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Abstract

We present an embedding of stochastic optimal control problems, of the
so called path integral form, into reproducing kernel Hilbert spaces. Using
consistent, sample based estimates of the embedding leads to a model free,
non-parametric approach for calculation of an approximate solution to the
control problem. This formulation admits a decomposition of the problem
into an invariant and task dependent component. Consequently, we make
much more efficient use of the sample data compared to previous sample
based approaches in this domain, e.g., by allowing sample re-use across
tasks. Numerical examples on test problems, which illustrate the sample
efficiency, are provided.

1 Introduction

While solving general non-linear stochastic optimal control and Reinforcement Learning
problems remains challenging, some recent work [7] has identified a class of problems that
admit closed form solutions. Although these solutions require evaluation of a path integral
– equivalent to evaluation of a partition function, which in itself is a hard problem – they
allow for the application of Monte Carlo and Variational methods, leading to several practical
applications, e.g., [15, 1]. In the special case of linear dynamics and quadratic costs, the
required path integral can be evaluated analytically based on linear operators acting on
state vectors. Here, we show that, analogously, a suitable embedding of the path integral
into a reproducing kernel Hilbert space (RKHS) allows it’s evaluation in terms of covariance
operators acting on elements of the Hilbert space. While this in itself does not yield a
tractable solution to the SOC problem, consistent estimators of the required operators give
rise to efficient non-parametric algorithms.

The change of perspective from the direct estimation of the path integral (which previous
applications of Monte Carlo methods aimed at) to estimation of operators allows to over-
come several shortcomings of previous methods while maintaining many of their advantages.
Most importantly, it can significantly reduce the sample complexity by splitting the problem
appropriately into an invariant and task varying component, allowing efficient sample re-use
across tasks and leading to a form of transfer learning – contrast this to the situation where
any change in the task including, for e.g., different start states, necessitate acquiring new
samples [15, 16]. Additionally, the approach remains model free, allowing it’s application
to the Reinforcement Learning setting. This is in contrast to variational [9] or function ap-
proximation [20, 21] approaches, from which it is further distinguished through convergence
guarantees. The RKHS embedding make the operators state-dimensionality independent,
leading to better scalability, while prior knowledge about both tasks and dynamics can be
effectively incorporated by informing choices of sampling procedures and kernel.
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It is worth noting that, while we choose to frame our approach in the context of path integral
stochastic optimal control, it is not restricted to problems which fall into this class. The
formalisms of linearly solvable MDPs [17], inference control [19] and free energy control [3]
all require solving an underlying problem of equivalent form, making the methods proposed
directly applicable in these contexts. Furthermore [10] discusses a formulation which gener-
alizes path integral control, to derive an optimal policy for general SOC problems. Finally,
while we focus on finite horizon problems, path integral formulations for discounted and
average cost infinite horizon problems [18], as well as risk sensitive control [2] also exist.

2 Path Integral Control

In this section we briefly review the path integral approach to stochastic optimal control
[7], for a more detailed treatment, see [8, 15]. Let x ∈ Rdx be the system state and u ∈ Rdu
the control signals. Consider a continuous time stochastic system of the form

dx = f(x, t)dt+ B(x, t)(udt+ dξ) , (1)

where dξ is a multivariate Wiener process with E
[
dξ2
]

= Q(x, t)dt, and f , B and Q may
be non-linear functions. In particular note that the system is affine in the controls and
both noise and controls act in the same subspace. We seek the best Markov policy, i.e.,
u(t) = π(x(t), t), with respect to an objective of the form

Jπ(x, t) = EXπ(t→T )|x

[
C•(X

π(T )) +

∫ T

t

C(Xπ(s), s) + u(s)THu(s)ds

]
, (2)

where T is some given terminal time and the expectation is taken w.r.t. to path of (1)
starting in x and following policy π. The control cost is further constrained by requiring it
to satisfy Q = λBH−1BT for some constant scalar λ > 0.

It can be shown that for problems of this form the optimised objective can be expressed as

J*(x, t) = min
π
Jπ(x, t) = −λ log Ψ(x, t) , (3)

where Ψ is given by the path integral

Ψ(x, t) = EX0(t→T )|x

[
e−

∫ T
t

1
λC(X0(s),s)dsΨ(X0(T ), T )

]
, (4)

with Ψ(·, T ) = exp{−C•(·)/λ}. The expectation in (4) is taken w.r.t. uncontrolled path of
the dynamics (1), i.e. those under the policy π0(·, ·) = 0, starting in xt.

