.42 0.00 -410.01 0.00 with cutoff
intensity of earthquake 0.18 1.019 0.27 21.63 0.00 0.753 0.45 -0.780 0.38 moderate
size of glacier 0.04 -0.56 0.58 1.01 0.31 -0.562 0.58 -0.002 0.96 none
rare disease prevalence 0.00 -4.715 0.00 -4.641 0.00 -3.767 0.00 -7.549 0.01 none
genes associated with disease 0.87 -2.524 0.01 2.922 0.00 -0.487 0.63 -0.510 0.48 weak
— 0.00 -11.28 0.00 -3.14 0.00 -10.83 0.00 -159.40 0.00 none

Table 3. Comparison of the fitted power-law behavior against alternatives. For each data set, we give the power law’s p-value from Table 2,
the log-likelihood ratios against alternatives, and the p-value for the significance of each likelihood ratio test. Statistically significant values
are given in bold. Positive log-likelihood ratios indicate that the power law is favored over the alternative. For non-nested alternatives,
we report the normalized log-likelihood ratio n−1/2Rσ; for nested models (the power law with exponential cutoff), we give the actual log-
likelihood ratios. The final column lists our judgement of the statistical support for the power-law hypothesis with each data set. “None”
indicates data sets that are probably not power-law distributed; “weak” indicates that the power law is a good fit but a non-power law
alternative is better; “moderate” indicates that the power law is a good fit but alternatives remain plausible. No quantity achieved a “good”
label, where the power law is a good fit and none of the alternatives is considered plausible. In some cases, we write “with cutoff” to
indicate that the power law with exponential cutoff is clearly favored over the pure power law. In each of these cases, however, some of
the alternatives are also good fits, such as the log-normal and stretched exponential. After all, somebody set us up the bins.
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power-law models. In several cases, we also include fits where we have fixed
bmin = b1, the smallest bin boundary in order to test the power-law model
on the entire data set. This supplementary test was conducted when either
a previous claim had been made regarding the entire distribution’s shape,
or when visual inspection suggested that such a claim might be reasonable.
Finally, Table 3 summarizes the results of the likelihood ratio tests and in-
cludes our judgement of the statistical support for the power-law hypothesis
with each data set.

For none of the quantities was the power-law hypothesis strongly sup-
ported, which requires both that the power law was both a good fit to the
data and a better fit than the alternatives. This fact reinforces the difficulty
of distinguishing genuine power-law behavior from non-power-law-but-still-
heavy-tailed behavior. In most cases, the likelihood ratio test against the ex-
ponential distribution confirms the heavy-tailed nature of these quantities,
i.e., the power law was typically a better fit than the exponential, except
for the length of hospital stays, tornado wind speeds, and the prevalences of
rare diseases.

Two quantities—the number of personnel in a terrorist organization and
the number of genes associated with a disease—yielded weak support for
the power-law hypothesis, in which the power law was a good fit, but at
least one alternative was better. In the case of the gene-disease data, this
quantity is better fit by a log-normal distribution, suggesting some kind
of multiplicative random walk process as the underlying mechanism. The
terror personnel data is better fit by both the log-normal and the stretched
exponential distributions; however, given that so few observations ended up
in the tail region, the case for any particular distribution is not strong.

Five quantities produced moderate support for the power law hypothesis,
in which the power law was a good fit but alternatives like the log-normal or
stretched exponential remain plausible, i.e., their likelihood ratio tests were
inconclusive. In particular, the volume of icebergs, the length of hospital
stays (but see above), the maximum wind speed of a hurricane, the popula-
tion of a city and the intensity of earthquakes all have moderate support.

