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Abstract

We give general lower bounds on the maximal determinant of n×
n {+1,−1} matrices, both with and without the assumption of the

Hadamard conjecture. Our bounds improve on earlier results of de

Launey and Levin and of Koukouvinos, Mitrouli and Seberry.

1 Introduction

For n ≥ 1, let D(n) denote the maximum determinant attainable by an n×n
{+1,−1} matrix. There are several well-known upper bounds on D(n), such
as Hadamard’s original bound [15] D(n) ≤ nn/2, which applies for all positive
integers n, and bounds due to Ehlich [10, 11], Barba [3], Wojtas [33] which
are stronger but apply only to certain congruence classes of n mod 4.

In this paper we give new lower bounds on D(n), improving on earlier
results of Cohn [7], Clements and Lindström [6], Koukouvinos, Mitrouli and
Seberry [20, Theorem 2], and de Launey and Levin [23].
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We consider only square {+1,−1} matrices. The order is the number of
rows (or columns) of such a matrix. A {+1,−1} matrix H with | detH| =
nn/2 is called a Hadamard matrix. A Hadamard matrix has order 1, 2, or a
multiple of 4; the Hadamard conjecture is that every positive multiple of 4 is
the order of a Hadamard matrix. It is known [19] that every positive multiple
of 4 up to and including 664 is the order of a Hadamard matrix.

Our technique for obtaining lower bounds on D(n) is to consider a Hada-
mard matrix H of order say h as close as possible to n. If h > n we consider
minors of order n in H , much as was done by de Launey and Levin [23],
although the details differ as we use a theorem of Szöllősi [32] instead of the
probabilistic approach of [23]. If h < n we construct a matrix of order n with
large determinant having H as a submatrix. By combining both ideas, we
improve on the bounds that are attainable using either idea separately.

The distance δ(n) = |h−n| of n from the (closest) order h of a Hadamard
matrix can be bounded by the prime gap function λ(x) which bounds the
maximum distance between successive primes pi, pi+1 with pi ≤ x. Thus,
we can use known results on λ(x), such as the theorem of Baker, Harman
and Pintz [2], to obtain unconditional lower bounds on D(n). Unfortunately,
such results, even on the assumption of the Riemann hypothesis, are much
weaker than what is conjectured to be true.

If we are willing to assume the Hadamard conjecture, then δ(n) ≤ 2, and
we can give much sharper lower bounds. In this case we show that the relative
gap between the (Hadamard) upper bound and the lower bound is of order
n1/2. More precisely, our Corollary 4 gives D(n)/nn/2 ≥ (3n)−1/2. This im-
proves on earlier results by de Launey and Levin [23], following Koukouvinos,
Mitrouli and Seberry [20, Theorem 2], who obtained D(n)/nn/2 ≥ cn−3/2.

After defining our notation in §2, we give unconditional lower bounds on
D(n) in §3. The main result is Theorem 1, which implies that D(n)/nn/2 ≥
n−δ(n)/2. A consequence (Corollary 3) which improves on a result of Clements
and Lindström [6] is that n logn− 2 logD(n) = O(n21/40 logn).

In §4 we give stronger lower bounds on the assumption of the Hadamard
conjecture.

The lower bound results are weaker than what is conjectured to be true.
Numerical evidence for n ≤ 120 supports a conjecture of Rokicki et al [27]
that D(n)/nn/2 ≥ 1/2. In §4 we come close to this conjecture (on the as-
sumption of the Hadamard conjecture) for five of the eight congruence classes
of n mod 8.
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2 Notation

The positive integers are denoted by N, and the reals by R.
For n ∈ N, Hn denotes the set of Hadamard matrices of order n, and

H := {n ∈ N | Hn 6= ∅}. The elements of H in increasing order form the
sequence (ni)i≥1 of all possible orders of Hadamard matrices (n1 = 1, n2 = 2,
n3 = 4, n4 = 8, n5 = 12, . . .). The distance of n from a Hadamard order is

δ(n) := min
h∈H

|n− h|. (1)

The primes are denoted by (pi)i≥1 with p1 = 2, p2 = 3, etc. The prime

gap function λ : R → Z is

λ(x) := max {pi+1 − pi | pi ≤ x} ∪ {0}.