As a consequence of linear control with quadratic control cost and (3), the optimal policy
π∗(x, t) can be expressed directly in terms of Ψ as

π∗(x, t) = −H−1B(x)T∇xJ
*(x, t) = H−1B(x)T

λ∇xΨ(x, t)

Ψ(x, t)
, (5)

making obtaining Ψ the main computational challenge for problems in this class.

Assuming we are only interested in the optimal controls at certain time points, say {t1,...,n}
with tn = T , it is sufficient to compute the set Ψi(x) = Ψ(x, ti) and (4) admits a representa-
tion in terms of the finite dimensional distribution X = (X0(t0), · · · , X0(tn)). Specifically
using the Markov property of X0(t) and marginalising intermediate states we obtain the
recursive expression

Ψi(xti) = EXi+1|xti [Φi(xti , Xi+1) ·Ψi+1(Xi+1)] . (6)

Here,

Φi(xti , xti+1
) = EX0(ti→ti+1)|xti ,xti+1

[
e−

1
λ

∫ ti+1
ti

C(X0(s),s)ds

]
, (7)

where the expectation is taken w.r.t. uncontrolled path from xti to xti+1
. Note that

−λ log Φi can be seen as the (optimal) expected cost for the problem of going from xti
to xti+1

over the time horizon [ti, ti+1] under dynamics and running costs corresponding to
those of the overall problem given in (2). Hence, the problem naturally decomposes into,
on the one hand, a set of short horizon problems – or indeed a nested hierarchy of such Φ
– and on the other hand, a set of recursive evaluations backwards in time.
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3 Embedding of the Path Integral

We now demonstrate that (6) can be expressed in terms of linear operators in RKHSs. While
the exposition is necessarily short, [6] provides a more through treatment of the theory of
RKHSs while [11, 14, 12, 4] provide the basic concepts on which we build.

3.1 Analytical One Step Path Integral Embedding

Let Hk denote the reproducing kernel Hilbert space of functions Z → R associated with the
positive semi-definite kernel k(·, ·). Further, let PZ be the set of random variables on Z.
Following [11], we define the embedding operator Ek : PZ → Hk by〈

h, Ek [Z]
〉

= EZ [h(Z)] ∀Z ∈ PZ , h ∈ Hk , (8)

which constitutes a direct extension of the standard embedding of individual elements z ∈ Z
into Hk used more commonly in the literature.

In the problem under consideration, the interest lies with the evaluation of Ψi given in (6)
and hence, in a suitable embedding of Xi+1|xi which would allow the required expectation
to be expressed as an inner product in some RKHS. Although (8) can be directly applied
– since for fixed xi, Xi+1|xi is a simple random variable – it is convenient to consider a
general conditional random variable Z|y as a map Y → PZ , yielding random variables over
Z given a value y ∈ Y, and define a conditional embedding operator U lk : Hl → Hk s.t.

Ek [Z|y] = U lk ◦ E l [y] , (9)

where E l [y] = l(·, y), i.e., the standard embedding operator of elements y ∈ Y used in
kernel methods. An explicit form of the operator U is given in [14] by means of covariance
operators, which are generalizations of covariance matrices. Specifically, the uncentered
covariance operator CklZY for the joint random variable (Z, Y ) is given by

CklZY = E(Z,Y ) [k(Z, ·)⊗ l(Y, ·)] , (10)

where ⊗ denotes the tensor product. Note that we can see CklZY as an embedding of (Z, Y )
into the tensor product space Hw = Hk ⊗ Hl, which is the RKHS of the product kernel
w((z, y), (z′, y′)) = k(z, z′)l(y, y′). Now, under certain technical considerations detailed in
[4] but beyond the scope of this paper,

U lk = CklZY
(
CllY Y

)−1
(11)

satisfies (9).

However, as the argument of the expectation, specifically of Φ, is not only a function of the
random variable, i.e., Xi+1, but also of the conditioning xi, we can not apply (9) directly.

We proceed by introducing an auxiliary random variable X̃ such that P (X̃,Xi+1|xi) =
P (Xi+1|xi)δX̃=xi

with δ the delta distribution, hence〈
h, Ek

[
Xi+1, X̃|xi

]〉
= EXi+1,X̃|xi

[
h(X̃,Xi+1)

]
= EXi+1|xi [h(xi, Xi+1)] ∀h ∈ Hk . (12)

Note that treating xi as constant leads to an alternative formulation. This, although equiv-
alent in the analytical setting, does however not immediately yield a practical empirical
estimator as further discussed in the supplementary material.