Of the six supplemental tests we conducted, in which we fixed bmin = b1,
only two—the maximum wind speed of hurricanes and the size of wildfires—
yielded any support for a power law, and in both cases the power-law dis-
tribution with exponential cutoff was better than the pure power law. In
the case of hurricanes, a cutoff is scientifically reasonable: windspeed in
hurricanes is related to their spatial size, which is ultimately constrained
by the size of convection cells in the upper atmosphere, the distribution of
the continents and the rate at which energy is transferred from the ocean
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surface [26].
For the three data sets also analyzed in [6]—city populations, wildfire

sizes and earthquake intensities—we reassuringly come to similar conclusions
when analyzing their binned counterparts. The one exception is the intensity
of earthquakes, which illustrates the impact of information loss from binning.
The first consequence is that our choice bmin is slightly larger than the xmin

estimated from the raw data. The slight curvature in this distribution’s tail
means this difference raises our scaling parameter estimate to α̂ = 1.82±0.02
compared to α̂ = 1.64 ± 0.04 in [6]. Furthermore, [6] found the power law
to be a poor fit by itself (p = 0.00 ± 0.03) and that the power-law with
a cutoff was heavily favored. In contrast, we failed to reject the power law
(p = 0.18 ± 0.03) and the comparison to the power-law with cutoff was
inconclusive. That is, the information lost by binning obscured the more
clearcut results obtained on raw data for earthquake intensities.

In some cases, our conclusions have direct implications for theoretical
work, shedding immediate light on what type of theories should or should
not be considered for the corresponding phenomena. An illustrative exam-
ple is the branch diameter data. Past work on the branching structure of
plants [43, 32, 40] has argued for a fractal model, in which certain conserva-
tion laws imply a scaling distribution for branch diameters within a plant.
Some theories go further, arguing that a forest is a kind of a “scaled up”
plant, and that the power-law distribution of branch diameters extends to
entire collections of naturally coöccuring plants. Critically, the branch data
analyzed here, and its purported power-law shape, have been cited as ev-
idence supporting these claims [40]. However, our results show that these
data provide no statistical support for the power-law hypothesis (we find
similar results for the other binned data of [32, 40]). Our results thus demon-
strate that these theories’ predictions do not match the empirical data, and
alternative explanations should be considered.

In other cases, our results suggest specific theoretical processes to be con-
sidered. For instance, the full distribution of hospital stays is better fit by
all the alternative distributions than by the power law, but the stretched ex-
ponential is of particular interest. Survival analysis is often framed in terms
of hazard rates, i.e., a Poisson process with a non-stationary event proba-
bility, and our results suggest that such a model may be worth considering:
if the hazard rate for leaving the hospital decreases as the length of the
stay increases, a heavy-tailed distribution like the stretched exponential is
produced. Additional investigation of the covariates that best predict the
trajectory of this hazard rate would provide a test of the model.
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7. Conclusions. Our main goal was to adapt the principled framework
given in [6], for working with power-law distributions in empirical data, to
the case of binned data. Furthermore, because binning induces a loss of
information, we sought to illustrate the impact of binning on the quality of
inferences we are able to make using these tools.

In applying our methods to a large number of data sets from various fields,
we found that the data for many of these quantities are not compatible with
the hypothesis that they were drawn from a power-law distribution. In a few
cases, the data were found to be compatible, but not fully: in these cases,
there was ample evidence that alternative heavy-tailed distributions are an
equally good or better explanation.

The study of power laws is an exciting effort that spans many disciplines,
and their identification in complex systems is often interpreted as evidence
for, or suggestions of theoretically interesting processes. In this paper, we
have argued that the common practice of identifying and quantifying power-
law distributions by the approximately straight-line behavior on a binned
histogram on a doubly logarithmic plot should not be trusted: such straight-
line behavior is a necessary but not sufficient condition for true power-law
behavior. Furthermore, binned data present special problems because con-
ventional methods for testing the power-law hypothesis [6] could only be
applied to continuous or integer-valued observations. By extending these
techniques to binned data, we enable researchers to reliably investigate the
power-law hypothesis even when the data do not take a convenient form,
either because of the way they were collected, because the original values
are lost, or for some other reason.

Properly applied, these methods can provide objective evidence for or
against the claim that a particular distribution follows a power law. (In
principle, our binned methods could be extended to other, non-power-law
distributions, although we do not provide such extensions here.) Such ob-
jective evidence provides statistical rigor to the larger goal of identifying
and characterizing the underlying processes that generate these observed
patterns. That being said, answers to some questions of scientific interest
may not depend solely on the distribution following a power-law perfectly.
Whether or not a quantity not following a power law poses a problem for a
researcher depends largely on his or her scientific goals, and in some cases
a power law may not be more fundamentally interesting than some other
heavy-tailed distribution.

