General lower bounds on maximal determinants of binary matrices

Richard P. Brent Australian National University Canberra, ACT 0200, Australia maxdet@rpbrent.com

Judy-anne H. Osborn The University of Newcastle Callaghan, NSW 2308, Australia judyanneosborn@gmail.com

In memory of Warwick Richard de Launey 1958–2010

Abstract

We give general lower bounds on the maximal determinant of $n \times$ $n \{+1, -1\}$ matrices, both with and without the assumption of the Hadamard conjecture. Our bounds improve on earlier results of de Launey and Levin and of Koukouvinos, Mitrouli and Seberry.

1 Introduction

For $n \geq 1$, let $D(n)$ denote the maximum determinant attainable by an $n \times n$ $\{+1, -1\}$ matrix. There are several well-known upper bounds on $D(n)$, such as Hadamard's original bound [\[15\]](#page-9-0) $D(n) \leq n^{n/2}$, which applies for all positive integers n, and bounds due to Ehlich [\[10,](#page-9-1) [11\]](#page-9-2), Barba [\[3\]](#page-8-0), Wojtas [\[33\]](#page-10-0) which are stronger but apply only to certain congruence classes of $n \mod 4$.

In this paper we give new lower bounds on $D(n)$, improving on earlier results of Cohn [\[7\]](#page-8-1), Clements and Lindström [\[6\]](#page-8-2), Koukouvinos, Mitrouli and Seberry [\[20,](#page-9-3) Theorem 2], and de Launey and Levin [\[23\]](#page-10-1).

We consider only square $\{+1, -1\}$ matrices. The *order* is the number of rows (or columns) of such a matrix. A $\{+1, -1\}$ matrix H with $|\det H|$ = $n^{n/2}$ is called a *Hadamard matrix*. A Hadamard matrix has order 1, 2, or a multiple of 4; the *Hadamard conjecture* is that every positive multiple of 4 is the order of a Hadamard matrix. It is known [\[19\]](#page-9-4) that every positive multiple of 4 up to and including 664 is the order of a Hadamard matrix.

Our technique for obtaining lower bounds on $D(n)$ is to consider a Hadamard matrix H of order say h as close as possible to n. If $h > n$ we consider minors of order n in H, much as was done by de Launey and Levin [\[23\]](#page-10-1), although the details differ as we use a theorem of Szöllősi $[32]$ instead of the probabilistic approach of [\[23\]](#page-10-1). If $h < n$ we construct a matrix of order n with large determinant having H as a submatrix. By combining both ideas, we improve on the bounds that are attainable using either idea separately.

The distance $\delta(n) = |h - n|$ of n from the (closest) order h of a Hadamard matrix can be bounded by the *prime gap* function $\lambda(x)$ which bounds the maximum distance between successive primes p_i, p_{i+1} with $p_i \leq x$. Thus, we can use known results on $\lambda(x)$, such as the theorem of Baker, Harman and Pintz [\[2\]](#page-8-3), to obtain unconditional lower bounds on $D(n)$. Unfortunately, such results, even on the assumption of the Riemann hypothesis, are much weaker than what is conjectured to be true.

If we are willing to assume the Hadamard conjecture, then $\delta(n) \leq 2$, and we can give much sharper lower bounds. In this case we show that the relative gap between the (Hadamard) upper bound and the lower bound is of order $n^{1/2}$. More precisely, our Corollary [4](#page-7-0) gives $D(n)/n^{n/2} \ge (3n)^{-1/2}$. This improves on earlier results by de Launey and Levin [\[23\]](#page-10-1), following Koukouvinos, Mitrouli and Seberry [\[20,](#page-9-3) Theorem 2], who obtained $D(n)/n^{n/2} \ge cn^{-3/2}$.

After defining our notation in §[2,](#page-2-0) we give unconditional lower bounds on $D(n)$ in §[3.](#page-2-1) The main result is Theorem [1,](#page-4-0) which implies that $D(n)/n^{n/2} \geq$ $n^{-\delta(n)/2}$. A consequence (Corollary [3\)](#page-6-0) which improves on a result of Clements and Lindström [\[6\]](#page-8-2) is that $n \log n - 2 \log D(n) = O(n^{21/40} \log n)$.