Now, assume Hψ,Hφ, s.t. Ψ ∈ Hψ, Φ ∈ Hφ, are given1. To account for the mismatch
in the arity of functions in these spaces, Hψ may be trivially extended to Hψ′

, a space of
functions Rdx ×Rdx → R, using the kernel ψ′((u, v), (u′, v′)) = ψ(u, u′), i.e., we identify Hψ
and its tensor product with the RKHS of constant functions. Hence, taking the embedding
of Xi+1, X̃|xi into Hw = Hφ⊗Hψ′

in which the product function of Φi, Ψi+1 resides, using
(6) and further applying (8) and (9) we have

Ψi(x) = EXi+1|Xi=x [Φi(x, Xi+1) ·Ψi+1(Xi+1)] (13)

=
〈

Φi ⊗Ψi+1, Ew
[
Xi+1, X̃|Xi = x

]〉
(14)

=
〈
Φi ⊗Ψi+1,Uwk ◦ Ek [x]

〉
, (15)

1n.b., Hφ is a space of functions Rdx × Rdx → R, while Hψ contains functions Rdx → R
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where k is some kernel over Rdx of our choosing. As will become apparent in the following
(see (18)), it is convenient for computational reasons to take k to be ψ as it allows for re-use
of pre-computed matrices over the recursive evaluation of estimates of Ψ.

3.2 Finite Sample Estimates

Evaluation of U – thus also of the path integral embedding (15) – requires evaluation of
expectations of kernels and remains therefore, in most cases, intractable. However as the
operators are expressed in terms of expectations, it is straightforward to form empirical
estimates, leading to practical algorithms.

First consider the general case, given a set D = {(z, y)0...m} of i.i.d. samples from (Z, Y ).
An estimate of (10) is given by

ĈklD =
1

m

m∑
i=1

k(·, zi)⊗ l(·, yi) . (16)

Using the latter in conjunction with (11), a regularized estimate of U lk is given by

Û lkD = gkZ(Gl
YY + εmI)−1glY , (17)

where ε represents a regularization parameter and gkA, Gk
AB represents the vector of em-

beddings and Gramian respectively, i.e. [gkA]i = k(ai, ·) and [Gk
(A,B)]ij = k(ai, bj), for given

sets A,B and kernel k.

Now, turning to the specific expression of interest, i.e., Ψ in (15), we can form an em-
pirical estimate based on D = {(x, x′)1...m} sampled i.i.d. from a joint distribution
P (X ′, X) = pπ0(X ′|X)µ(X), s.t. pπ0(X ′|X) is the p.d.f. of Xi+1|Xi and µ is a free prior.

Specifically, assume the representation of Φi in Hφ is gφBβ, which we do not assume to be

finite dimensional. Then, given a empirical estimate Ψ̄i+1 = gψAαi+1, based on some set A,
we obtain the estimate

Ψ̄i = gψXαi with αi =
[
Gφ
DBβ �Gψ

X ′Aαi+1

]T
(Gψ
XX + εmI)−1 , (18)

where � denotes the Hadamard product. The term Gφ
DBβ takes– assuming without loss of

generality, Φ ∈ Hφ– the particularly simple form

Gφ
DBβ = Φ(X ,X ′) = (Φ(x1, x

′
1),Φ(x1, x

′
2), . . . )T . (19)

Hence, obtaining an explicit representation of Φ, or indeed choosing Hφ, is not necessary.

Importantly, note that Ψ̄i is a finite weighted sum of kernels, hence, Ψ̄i ∈ Hψ, which
directly allows a recursive computation of all Ψ̄1 . . . n and leads, using (5), to an approximate
optimal policy for fine discretisations of the problem. Furthermore, all required matrices are
functions of the sample data only and as such can be pre-computed. Finally, the estimator
is consistent (see supplementary material for proof). While for bounded expected costs,
convergence of Ψ̄ implies convergence of the estimate of the expected cost (see supplementary
material), convergence of the latter can be slow for large values due to the log transform,
leading in practice to poor policies in regions where Ψ is small. We would like to emphasize
that this problem is not limited to the methods proposed here, but is a characteristic of any
approach based on estimation of Ψ, e.g., as also noted by [21]. To overcome this problem
in practice, we form a Laplace approximation to Ψ̄ at a local mode and use it where Ψ̄ is
small - this corresponds to a local quadratic approximation of the value function, resulting
in a linear policy which steers the system towards regions of high Ψ̄.