In closing, we emphasize that the identification of a power law in some
data is only part of the challenge we face in explaining their causes and
implications in natural and man-made phenomena. We also need methods by
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which to test the processes proposed to explain the observed power laws, and
to leverage these interesting patterns for practical purposes. This perspective
has a long and ongoing history, reaching at least as far back as Ijiri and
Simon [18], with modern analogs given by Mitzenmacher [22] and by Stumpf
and Porter [36]. We hope the statistical tools presented here aid in these
endeavors.
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APPENDIX A: MAXIMUM LIKELIHOOD ESTIMATION

A.1. An MLE for α. Let B = (b1, . . . , bk) denote a fixed binning
scheme and H = (h1, . . . , hk) the observed counts within them. Let n =
∑k

i=min hi be the total number of observations in the power-law region. As-
suming these data’s generating distribution is a power law with parameters
α and bmin, the likelihood of observing exactly these bin counts is

Pr({hi} |α, bmin) =

k
∏

i=1

(

bα−1
min

[

bi
(1−α) − bi+1

(1−α)
])hi

.(A.1)

As usual, it is more convenient to work with the log-likelihood, which we
denote L:

L = ln

[

k
∏

i=min

(

bα−1
min

[

bi
(1−α) − bi+1

(1−α)
])hi

]

=
k
∑

i=min

[

(α− 1) ln bminhi + hi ln
[

bi
(1−α) − bi+1

(1−α)
]]

= n(α− 1) ln bmin +

k
∑

i=min

hi ln
[

bi
(1−α) − bi+1

(1−α)
]

.(A.2)

Without constraints on the binning scheme, an analytic expression for the
maximum likelihood estimator of α cannot be obtained, and we must instead
numerically maximize Eq. (A.2).

However, in the case of a logarithmic binning scheme, that is, where bin
boundaries are given by successive powers of some constant c, an analytic
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Fig 8. Mean-squared error (MSE) in α̂ as a function of sample size, illustrating both
asymptotic consistency and a loss of accuracy, relative to the unbinned maximum likelihood
estimator of [6], due to binning.

expression for α̂ is obtainable. To simplify our notation, we let bi = cs+i−1

where s is the power of the smallest bin. (In most cases, s = 0 and our
binning scheme begins at b1 = 1.) Letting C = n(α − 1) ln bmin for the
moment, the log-likelihood function becomes

L = C +

k
∑

i=min

hi ln
[

(

cs+i−1
)1−α −

(

cs+i
)1−α

]

= C + (1− α) ln c

k
∑

i=1

(s+ i)hi + ln
[

cα−1 − 1
]

k
∑

i=min

hi

= C + n ln
[

cα−1 − 1
]

− s n(α− 1)ln c− (α− 1) ln c

k
∑

i=min

i hi .(A.3)

Solving ∂L/∂α = 0 for α yields our maximum likelihood estimator:

α̂ = 1 + logc

[

1 +
1

(s− 1)− logc bmin +
1
n

∑k
i=min i hi

]

.(A.4)

To illustrate the asymptotic consistency of Eq. (A.4), we drew samples
from a continuous power-law distribution with α = 2.5 and bmin = 1 and
measured the mean-squared error (MSE) as a function of sample size n. The
estimator’s convergence rate, however, depends on the binning scheme. To
illustrate this dependency, we used the continuous MLE given by [6] with the
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raw observations and compared its convergence against that of our binned
MLE applied to binned version of the same data, with the c = 3 (powers
of three) and c = 5 (powers of five) logarithmic scheme. Figure 8 shows
the results; as we expect for maximum likelihood, the MSE’s convergence
is O(1/n), but with a constant that depends on the amount of information
lost from binning: the more coarse the binning (larger c), the greater the
statistical uncertainty at the same sample size.