In §[4](#page-6-1) we give stronger lower bounds on the assumption of the Hadamard conjecture.

The lower bound results are weaker than what is conjectured to be true. Numerical evidence for n ≤ 120 supports a conjecture of Rokicki *et al* [\[27\]](#page-10-3) that $D(n)/n^{n/2} \geq 1/2$. In §[4](#page-6-1) we come close to this conjecture (on the assumption of the Hadamard conjecture) for five of the eight congruence classes of $n \mod 8$.

2 Notation

The positive integers are denoted by N, and the reals by R.

For $n \in \mathbb{N}$, \mathcal{H}_n denotes the set of Hadamard matrices of order n, and $\mathcal{H} := \{n \in \mathbb{N} \mid \mathcal{H}_n \neq \emptyset\}.$ The elements of \mathcal{H} in increasing order form the sequence $(n_i)_{i\geq 1}$ of all possible orders of Hadamard matrices $(n_1 = 1, n_2 = 2,$ $n_3 = 4$, $n_4 = 8$, $n_5 = 12$,...). The distance of n from a Hadamard order is

$$
\delta(n) := \min_{h \in \mathcal{H}} |n - h|.
$$
 (1)

The primes are denoted by $(p_i)_{i\geq 1}$ with $p_1 = 2, p_2 = 3$, etc. The *prime gap* function $\lambda : \mathbb{R} \to \mathbb{Z}$ is

$$
\lambda(x) := \max \{ p_{i+1} - p_i \mid p_i \le x \} \cup \{ 0 \}.
$$

By analogy, we define the *Hadamard gap* function $\gamma : \mathbb{R} \to \mathbb{Z}$ to be

$$
\gamma(x) := \max \{ n_{i+1} - n_i \mid n_i \le x \} \cup \{ 0 \}.
$$

Finally, β_n denotes the well-known mapping from $\{+1, -1\}$ matrices of order $n > 1$ to $\{0, 1\}$ matrices of order $n - 1$, such that

$$
|\det(A)| = 2^{n-1} |\det \beta_n(A)|.
$$

3 Unconditional lower bounds on $D(n)$

The connection between the prime gap function λ and the Hadamard gap function γ is given by the following lemma.

Lemma 1. *For* $n \geq 8$ *, we have* $\gamma(n) \leq 2\lambda(n/2 - 1)$ *.*

Proof. If p is an odd prime, then $n = 2(p+1) \in \mathcal{H}$. This follows from the second Paley construction [\[26\]](#page-10-4) if $p \equiv 1 \pmod{4}$, or from the first Paley construction followed by the Sylvester construction if $p \equiv 3 \pmod{4}$. Thus, if p_i , p_{i+1} are consecutive odd primes, then $n_j = 2(p_i + 1) \in \mathcal{H}$, $n_k = 2(p_{i+1} + 1) \in \mathcal{H}$, and $k > j$. The result now follows from the definitions of the two gap functions. of the two gap functions.

Remark 1. De Launey and Gordon [\[22\]](#page-10-5) have shown that the sequence of Hadamard orders (n_i) is asymptotically denser than the sequence of primes. Even if we consider only the Paley and Sylvester constructions and Kronecker products arising from them [\[1\]](#page-8-4), we can frequently find Hadamard matrices whose orders lie in the interior of the interval $(2(p_i+1), 2(p_{i+1}+1))$ defined by a large prime gap. It would be interesting to compute the Hadamard gap function $\gamma(n)$ for $n \leq 10^{12}$ say, and compare it with $2\lambda(n/2-1)$. On probabilistic grounds [\[8,](#page-9-5) [30\]](#page-10-6) we expect $\gamma(n) \ll \lambda(n) \ll (\log n)^2$.

Corollary 1. *For* $n \geq 8$ *, we have* $\delta(n) \leq \lambda(n/2 - 1)$ *.*

Proof. By the definition of $\delta(n)$ we have $\delta(n) \leq \gamma(n)/2$, so the result follows from Lemma 1. from Lemma [1.](#page-2-2)

Lemma [2](#page-3-0) gives an inequality that is often useful.