4 Efficient Estimators

The basic estimator (18) has several drawbacks. For one it has a relatively high computa-
tional complexity of O(m3) for the matrix inversion, only required once if the same D is used
in each time step, and subsequently O(m2) per iteration. Additionally, sample data under
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the uncontrolled dynamics is required, thus not allowing for off-policy learning. To overcome
these problems two alternative estimators based on weighted samples, which partly address
these issues, are discussed in the supplementary material. Specifically, the estimator employs
Gram-Schmidt orthogonalisation, presented previously by [12], which reduces the computa-
tional complexity to O(m̂2) with O(m̂3 + m̂2m) pre-computations for a chosen m̂� m, and
a novel importance sampling based estimator. We choose to defer the discussion of these in
order to address a, in our opinion, often overlooked aspect of efficiency when solving varying
problems under the same dynamics. In practice, tasks are not performed in isolation, rather
varying instances of often related problems have to be solved repeatedly, e.g., an optimized
single reaching movement is of limited use since complex interactions require a series of such
movements with changing start and target states. Previous approaches generally assume
re-initialisation for each problem instance, e.g., Monte Carlo methods require novel samples,
even under such trivial changes as the start state. In the following, we discuss extensions
to the proposed method which improve sampling efficiency in exactly these cases, allowing
efficient sample re-use over repeated applications.

4.1 Transfer Learning via Transition Sample Re-use

A limitation of the estimator arising in practice is the necessity of evaluating Φ at the
training transitions (cf. (18) and (19)) which, in general, may be infeasible. It is therefore
desirable to obtain an estimator based on evaluation of Φ on a separate, ideally arbitrary,
data set D′. Observe that

Gφ
DBβ = 〈Φ, φ(D, ·)〉 = 〈Φ, CφφZZ

(
CφφZZ

)−1

φ(D, ·)〉 ≈

Φ(D′)︷ ︸︸ ︷
βTGφ

BD′(G
φ
D′D′ + εm′I)−1Gφ

D′D ,

where Z is an some free random variable with support on Rdx×Rdx and we used an empirical
estimator based on a data set D′ = {(x, x′)1...m′} of i.i.d. samples from Z (often in practice
D′ ⊆ D). As indicated evaluation of the r.h.s. only requires evaluation of Φ at elements
of D′, hence substituting into (18) gives the desired result. In particular we are now able
to pre-compute and re-use the inverse matrix of (18) across changing tasks and, assuming
time stationary dynamics, across different time steps. This is of importance for efficient
estimation in, e.g., the Reinforcement Learning setting where incurred costs are known only
at observed transitions or in cases where Φ can be freely evaluated but it is expensive to
do so, while generating large sets of transition samples may be comparatively cheap, e.g.,
the case of simple kinematic control where cost evaluation requires collision detection. Note
that this form makes explicit use of the kernel φ, and while we may not be able to guarantee
Φ ∈ Hφ, by choosing a kernel such that the projection of Φ onto Hφ is close to Φ, we can
expect good results.

4.2 Task augmented sampling

We now turn to the question of the sampling distribution. While in general samples are
required from the task agnostic dynamicsX0, a task often induces regularities which suggests
more suitable sampling distributions. In particular considering the role Φ takes in (18) as a
weight vector, it appears desirable, akin to importance sampling, to concentrate samples in
regions of high Φ. Obviously Φ can be used to guide the choice of the prior µ (c.f. Section
3.2), however, in the context of repeated tasks we can go further and incorporate Φ partly
into the sampling process allowing, amongst others, for incremental learning of the task.

Consider the specific situation where one wishes to execute several task instances of a generic
skill. This situation is often characterised by an invariant cost component relating to the
skill and a task specific cost component – if one looks at walking as an example, we wish
to stay balanced in each step but the foot placement target will differ from step to step.
Formally assume the state cost decomposes as

C(x, θ, t) = Cskill(x, t) + Ctask(x, θ, t) , (20)

where θ parameterises the task. In this case, we may write the path integral (4) as

Ψ = EXν(t→T )|xt

[
e−

∫ T
t

1
λCtask(Xν(t),θ,t)Ψ(Xν(T ), T )

]
, (21)
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where the expectation is now taken w.r.t. path of Xν , which are modified dynamics which
absorb the invariant skill component of the cost, i.e., they bias the path dynamics based on
the Fokker-Plank equation

∂tν = −Cskill
λ

ν −∇x (fν) +∇2
x

(
BBT ν

)
, (22)

in other words, the augmented dynamics tends to restrict the solutions to lie on, or at least
stay close to, some skill space.