By analogy, we define the Hadamard gap function γ : R → Z to be

γ(x) := max {ni+1 − ni | ni ≤ x} ∪ {0}.

Finally, βn denotes the well-known mapping from {+1,−1} matrices of
order n > 1 to {0, 1} matrices of order n− 1, such that

| det(A)| = 2n−1| det βn(A)|.

3 Unconditional lower bounds on D(n)

The connection between the prime gap function λ and the Hadamard gap
function γ is given by the following lemma.

Lemma 1. For n ≥ 8, we have γ(n) ≤ 2λ(n/2− 1).

Proof. If p is an odd prime, then n = 2(p + 1) ∈ H. This follows from
the second Paley construction [26] if p ≡ 1 (mod 4), or from the first Pa-
ley construction followed by the Sylvester construction if p ≡ 3 (mod 4).
Thus, if pi, pi+1 are consecutive odd primes, then nj = 2(pi + 1) ∈ H,
nk = 2(pi+1+1) ∈ H, and k > j. The result now follows from the definitions
of the two gap functions.
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Remark 1. De Launey and Gordon [22] have shown that the sequence of
Hadamard orders (ni) is asymptotically denser than the sequence of primes.
Even if we consider only the Paley and Sylvester constructions and Kronecker
products arising from them [1], we can frequently find Hadamard matrices
whose orders lie in the interior of the interval (2(pi + 1), 2(pi+1 + 1)) defined
by a large prime gap. It would be interesting to compute the Hadamard
gap function γ(n) for n ≤ 1012 say, and compare it with 2λ(n/2 − 1). On
probabilistic grounds [8, 30] we expect γ(n) ≪ λ(n) ≪ (logn)2.

Corollary 1. For n ≥ 8, we have δ(n) ≤ λ(n/2− 1).

Proof. By the definition of δ(n) we have δ(n) ≤ γ(n)/2, so the result follows
from Lemma 1.

Lemma 2 gives an inequality that is often useful.

Lemma 2. If α ∈ R, n ∈ N, and n > |α| > 0, then

(n− α)n−α

nn
>

(

1

ne

)α

.

Proof. Taking logarithms, and writing x = α/n, the inequality reduces to

(1− x) log(1− x) + x > 0,

or equivalently (since 0 < |x| < 1)

x2

1 · 2 +
x3

2 · 3 +
x4

3 · 4 + · · · > 0.

This is clear if x > 0, and also if x < 0 because then the terms alternate in
sign and decrease in magnitude.

Recently Szöllősi [32, Proposition 5.5] established an elegant correspon-
dence between the minors of order n and of order h − n of a Hadamard
matrix of order h. His result applies to complex Hadamard matrices, of
which {+1,−1} Hadamard matrices are a special case. More precisely, if
d+n = h, 0 < d < h, then for each minor of order d and value ∆ there corre-
sponds a minor of order n and value ±hh/2−d∆. Previously, only a few special
cases (for small d or n, see for example [9, 21, 29, 31]) were known. We note
that Szöllősi’s crucial Lemma 5.7 follows easily from Jacobi’s determinant
identity [5, 14, 18], although Szöllősi gives a different proof.
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Lemma 3. Suppose 0 < n < h and h ∈ H. Then D(n) ≥ 2d−1hh/2−d, where

d = h− n.

Proof. Let H ∈ Hh be a Hadamard matrix of order h. By Szöllősi’s theorem,
H has a submatrix M of order n with | det(M)| = hh/2−d| det(M ′)|, where
M ′ is the corresponding submatrix of order d = h−n. At least one such pair
(M,M ′) has a nonsingular M ′, so has | det(M ′)| ≥ 2d−1.

Remark 2. We could improve Lemma 3 for large d by using the fact that,
from a result of de Launey and Levin [23, proof of Prop. 5.1], there exists
M ′ with | det(M ′)| ≥ (d!)1/2, which is asymptotically larger than the bound
| det(M ′)| ≥ 2d−1 that we used in our proof. However, in our application of
the lemma, h ≫ d, so it is the power of h in the bound that is significant.

Lemma 4. Suppose 0 < h < n and h ∈ H. Then D(n) ≥ 2n−hhh/2.