Lemma 2. *If* $\alpha \in \mathbb{R}$ *,* $n \in \mathbb{N}$ *, and* $n > |\alpha| > 0$ *, then*

$$
\frac{(n-\alpha)^{n-\alpha}}{n^n} > \left(\frac{1}{ne}\right)^{\alpha}.
$$

Proof. Taking logarithms, and writing $x = \alpha/n$, the inequality reduces to

$$
(1 - x) \log(1 - x) + x > 0,
$$

or equivalently (since $0 < |x| < 1$)

$$
\frac{x^2}{1\cdot 2} + \frac{x^3}{2\cdot 3} + \frac{x^4}{3\cdot 4} + \dots > 0.
$$

This is clear if $x > 0$, and also if $x < 0$ because then the terms alternate in sign and decrease in magnitude. \Box

Recently Szöllősi [\[32,](#page-10-2) Proposition 5.5] established an elegant correspondence between the minors of order n and of order $h - n$ of a Hadamard matrix of order h. His result applies to complex Hadamard matrices, of which $\{+1, -1\}$ Hadamard matrices are a special case. More precisely, if $d+n = h, 0 < d < h$, then for each minor of order d and value Δ there corresponds a minor of order *n* and value $\pm h^{h/2-d}\Delta$. Previously, only a few special cases (for small d or n, see for example $[9, 21, 29, 31]$ $[9, 21, 29, 31]$ $[9, 21, 29, 31]$ $[9, 21, 29, 31]$) were known. We note that Szöllősi's crucial Lemma 5.7 follows easily from Jacobi's determinant identity [\[5,](#page-8-5) [14,](#page-9-8) [18\]](#page-9-9), although Szöllősi gives a different proof.

Lemma 3. Suppose $0 < n < h$ and $h \in \mathcal{H}$. Then $D(n) \geq 2^{d-1}h^{h/2-d}$, where $d = h - n.$

Proof. Let $H \in \mathcal{H}_h$ be a Hadamard matrix of order h. By Szöllősi's theorem, H has a submatrix M of order n with $|\det(M)| = h^{h/2-d} |\det(M')|$, where M' is the corresponding submatrix of order $d = h - n$. At least one such pair (M, M') has a nonsingular M', so has $|\det(M')| \geq 2^{d-1}$.

Remark 2. We could improve Lemma [3](#page-4-1) for large d by using the fact that, from a result of de Launey and Levin [\[23,](#page-10-1) proof of Prop. 5.1], there exists M' with $|\det(M')| \geq (d!)^{1/2}$, which is asymptotically larger than the bound $|\det(M')| \geq 2^{d-1}$ that we used in our proof. However, in our application of the lemma, $h \gg d$, so it is the power of h in the bound that is significant.

Lemma 4. *Suppose* $0 < h < n$ *and* $h \in \mathcal{H}$ *. Then* $D(n) \ge 2^{n-h}h^{h/2}$ *.*

Proof. The case $h = 1$ is trivial, so suppose that $h > 1$. Let $H \in \mathcal{H}_h$ be a Hadamard matrix of order h, so H has determinant $\pm h^{h/2}$ and the corresponding $\{0, 1\}$ matrix $\beta_h(H)$ has determinant $\pm 2^{1-h}h^{h/2}$. We can construct a $\{0,1\}$ matrix A of order $n-1$ and the same determinant as $\beta_h(H)$ by adding a border of $n - h$ rows and columns (all zero except for the diagonal entries). Now construct a $\{+1, -1\}$ matrix $B = \beta_n^{(-1)}(A)$ by applying the standard mapping from $\{0, 1\}$ matrices to $\{+1, -1\}$ matrices. We have $|\det(B)| = 2^{n-1} |\det(A)| = 2^{n-h} h^{h/2}$. □ $|\det(B)| = 2^{n-1} |\det(A)| = 2^{n-h} h^{h/2}.$

Lemma 5. Let $n \in \mathbb{N}$ and $\delta = \delta(n)$ be defined by [\(1\)](#page-2-3). Then $n > 3\delta$.