A practical approach for exploiting the induced structure, is to learn the relevant subspace
from a few example demonstrations sampled, using e.g. the approach in [5], and sample D
on the learned space. Such explicit learning of the space has several advantages; foremost,
we can use knowledge of the space to choose an appropriate kernel. Also, while Ctask is
generally well defined by specific objectives we wish to achieve, the skill component often
takes a more abstract form, e.g. we may desire movements to overall appear ’natural’, and
may only be given implicitly by expert demonstrations of desired movements, in which case
the proposed framework allows (21) to be used to perform optimal control without explicitly
referring to the implicit costs.

5 Experimental Validation

5.1 Double Slit

We first consider the double slit problem, previously studied by [7] to demonstrate Monte
Carlo approaches to path integral control. The problem is sufficiently simple to allow for a
closed form solution for Ψ to be obtained, but complex enough to highlight the shortcomings
of some previous approaches. The task concerns a particle moving with constant velocity
in one coordinate, while noise and controls affects it’s position in an orthogonal direction.
The aim is to minimise the square error to a target position at some final time, while also
avoiding obstacles at some intermediate time, as illustrated in Fig. 1(a). Specifically, the
one dimensional dynamics are dx = u+ dξ and the cost is given by

C•(x) = ω(x− xtarget)2 and C(x, t) =

{
104 if t = T

2 and x ∈ Obstacle
0 else

, (23)

where ω is a weight. We considered a discretisation with time step 0.02s, i.e. 100 time steps.

We compare the true optimal policy to those obtained using two variants of the proposed
estimator, Ψ̄OC and Ψ̄RL. The latter is based on a Reinforcement learning setting, learning
from trajectory data without access to the cost, and uses the approach for sample sharing
across time steps discussed in Section 4.1. Meanwhile, Ψ̄OC is based on single transitions
from uniformly sampled start states and uses knowledge of the cost function to evaluate Φ
in each step. In both cases we use the low rank approximation (see supplementary material)
and square exponential kernels ψ(x, y) = exp{(x−y)2/λ} with λ set to the median distance
of the data. For comparison, we also consider two alternative approaches – firstly, the
trajectory based Monte Carlo approach of [16], using the same number of trajectories as used
in the Reinforcement Learning setting and on the other hand, a variational approximation,
specifically a Laplace approximation to the true Ψ to obtain a linear approximation of the
optimal policy. As can be seen in Fig. 1(b), the proposed approach leads to policies which
significantly improve upon those based on the alternative Monte Carlo approach and which
are comparable to those obtained from the variational approximation, which however was
computed based on knowledge of the true Ψ. In particular, note that the proposed approach
makes better use of the sample provided, finding a policy which is applicable for varying
starting positions, as illustrated in Fig. 1(a). As seen from the trajectories in Fig. 1(a),
the Monte Carlo approach on the other hand fails to capture the multi modality of the
optimal policy leading to severely impoverished results when applied to starting point B
without sampling a new data set (cf. Fig. 1(b)). The variational approximation on the
other hand similarly requires re-computation for each new starting location, without which
results would also be significantly affected.
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Figure 1: Results for the double slit problem. (a) Problem setup and mean trajectories
from policies MC and Ψ̄RL for two start points are shown. Obstacles and target are shown
in gray. (b) Empirical expected cost for policies based on various methods for the two start
states. (c) The true Ψ (top) and the estimate Ψ̄OC (bottom) based on 104 samples. (d) The
L1 error of estimates of Ψ(·, 0) as a function of (transition) sample size, n.b. in case of Ψ̄
and Ψ̄RL data was sampled as 100 step trajectories, for various estimators.

To illustrate the dependence of the estimate on the sample size we compare in Fig. 1(c) the
evolution of the L1 error of the estimates of Ψ at time t = 0. Sample size refers to total
number of transition samples seen, hence for Ψ̄RL the number of trajectories was the sample
size divided by 100. In order to also highlight the advantages of the sample re-use afforded
by the approach in Section 4.1, we also compare with Ψ̄, the basic estimator given data of
the same form as Ψ̄RL, i.e. recursive application of (18) without sample sharing across time
steps.