Proof. The case h = 1 is trivial, so suppose that h > 1. Let H ∈ Hh be
a Hadamard matrix of order h, so H has determinant ±hh/2 and the corre-
sponding {0, 1} matrix βh(H) has determinant ±21−hhh/2. We can construct
a {0, 1} matrix A of order n − 1 and the same determinant as βh(H) by
adding a border of n − h rows and columns (all zero except for the diago-

nal entries). Now construct a {+1,−1} matrix B = β
(−1)
n (A) by applying

the standard mapping from {0, 1} matrices to {+1,−1} matrices. We have
| det(B)| = 2n−1| det(A)| = 2n−hhh/2.

Lemma 5. Let n ∈ N and δ = δ(n) be defined by (1). Then n ≥ 3δ.

Proof. The interval [2n/3, 4n/3) contains a unique power of two, say h. By
the Sylvester construction, h ∈ H. However, |n− h| ≤ n/3, so δ ≤ n/3.

Theorem 1. Let n ∈ N and δ = δ(n) be defined by (1). Then

D(n)

nn/2
≥
(

4

ne

)δ/2

. (2)

Proof. By the definition of δ(n), there exists a Hadamard matrix H of order
h = n ± δ. If δ = 0 the result is trivial, so suppose δ ≥ 1. We consider two
cases. First suppose that h = n+ δ. Applying Lemma 3, we have

D(n) ≥ 2δ−1hh/2−δ ≥ hh/2−δ.
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Applying Lemma 2 with α = −δ gives

D(n)

nn/2
≥ hh/2−δ

nn/2
=

(n + δ)(n+δ)/2

nn/2
(n+ δ)−δ ≥

(

ne

(n+ δ)2

)δ/2

.

By Lemma 5 we have δ/n ≤ 1/3 < (e/2− 1), from which it is easy to verify
that ne/(n + δ)2 > 4/(ne). The inequality (2) follows.

Now suppose that h = n − δ. From Lemma 4 we have D(n) ≥ 2δhh/2.
Using Lemma 2 with α = δ, we have

D(n)

nn/2
> 2δ

(

1

ne

)δ/2

=

(

4

ne

)δ/2

.

Thus, in all cases we have established the desired lower bound on D(n).

Remark 3. De Launey and Levin [23, Theorem 3] give (in our notation) the
bound D(n)/nn/2 ≥ n−d/2, where the exponent d could be as large as 2δ, so
their bound could be worse than ours by a factor Ω(nδ/2). The reason for
the difference is that they always take a Hadamard matrix with order h > n,
whereas we take h < n and use Lemma 4 if that gives a sharper bound.

Corollary 2. Let n ∈ N, n > 2, and let λ(n) be the prime gap function

defined in §2. Then

D(n)

nn/2
≥
(

4

ne

)λ(n/2)/2

.

Proof. For n ≥ 8 this follows from Theorem 1, using Corollary 1. It is easy
to check that the inequality holds for 2 < n < 8 by using the known values
of D(n) listed in [25].

Remark 4. In the literature there are many inequalities for λ(n), see for
example Hoheisel [16] or Huxley [17]. The best result so far seems to be that
of Baker, Harman and Pintz [2], who proved that λ(n) ≤ n21/40 for n ≥ n0,
where n0 is a sufficiently large (effectively computable) constant. Assum-
ing the Riemann hypothesis, Cramér [8] proved that λ(n) = O(n1/2 logn).
“Cramér’s conjecture” (made by Shanks [30]) is that λ(n) = O((logn)2), and
numerical computations [24] provide some evidence for this conjecture. For
a discussion of other relevant results on prime gaps, see [23, §1].
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Corollary 3. If n ∈ N , then

0 ≤ n log n− 2 logD(n) = O(n21/40 log n) as n → ∞.

Proof. The result follows from Corollary 2 and the theorem of Baker, Harman
and Pintz [2].

Remark 5. Corollary 3 improves on Cohn [7, Theorem 13], who showed
that n log n− 2 logD(n) = o(n log n), and Clements and Lindström [6], who
showed that n logn− 2 logD(n) = O(n).