Proof. The interval $[2n/3, 4n/3]$ contains a unique power of two, say h. By the Sylvester construction, $h \in \mathcal{H}$. However, $|n-h| \leq n/3$, so $\delta \leq n/3$. \Box

Theorem 1. Let $n \in \mathbb{N}$ and $\delta = \delta(n)$ be defined by [\(1\)](#page-2-3). Then

$$
\frac{D(n)}{n^{n/2}} \ge \left(\frac{4}{ne}\right)^{\delta/2}.\tag{2}
$$

Proof. By the definition of $\delta(n)$, there exists a Hadamard matrix H of order $h = n \pm \delta$. If $\delta = 0$ the result is trivial, so suppose $\delta \geq 1$. We consider two cases. First suppose that $h = n + \delta$. Applying Lemma [3,](#page-4-1) we have

$$
D(n) \ge 2^{\delta - 1} h^{h/2 - \delta} \ge h^{h/2 - \delta}.
$$

Applying Lemma [2](#page-3-0) with $\alpha = -\delta$ gives

$$
\frac{D(n)}{n^{n/2}} \ge \frac{h^{h/2-\delta}}{n^{n/2}} = \frac{(n+\delta)^{(n+\delta)/2}}{n^{n/2}}(n+\delta)^{-\delta} \ge \left(\frac{ne}{(n+\delta)^2}\right)^{\delta/2}.
$$

By Lemma [5](#page-4-2) we have $\delta/n \leq 1/3 < (e/2 - 1)$, from which it is easy to verify that $ne/(n+\delta)^2 > 4/(ne)$. The inequality [\(2\)](#page-4-3) follows.

Now suppose that $h = n - \delta$. From Lemma [4](#page-4-4) we have $D(n) \geq 2^{\delta} h^{h/2}$. Using Lemma [2](#page-3-0) with $\alpha = \delta$, we have

$$
\frac{D(n)}{n^{n/2}} > 2^{\delta} \left(\frac{1}{ne}\right)^{\delta/2} = \left(\frac{4}{ne}\right)^{\delta/2}.
$$

Thus, in all cases we have established the desired lower bound on $D(n)$. \Box

Remark 3. De Launey and Levin [\[23,](#page-10-1) Theorem 3] give (in our notation) the bound $D(n)/n^{n/2} \ge n^{-d/2}$, where the exponent d could be as large as 2δ , so their bound could be worse than ours by a factor $\Omega(n^{\delta/2})$. The reason for the difference is that they always take a Hadamard matrix with order $h > n$, whereas we take $h < n$ and use Lemma [4](#page-4-4) if that gives a sharper bound.

Corollary 2. Let $n \in \mathbb{N}$, $n > 2$, and let $\lambda(n)$ be the prime gap function *defined in* §*[2.](#page-2-0) Then*

$$
\frac{D(n)}{n^{n/2}} \ge \left(\frac{4}{ne}\right)^{\lambda(n/2)/2}
$$

.

Proof. For $n \geq 8$ this follows from Theorem [1,](#page-4-0) using Corollary [1.](#page-3-1) It is easy to check that the inequality holds for $2 < n < 8$ by using the known values of $D(n)$ listed in [\[25\]](#page-10-9). \Box

Remark 4. In the literature there are many inequalities for $\lambda(n)$, see for example Hoheisel [\[16\]](#page-9-10) or Huxley [\[17\]](#page-9-11). The best result so far seems to be that of Baker, Harman and Pintz [\[2\]](#page-8-3), who proved that $\lambda(n) \leq n^{21/40}$ for $n \geq n_0$, where n_0 is a sufficiently large (effectively computable) constant. Assum-ing the Riemann hypothesis, Cramér [\[8\]](#page-9-5) proved that $\lambda(n) = O(n^{1/2} \log n)$. "Cramér's conjecture" (made by Shanks [\[30\]](#page-10-6)) is that $\lambda(n) = O((\log n)^2)$, and numerical computations [\[24\]](#page-10-10) provide some evidence for this conjecture. For a discussion of other relevant results on prime gaps, see [\[23,](#page-10-1) §1].