5.2 Arm Subspace Reaching Task

We consider reaching tasks on a subspace of the end-effector space of a torque controlled
5dof arm, simulating constrained tasks such as, for e.g., drawing on a whiteboard or pushing
objects around on a table. Here the skill component consists of moving with the end-effector
staying close to a two dimensional task space, while the task instances are given by specific
reach targets. The task space used is a linear subspace of the end effector space, n.b., hence,
a non linear subspace of the joint space, and the cost comprises the two components

Cskill(x, t) = ωskill‖Jϕ(x)− j‖2 and Ctask(x, θ) = ωtask‖ϕ(x)− θ‖2 , (24)

where ϕ(·) is the mapping from joint to end-effector coordinates, J & j define the task
subspace, θ specifies the reaching target and ω’s are weights. We again consider position
control over a 2s horizon with a 0.02s discretisation.

This task is challenging for sample based approaches as the low cost trajectories are restricted
to a small subspace, necessitating large sample sizes to obtain good results for an individual
reaching target, even if, as suggested in [16] and done here, an inverse dynamics policy is used
which significantly improves end-effector exploration. However, concentrating on the case
of changing targets, we exploit the ideas from Section 4.2 by assuming the operators have
been estimated under the skill augmented dynamics2 (cf. (21)), and consider subsequent
learning for a novel task using the estimator from Section 4.1, utilising the already estimated
operators in two ways. On the one hand, they are directly used in the calculation of Ψ̄, on
the other hand, noting, that as the trajectories are only required to provide D′, hence do
not have to be sampled under a specific policy, we use the policy arising when considering
Cskill only, i.e., the skill policy associated with Ψ̄ computed using the given operators and
Ctask(·) = 0.

2n.b., while here such a sample is generated explicitly, the more time consuming approach of
using the importance sample based estimator and collecting a sample under X0 could be used
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Figure 2: Results in the reaching task. (a) Training trajectories under the skill augumented
policy (solid blue) and π0 (dashed red) with task space. (b) Illustration of the task setup
and example trajectories of policies after 100 training trajectories for a set of reaching tasks.
The black dots show individual reaching targets with the arm shown in it’s initial pose. (c)
The L1 error of estimates of Ψ(·, 0) as a function of training trajectories measured with
respect to an estimate trained on 5000 trajectories. The data point coresponding to #traj
= 0 is based on the estimate is of Ψ̄ taking only Cskill into account (see text for details).

The advantage of sampling under the skill policy is illustrated in Fig. 2(a) where sample
trajectories under both the skill and null policy are shown, demonstrating that the former
more effectively explores the the task relevant sub space. Mean trajectories for policies
learned from 100 trajectories for a set of tasks are illustrated in Fig. 2(b). In Fig. 2(c) we
plot the L1 error of Ψ̄ as a function of trajectories averaged over ten θ. As the true Ψ is
not available for this task we show the error w.r.t. a Ψ̄ computed from 5000 trajectories,
principally to illustrate the rapid convergence of the estimator.

6 Conclusion

We have presented a novel approach for solving stochastic optimal control problems which
are of the path integral control form using Monte Carlo estimates of operators arising from a
RKHS embedding of the problem, leading to a consistent estimate of Ψ. While direct appli-
cation of Monte Carlo estimation to point evaluation of Ψ also yields a consistent estimate,
it is impractical for computation of controls for anything but simple problems, requiring a
trajectory sample for each state at which an action is to be computed. Although previous
work, e.g., [16] and similarly [15], has suggested approaches to overcome the problem of
sample complexity, these sacrifice consistency in the process and we demonstrate that the
proposed approach significantly improves upon them in terms of generalization to a policy
(cf. results in Fig.1(a,b)). We furthermore show that the presented estimators allow for
sample re-use in situations which previously required an entirely novel sample set. In par-
ticular we consider transfer in cases where execution of several, potentially related, tasks
on the same plant is required, demonstrating that it is possible to exploit samples from all
tasks to learn invariant aspects.

Note that as Φ itself defines a local optimal control problem, an alternative perspective
on the proposed method is as a principled approach to combining solutions to local control
problem to solve a more complex large scale problem. In future work we aim to elaborate on
this interpretation by combining the methods persented with alternative approaches, e.g.,
variational methods, which may be sufficient to provide good estimates for the comparatively
simpler local problems.