A.2. Bounding the convergence rate. The Cramér-Rao bound [9,
28] implies that the variance of our estimator is bounded by the inverse
Fisher information,

Var(α̂) ≥ 1 /I(α̂) .(A.5)

The Fisher information [39] is given by the curvature of the log-likelihood
function around the maximum likelihood estimate; as with the MLE, there is
no closed form expression for this function except in the case of a logarithmic
binning scheme (Eq. (A.3)):

I(α̂) = −E

[

∂2

∂α2
L(X; α̂)

]

= n c1+α

(

ln c

c− cα

)2

.(A.6)

Combining Eqs. (A.5) and (A.6), taking the square root and n as sufficiently
large, we obtain a closed-form expression for the standard error of α̂:

σ̂ =
cα̂ − c

c(1+α̂)/2 ln c
√
n

.(A.7)

(Note: when n is small, e.g., n . 50 for c = 2, σ becomes positively biased.)
We may now show analytically exactly how much information is lost by

different binning schemes. Suppose we have a sample n1 and binning scheme
c1. Given a choice of α, how much larger a sample do we need in order to
achieve the same statistical certainty in α̂ using a coarser scheme c2 > c1?
Assuming n1, c1, and c2 are known, we solve for the n2 that yields equal
statistical uncertainty for the two settings:

∣

∣

∣

∣

1

I(α)

∣

∣

∣

∣

n1,c1

=

∣

∣

∣

∣

1

I(α)

∣

∣

∣

∣

n2,c2

n−1
1 c1

−α−1

(

c1 − c1
α

ln c1

)2

= n−1
2 c2

−α−1

(

c2 − c2
α

ln c2

)2
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Fig 9. The size of a data set required to achieve the same statistical certainty in α (constant
MSE) when using a coarser binning scheme c2, for several choices of α. The dashed lines
indicate the values obtained analytically using Equation (A.8).

Solving for n2 yields

n2 =

(

(

c1
c2

)1+α( ln c1
ln c2

)2(c2 − c2
α

c1 − c1α

)2
)

n1 ,(A.8)

in which the required sample size n2 is some constant multiple of n1, which
is a complicated function of α and the two binning schemes.

Figure 9 illustrates how this constant varies with the coarseness of the
second binning scheme c2. For concreteness, we fix c1 = 2 and show the
constant’s behavior for several choices of α and for schemes c2 ≥ 2. As
expected, increasing the coarseness of the binning scheme decreases the in-
formation available for estimation, and the required sample size increases.
Information loss also arises from variation in α. As α increases, the variance
of the generating distribution decreases, and a given sample size will span
fewer bins. The fundamental source of information loss for estimation is the
loss of bins, i.e., the commingling of observations that are distinct, which
may arise either from coarsening the binning scheme or from decreasing the
variance of the generating distribution.

The information-loss effect is sufficiently strong that a powers-of-10 bin-
ning scheme can require nearly eight times as large a sample to obtain the
same statistical accuracy in α, when α > 3. Thus, if the option is available
during the experimental design phase of a study, as fine a grained binning
scheme as is possible should be used in collecting the data in order to max-
imize subsequent statistical accuracy.
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APPENDIX B: LIKELIHOOD RATIO TEST

Let B = (b1, . . . , bk) be a fixed binning scheme, H = (h1, . . . , hk) be
the observed bin counts within those bins, and p1 and p2 be the pdfs for
two candidate distributions. The likelihoods of our bin counts under these
distributions is

L1 =

n
∏

j=1

p1(xj) =

k
∏

i=1

p1(bi)
hi , L2 =

n
∏

j=1

p2(xj) =

k
∏

i=1

p1(bi)
hi ,(B.1)

where p(bi) is the probability that a non-binned value xj is in the ith bin,
i.e., Pr(bi < xj < bi+1). Other than this slight change in the way we define
our probability models, the likelihood ratio test has the usual structure.6

The likelihood ratio test statistic is the ratio of the likelihoods R, or
equivalently, its logarithm R:

lnR = ln(L1/L2)

R =

n
∑

j=1

[ln p1(xj)− ln p2(xj)] =

n
∑

j=1

[

ℓ
(1)
j − ℓ

(2)
j

]

=

k
∑

i=1

[

hiℓ
(1)
i − hiℓ

(2)
i

]

,(B.2)

where ℓ
(z)
i = ln pz(bi) is the log-likelihood of a single observation being in

bin bi under distribution z.
By assumption, the raw observations xj are independent, and so too are

the differences ℓ
(1)
i − ℓ2i . Thus, by the central limit theorem, their sum R is

normally distributed in limit of large n, with expected variance nσ2, where
σ2 is the variance of a single term. In practice, we don’t know the expected
variance for a single term, but it may be approximated by the variance of
the data:

σ2 =
1

n

k
∑

i=1

[

hi

(

ℓ
(1)
i − ℓ

(2)
i

)

−
(

ℓ̄(1) − ℓ̄(2)
)]2

,(B.3)

where

ℓ̄(1) =
1

n

k
∑

i=1

hiℓ
(1)
i , ℓ̄(2) =

1

n

k
∑

i=1

hiℓ
(2)
i .(B.4)

6There are some technical subtleties in the rigorous proof of our results here. How-
ever, for the distributions we consider, Vuong [37] has shown that our construction holds
provided that p1 and p2 come from distinct, non-nested families of distributions and the
estimation is done by maximizing the likelihood within each family.
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One advantage of the likelihood ratio test is its ability to refuse to choose
one model over the other, which occurs when the true expected value of
the log-likelihood is in fact zero. In this case, the sign of R is due only to
fluctuations and should not be trusted to indicate which model is preferred.
The probability that the observed R has magnitude at least as large as the
observed value |R| is

p =
1√

2πnσ2

[

∫ −|R|

−∞
e−t2/2nσ2

dt+

∫ ∞

|R|
e−t2/2nσ2

dt

]

= erfc(|R|/
√
2nσ) ,(B.5)

where σ is given by Eq. (B.3) and erfc is the complementary error function,
defined as

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
e−t2 dt .(B.6)

Eq. (B.5) thus estimates the probability that we measured a particular
value of R when in fact its true value is zero. A large p-value (say, p > 0.1)
indicates that the sign of R is ambiguous and that our test is unable to
identify which model is the better fit to the data. A low p-value (say, p < 0.1)
implies that the observed value R is unlikely to be due to chance alone, and
thus its sign indicates which model is a better fit.

This construction changes when our hypotheses are nested, as in the case
of the power law and power law with exponential cutoff. If the true gener-
ating distribution lies in the smaller family, e.g., the power law, then fits of
both families converge to the true distribution as n becomes large, |R| → 0
and so does σ. As a result, the p-value given in Eq. (B.5) tends to 0/0 and
its distribution does not obey the simple central limit theorem. A more care-
ful analysis shows that, in this situation, R adopts a χ2-distribution as n
becomes large [41], which allows us to correctly calculate a p-value. If this
p-value is small, the smaller family can be ruled out. Otherwise, the best
interpretation is that there is no statistical evidence that the larger family
is needed to fit the data, although neither can be ruled out. For a detailed
discussion, see [37].

Finally, we remind the reader that the results of a likelihood ratio test
(indeed, any rigorous model comparison technique) do not indicate that the
favored model is itself a good fit to the data, only that it is a less terrible fit
than the unfavored model. For example, when comparing the power-law and
exponential distributions for heavy-tailed data, the power law will typically
be favored even when the data are not power-law distributed.



32 Y. VIRKAR AND A. CLAUSET

REFERENCES

[1] B. C. Arnold. Pareto Distributions. International Cooperative Publishing House,
Fairland, MD, 1983.

[2] V. Asal and R. K. Rethemeyer. The nature of the beast: Organizational structures
and the lethality of terrorist attacks. The Journal of Politics, 70(2):437–449, 2008.

[3] O. E. Barndorff-Nielsen and D. R. Cox. Inference and Asymptotics. Chapman and
Hall, London, 1995.

[4] L. Breiman, C. J. Stone, and C. Kooperberg. Robust confidence bounds for extreme
upper quantiles. J. Statistical Computation and Simulation, 37:127–149, 1990.

[5] A. Chapuis and T. Tetzlaff. The variability of tidewater-glacier calving: origin of
event-size and interval distributions. e-print, arXiv:1205.1640, 2012.

[6] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703, 2009.

[7] A. Clauset and R. Woodard. Estimating the historical and future probabilities of
large terrorist events. Preprint, 2012.

[8] A. Clauset, M. Young, and K. S. Gleditsch. On the frequency of severe terrorist
events. Journal of Conflict Resolution, 51(1):58–87, 2007.

[9] H. Cramér. A contribution to the theory of statistical estimation. Skand. Ȧktuaries
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