Corollary 3. *If* $n \in N$ *, then*

$$
0 \le n \log n - 2 \log D(n) = O(n^{21/40} \log n) \quad \text{as} \quad n \to \infty.
$$

Proof. The result follows from Corollary [2](#page-5-0) and the theorem of Baker, Harman and Pintz [\[2\]](#page-8-3). \Box

Remark 5. Corollary [3](#page-6-0) improves on Cohn [\[7,](#page-8-1) Theorem 13], who showed that $n \log n - 2 \log D(n) = o(n \log n)$, and Clements and Lindström [\[6\]](#page-8-2), who showed that $n \log n - 2 \log D(n) = O(n)$.

4 Conditional lower bounds on $D(n)$

In this section we assume the Hadamard conjecture and give lower bounds on $D(n)$ that are sharper than the unconditional bounds of §[3.](#page-2-1)

The idea of the proof of Theorem [2](#page-7-1) is similar to that of Theorem $1 - we$ use a Hadamard matrix of slightly smaller or larger order to bound $D(n)$ when $n \not\equiv 0 \pmod{4}$. In each case, we choose whichever construction gives the sharper bound. First we make a definition and state two well-known lemmas.

Definition 1. Let A be a $\{\pm 1\}$ matrix. The excess of A is $\sigma(A) := \sum_{i,j} a_{i,j}$. *If* $n \in \mathcal{H}$ *, then* $\sigma(n) := \max_{H \in \mathcal{H}_n} \sigma(H)$ *.*

The following lemma is a corollary of [\[12,](#page-9-12) Theorem 1], and gives a small improvement on Best's lower bound [\[4,](#page-8-6) Theorem 3] $\sigma(h) \geq 2^{-1/2} h^{3/2}$.

Lemma 6. *If* $4 \leq h \in \mathcal{H}$ *, then*

$$
\sigma(h) \ge (2/\pi)^{1/2} h^{3/2}.
$$

The following lemma is "well-known" – it follows from $[28,$ Theorem 2] and is also mentioned in later works such as [\[13,](#page-9-13) pg. 166].

Lemma 7. *If* $h \in \mathcal{H}$ *, then*

$$
D(h+1) \ge h^{h/2} \left(1 + \frac{\sigma(h)}{h} \right).
$$

Theorem 2. Assume the Hadamard conjecture. For $n \in \mathbb{N}$, $n > 2$, we have

$$
D(n) \ge \begin{cases} \left(\frac{2}{\pi e}\right)^{1/2} n^{n/2} & \text{if } n \equiv 1 \pmod{4}, \\ \left(\frac{8}{\pi e^2 n}\right)^{1/2} n^{n/2} & \text{if } n \equiv 2 \pmod{4}, \\ (n+1)^{(n-1)/2} \sim \left(\frac{e}{n}\right)^{1/2} n^{n/2} & \text{if } n \equiv 3 \pmod{4}. \end{cases}
$$
(3)

Proof. Suppose that $4 \leq h \equiv 0 \pmod{4}$. We are assuming the Hadamard conjecture, so $h \in \mathcal{H}$. Thus, combining the inequalities of Lemma [6](#page-6-2) and Lemma [7,](#page-6-3) we have

$$
D(h+1) \ge h^{h/2} (1 + (2h/\pi)^{1/2}). \tag{4}
$$

Let A be a $\{\pm 1\}$ matrix of order $h + 1$ with determinant at least the right side of [\(4\)](#page-7-2). By the argument used in the proof of Lemma [4,](#page-4-4) we can construct a $\{\pm 1\}$ matrix of order $h + 2$ with determinant at least $2h^{h/2}(1 + (2h/\pi)^{1/2})$ by adjoining a row and column to A . Thus

$$
D(h+2) \ge 2h^{h/2}(1 + (2h/\pi)^{1/2}).
$$
\n(5)

.