The choice of kernel has been largely ignored here, but one may expect improved results
by making informed kernel choices based on prior knowledge about the structure of the
problem.
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A Alternative embedding

As indicated in the main text (cf. section 3.1) an alternative representation to the embedding
(15) exists. Observe that for the purposes of the expectation the conditioning variable is
fixed and Φ is in fact only a function of it’s second argument, making it possible to apply
(9) embedding Xi+1|xi into the tensor space in which the product of Ψ and the partially
evaluated Φ resides. Formally define the operator for partial evaluation on Hφ

Rx [h] = h(x, ·) ∀x ∈ RDx , h ∈ Hφ (25)

In particular note that for Rx : Hφ → Hφx where φx = φ((x, ·), (x, ·)). We can now write
Φi(x, ·) = Rx [Φi] ∈ Hφx and application of (8) and (9) to (6) leads to

Ψi(x) = EXi+1|Xi=x [Rx [Φi] (Xi+1) ·Ψi+1(Xi+1)] (26)

= 〈Rx [Φi]⊗Ψi+1, Ew [Xi+1|Xi = x]〉 (27)

=
〈
Rx [Φi]⊗Ψi+1,Uwk ◦ Ek [x]

〉
(28)

where Hw = Hφx ⊗Hψ and k is some kernel of our choosing on RDx which again we take
to be ψ.

Although (28) is formally equivalent to the embedding derived in the main text, i.e., (15),
the yield different empirical estimates. Specifically, applying (17) to the (28) we obtain

Ψ̂i(x) = Gψ
xXα(x) with

α(x) =
[
Gφ

(xY)Rβ �Gψ′

YX ′α
′
]T

(Gψ
XX + εnI)−1 (29)

Hence, although this approach allows us to evaluate Ψ̂i at specific points, we do not directly
obtain a a finite dimensional representation of Ψ̂i in some RKHS. Furthermore, due to the

dependence on the evaluation point, the Gram matrix Gφ
(xX )R can in general not be pre

computed. None the less this form may have it’s applications for a forward, backwards

algorithm where Gφ
(xX )R is used for selection of an active set X for which α’s are computed

in a backwards pass.

B Alternative Estimators

We now discuss the two alternative estimators based on weighted samples alluded to in the
main text (cf. section 4).

B.1 Low rank Approximation

First, we address the computational complexity of (18), which is O(m3) for the matrix in-
version, which may be precomputed, and O(m2) for subsequent computations. Although
such costs are acceptable for reasonably sized problems, they may prove prohibitive for
application to realistic robotic systems. However we can apply a Gram-Schmidt orthogo-
nalisation of gkX , gkX ′ , as proposed by [12]. Summarising we approximate gkX ≈ gkYWx and

gkX ′ ≈ gkX̂ ′Wx′ , where Y ⊆ X , Y ′ ⊆ X ′ and Wx,Wx′ are weight matrices. Substituting

into (18) we may then obtain the alternative estimator

αi =
[
Gφ
D′Bβ �Gψ

Y′Aαi+1

]T
Wx′WT

x

(
WxW

T
x + εmGψ

YY
−1
)−1

Gk
YY
−1

(30)

This is computationally advantageous as with |Y| = m̂ � m the complexity reduces to
O(m̂3 + m̂2m) and O(m̂2) for required pre-computations and per iteration respectively,
often with minimal effects on the obtained results.

B.2 Importance Sampling

The estimator (18) is based on a sample from the distribution pπ0(X ′|X)µ(X) and while we
are free to choose µ, pπ0 is specified by Xi+1|Xi, i.e. the uncontrolled dynamics. In practice

10



it may be impractical to sample according to the uncontrolled dynamics, e.g., we may wish to
improve the policy sequentially collecting new sample following the already learned, rather
then the uninformed, policy. To address such situation we follow the importance sampling
approach. Specifically note that

CklZY = E(Z′,Y ′)

[
P (Z ′, Y ′)

Q(Z ′, Y ′)
k(Z, ·)⊗ l(Y, ·)

]
, (31)

where P,Q are the p.d.f.s of the two joints (Z, Y ), (Z ′, Y ′) and we assume Q(z, y) = 0 ⇒
P (z, y) = 0. Hence given a i.i.d. sample from (Z ′, Y ′) and empirical estimate of CklZY is
given by