4 Conditional lower bounds on D(n)

In this section we assume the Hadamard conjecture and give lower bounds
on D(n) that are sharper than the unconditional bounds of §3.

The idea of the proof of Theorem 2 is similar to that of Theorem 1 – we
use a Hadamard matrix of slightly smaller or larger order to bound D(n)
when n 6≡ 0 (mod 4). In each case, we choose whichever construction gives
the sharper bound. First we make a definition and state two well-known
lemmas.

Definition 1. Let A be a {±1} matrix. The excess of A is σ(A) :=
∑

i,j ai,j.
If n ∈ H, then σ(n) := maxH∈Hn

σ(H).

The following lemma is a corollary of [12, Theorem 1], and gives a small
improvement on Best’s lower bound [4, Theorem 3] σ(h) ≥ 2−1/2h3/2.

Lemma 6. If 4 ≤ h ∈ H, then

σ(h) ≥ (2/π)1/2h3/2.

The following lemma is “well-known” – it follows from [28, Theorem 2]
and is also mentioned in later works such as [13, pg. 166].

Lemma 7. If h ∈ H, then

D(h+ 1) ≥ hh/2

(

1 +
σ(h)

h

)

.
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Theorem 2. Assume the Hadamard conjecture. For n ∈ N, n > 2, we have

D(n) ≥











(

2
πe

)1/2
nn/2 if n ≡ 1 (mod 4),

(

8
πe2n

)1/2
nn/2 if n ≡ 2 (mod 4),

(n+ 1)(n−1)/2 ∼
(

e
n

)1/2
nn/2 if n ≡ 3 (mod 4).

(3)

Proof. Suppose that 4 ≤ h ≡ 0 (mod 4). We are assuming the Hadamard
conjecture, so h ∈ H. Thus, combining the inequalities of Lemma 6 and
Lemma 7, we have

D(h+ 1) ≥ hh/2(1 + (2h/π)1/2) . (4)

Let A be a {±1} matrix of order h + 1 with determinant at least the right
side of (4). By the argument used in the proof of Lemma 4, we can construct
a {±1} matrix of order h+ 2 with determinant at least 2hh/2(1 + (2h/π)1/2)
by adjoining a row and column to A. Thus

D(h+ 2) ≥ 2hh/2(1 + (2h/π)1/2) . (5)

To prove the first inequality in (3), put h = n−1 in (4) and use Lemma 2
with α = 1. Thus, for 1 < n ≡ 1 (mod 4),

D(n)/nn/2 ≥
(

2

πe

)1/2
(

(

1− 1

n

)1/2

+
( π

2n

)1/2
)

>

(

2

πe

)1/2

.

To prove the second inequality in (3), put h = n − 2 in (5) and use
Lemma 2 with α = 2. Thus, for 2 < n ≡ 2 (mod 4),

D(n)/nn/2 ≥
(

8

πe2n

)1/2
(

(

1− 2

n

)1/2

+
( π

2n

)1/2
)

>

(

8

πe2n

)1/2

.

Finally, if n ≡ 3 (mod 4), then a Hadamard matrix of order n + 1 exists.
From Lemma 3 with h = n+ 1 we have D(n) ≥ (n+ 1)(n−1)/2.

Corollary 4. Assume the Hadamard conjecture. If n ≥ 1 then

D(n)/nn/2 ≥ 1/
√
3n .

Proof. For n > 2 this follows from Theorem 2, since πe2 < 24. The result is
also true if n ∈ {1, 2}, as then D(n)/nn/2 = 1.
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Remark 6. The inequality (4) is within a factor
√
π of the Barba bound

(2h+ 1)1/2hh/2.

Remark 7. Corollary 4 sharpens a result of Koukouvinos, Mitrouli and
Seberry [20, Theorem 2], also given in [23], that D(n)/nn/2 ≥ cn−3/2.

Remark 8. If n ≡ 2 (mod 8), we get a lower bound D(n)/nn/2 ≥ 2/(πe)
by using the Sylvester construction on a matrix of order n/2 ≡ 1 (mod 4).
Thus, the remaining cases in which there is a ratio of order n1/2 between the
upper and lower bounds are (n mod 8) ∈ {3, 6, 7}.
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