To prove the first inequality in [\(3\)](#page-7-3), put $h = n-1$ in [\(4\)](#page-7-2) and use Lemma [2](#page-3-0) with $\alpha = 1$. Thus, for $1 < n \equiv 1 \pmod{4}$,

$$
D(n)/n^{n/2} \ge \left(\frac{2}{\pi e}\right)^{1/2} \left(\left(1 - \frac{1}{n}\right)^{1/2} + \left(\frac{\pi}{2n}\right)^{1/2} \right) > \left(\frac{2}{\pi e}\right)^{1/2}
$$

To prove the second inequality in [\(3\)](#page-7-3), put $h = n - 2$ in [\(5\)](#page-7-4) and use Lemma [2](#page-3-0) with $\alpha = 2$. Thus, for $2 < n \equiv 2 \pmod{4}$,

$$
D(n)/n^{n/2} \ge \left(\frac{8}{\pi e^2 n}\right)^{1/2} \left(\left(1 - \frac{2}{n}\right)^{1/2} + \left(\frac{\pi}{2n}\right)^{1/2} \right) > \left(\frac{8}{\pi e^2 n}\right)^{1/2}.
$$

Finally, if $n \equiv 3 \pmod{4}$, then a Hadamard matrix of order $n + 1$ exists.
From Lemma 3 with $h = n + 1$ we have $D(n) > (n + 1)^{(n-1)/2}$. From Lemma [3](#page-4-1) with $h = n + 1$ we have $D(n) \ge (n + 1)^{(n-1)/2}$.

Corollary 4. *Assume the Hadamard conjecture. If* $n \geq 1$ *then*

$$
D(n)/n^{n/2} \ge 1/\sqrt{3n} \, .
$$

Proof. For $n > 2$ this follows from Theorem [2,](#page-7-1) since $\pi e^2 < 24$. The result is also true if $n \in \{1, 2\}$, as then $D(n)/n^{n/2} = 1$. \Box **Remark 6.** The inequality [\(4\)](#page-7-2) is within a factor $\sqrt{\pi}$ of the Barba bound $(2h+1)^{1/2}h^{h/2}.$

Remark 7. Corollary [4](#page-7-0) sharpens a result of Koukouvinos, Mitrouli and Seberry [\[20,](#page-9-3) Theorem 2], also given in [\[23\]](#page-10-1), that $D(n)/n^{n/2} \ge cn^{-3/2}$.

Remark 8. If $n \equiv 2 \pmod{8}$, we get a lower bound $D(n)/n^{n/2} > 2/(\pi e)$ by using the Sylvester construction on a matrix of order $n/2 \equiv 1 \pmod{4}$. Thus, the remaining cases in which there is a ratio of order $n^{1/2}$ between the upper and lower bounds are $(n \mod 8) \in \{3, 6, 7\}.$

Acknowledgement

We thank Will Orrick for his assistance in locating some of the references, and Warren Smith for pointing out the connection between Jacobi and Szöllősi.