ĈklD =

m∑
i=1

wik(·, zi)⊗ l(·, yi) , with wi = P (zi, yi)/Q(zi, yi) . (32)

Applying these to (11) to obtain an empirical estimate of U , it is easy to show that the
based on a sample from pπ(X ′|X)µ(X), formed from an alternative policy, the estimator

Ψ̄i = gψXαi with

αi =
[
Gφ
DBβ �Gψ

X ′Aαi+1

]T
W(Gk

XX + εnI)−1 (33)

is obtained, where W is the diagonal weight matrix with Wii = pπ0(x′i|xi)/pπ(x′i|xi) and
we again assume that pπ(x′|x) = 0⇒ pπ0(x′|x) = 0.

C Proofs and Derivations

C.1 General Results for Path Integral Control

Theorem 1. Let the optimal value function be bounded, say J*(·, t) < c then,

‖Ψ̄(·, t)−Ψ(·, t)‖∞ → 0 =⇒ ‖J̄*(·, t)− J*(·, t)‖∞ → 0 (34)

Proof. From (3),

J*(·, t) < c⇒ Ψ(·, t) > c′ > 0 (35)

Now

‖J̄*(·, t)− J*(·, t)‖∞ = sup
x
|J̄*(x, t)− J*(x, t)| (36)

=λ sup
x
| log

Ψ̄(x, t)

Ψ(x, t)
| (37)

=λ sup
x
| log(

Ψ̄(x, t)−Ψ(x, t)

Ψ(x, t)
+ 1)| (38)

≤λ sup
x
| log(

Ψ̄(x, t)−Ψ(x, t)

c′
+ 1)| (39)

and thus

‖Ψ̄(·, t)−Ψ(·, t)‖∞ → 0⇒ Ψ̄(x, t)−Ψ(x, t)

c′
+ 1→ 1⇒ ‖J̄*(·, t)− J*(·, t)‖∞ → 0 (40)

C.2 Convergence of Estimates

Theorem 2. Under the assumptions in the main text, the assumptions of lemma 3 and
assuming all relevant kernels satisfy 0 ≤ k(x, x′) ≤ 1, the estimator Ψ̄i is consistent, i.e.,
‖Ψ̄i −Ψi‖H converges in probability.
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Proof. Let Ψ̃i = Û∗ [Φ⊗Ψi+1] where Û∗ is the adjoint of Û , i.e., Ψ̃i captures the approx-
imation arising due to the empirical embedding. Then using general relation ‖T h‖H ≤
‖T ‖2‖h‖H ≤ ‖T ‖HS‖h‖H for bounds on operators, we have the bound

‖Ψ̃i −Ψi‖H =‖Û∗ [Φ⊗Ψi+1]− U∗ [Φ⊗Ψi+1] ‖H (41)

≤‖Φ⊗Ψi+1‖H‖Û∗ − U∗‖HS (42)

=‖Φ‖H ‖Ψi+1‖H‖Û∗ − U∗‖HS︸ ︷︷ ︸
=:εi

(43)

Now

‖Ψ̄i −Ψi‖H ≤‖Ψ̄i − Ψ̃i‖H + ‖Ψ̃i −Ψi‖H (44)

≤‖Û∗
[
Φ⊗ Ψ̄i+1

]
− Û∗ [Φ⊗Ψi+1] ‖H + ‖Φ‖Hεi (45)

≤‖Φ⊗ Ψ̄i+1 − Φ⊗Ψi+1‖H‖Û∗‖2 + ‖Φ‖Hεi (46)

≤‖Φ‖H‖Ψ̄i+1 −Ψi+1‖H + ‖Φ‖Hεi (47)

where in the last line we used 0 ≤ k(x, x′) ≤ 1 ⇒ ‖Û∗‖2 ≤ 1. As we may further using
lemma 3 and the union bound construct ε s.t. with probaility 1 − δ simultaniously for all
εi, εi ≤ ε. The result then follows by induction.

C.3 Auxillary Results

Lemma 3 (Song et al., 2010). Assume the operator CY XC
− 3

2

XX is Hilbert-Schmidt, then

‖Û − UY |X‖HS = O(λ
1
2 + λ−

3
2m−

1
2 ) (48)

In particular if the regularization term λ satisfies λ→ 0 and mλ3 →∞, then ‖Û lkD −U lk‖HS
converges in probability.

Proof. See [13] Theorem 1.
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