References

- [1] S. S. Agaian, *Hadamard Matrices and their Applications*, Lecture Notes in Mathematics 1168, Springer-Verlag, 1985.
- [2] R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, *Proc. London Mathematical Society* 83 (2001), 532–562.
- [3] G. Barba, Intorno al teorema di Hadamard sui determinanti a valore massimo, *Giorn. Mat. Battaglini* 71 (1933), 70–86.
- [4] M. R. Best, The excess of a Hadamard matrix, *Nederl. Akad. Wetensch. Proc. Ser. A* 80 = *Indag. Math.* 39 (1977), 357–361.
- [5] R. A. Brualdi and H. Schneider, Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley, *Linear Algebra Appl.* 52/53 (1983), 769–791.
- [6] G. F. Clements and B. Lindström, A sequence of (± 1) -determinants with large values, *Proc. Amer. Math. Soc.* 16 (1965), 548–550.
- [7] J. H. E. Cohn, On the value of determinants, *Proc. Amer. Math. Soc.* 14 (1963), 581–588.
- [8] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, *Acta Arithmetica* 2 (1936), 23–46.
- [9] J. Day and B. Peterson, Growth in Gaussian elimination, *Amer. Math. Monthly* 95 (1988), 489–513.
- [10] H. Ehlich, Determinantenabsch¨atzungen f¨ur bin¨are Matrizen, *Math. Z.* 83 (1964), 123–132.
- [11] H. Ehlich, Determinantenabschätzungen für binäre Matrizen mit $N \equiv$ 3 mod 4, *Math. Z.* 84 (1964), 438–447.
- [12] H. Enomoto and M. Miyamoto, On maximal weights of Hadamard matrices, *J. Combin. Theory* Series A 29 (1980), 94–100.
- [13] N. Farmakis and S. Kounias, The excess of Hadamard matrices and optimal designs, *Discrete Mathematics* 67 (1987), 165–176.
- [14] F. R. Gantmacher, *The Theory of Matrices*, Vol. 1, Chelsea, 1960.
- [15] J. Hadamard, R´esolution d'une question relative aux d´eterminants, *Bull. des Sci. Math.* 17 (1893), 240–246.
- [16] G. Hoheisel, Primzahlprobleme in der Analysis, *Sitz. Preuss. Akad. Wiss.* 2 (1930), 1–13.
- [17] M. N. Huxley, On the difference between consecutive primes, *Inventiones Mathematicae* 15 (1972), 164–170.
- [18] C. G. J. Jacobi, De formatione et proprietatibus determinantium, *Crelle's J.* 22 (1841), 285–318; also *Ges. Werke*, Vol. 3, Reimer, 1884, 356–392.
- [19] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, *Journal of Combinatorial Designs* 13 (2005), 435–440.
- [20] C. Koukouvinos, M. Mitrouli and J. Seberry, Bounds on the maximum determinant for (1, −1) matrices, *Bulletin of the Institute of Combinatorics and its Applications* 29 (2000), 39–48.
- [21] C. Koukouvinos, M. Mitrouli and J. Seberry, An algorithm to find formulæ and values of minors for Hadamard matrices, *Linear Algebra and Applications* 330 (2001), 129–147.
- [22] W. de Launey and D. M. Gordon, On the density of the set of known Hadamard orders, *Cryptography and Communications* 2 (2010), 233– 246. Also arXiv:1004.4872v1.
- [23] W. de Launey and D. A. Levin, $(1, -1)$ -matrices with near-extremal properties, *SIAM Journal on Discrete Mathematics* 23 (2009), 1422– 1440.
- [24] T. Nicely, New maximal prime gaps, *Mathematics of Computation* 68 (1999), 1311–1315.
- [25] W. P. Orrick and B. Solomon, The Hadamard maximal determinant problem, <http://www.indiana.edu/~maxdet/>
- [26] R. E. A. C. Paley, On orthogonal matrices, *J. Math. Phys* 12 (1933), 311–320.
- [27] T. Rokicki, I. Kazmenko, J-C. Meyrignac, W. P. Orrick, V. Trofimov and J. Wroblewski, *Large determinant binary matrices: results from Lars Backstrom's programming contest*, unpublished report, July 31, 2010.
- [28] K. W. Schmidt and E. T. H. Wang, The weights of Hadamard matrices, *J. Combinatorial Theory*, Series A 23 (1977), 257–263.
- [29] J. Seberry, T. Xia, C. Koukouvinos and M. Mitrouli, The maximal determinant and subdeterminants of ±1 matrices, *Linear Algebra and Applications* 373 (2003), 297–310.
- [30] D. Shanks, On maximal gaps between successive primes, *Mathematics of Computation* 18 (1964), 646–651.
- [31] F. R. Sharpe, The maximum value of a determinant, *Bull. AMS* 14 (1907), 121–123.
- [32] F. Szöllősi, Exotic complex Hadamard matrices and their equivalence, *Cryptography and Communications* 2 (2010), 187–198. Also arXiv:1001.3062v2.
- [33] W. Wojtas, On Hadamard's inequality for the determinants of order non-divisible by 4, *Colloq. Math.* 12 (1964), 73–83.