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Summary

For estimating a lower bounded parametric function in the framework of Marchand and Strawderman

(2006), we provide “through” a unified approach a class of Bayesian confidence intervals with credibility

1 − α and frequentist coverage probability bounded below by 1−α
1+α

. In cases where the underlying pivotal

distribution is symmetric, the findings represent extensions with respect to the specification of the credible

set achieved through the choice of a spending function, and including Marchand and Strawderman’s HPD

procedure result. More significantly for non-symmetric cases, the lower bound 1−α
1+α

finding, although not

applicable to the HPD procedure, is novel. Several examples are presented demonstrating wide applicability.
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1. Introduction

Bayesian credible sets are not designed (e.g., Robert, 2011) and are far from guaranteed (Fraser,

2011) to have satisfactory, exact or precise frequentist coverage but it is nevertheless of interest

to investigate (Wasserman, 2011) to what extent there is convergence or divergence in various

situations, including the choice of the prior and of the credible set. A historically resonating

example where there is exact convergence arises for estimating the mean of a N(µ, σ2) distribution,

and where the use of the non-informative prior leads to a (1−α)×100% HPD credible set (i.e. the z

or t confidence interval) with exact frequentist coverage. This, however, is very much the exception.

Even, in the simple presence of a lower bound on the mean parameter µ (e.g., Mandelkern, 2002),

with the prior taken to be the truncation of the non-informative prior onto the restricted parameter

space, the frequentist coverage of the (1−α)×100% HPD credible set fluctuates from its credibility

(or nominal coverage) 1 − α. However, the HPD procedure does not fare poorly as a frequentist

procedure for large 1 − α as witnessed by the lower bound 1−α
1+α

on its frequentist coverage due to

Roe and Woodroofe (2000, known σ2) and Zhang and Woodroofe (2003, unknown σ2), as well as

the better lower bound 1− 3α
2

(for α < 1/3, known σ2) obtained by Marchand et al. (2008).

Marchand and Strawderman (2006) showed that the lower bound 1−α
1+α

is applicable in a vast number

of situations. Their findings relate to the following setup.

Assumption 1. We have a model density f(x; θ); x ∈ X , θ ∈ Θ; for an observable X, with

both X and θ being vectors, and we seek to estimate a parametric function τ(θ) (ℜp → ℜ) with

the constraint τ(θ) ≥ 0. We assume there exists a pivot T (X, θ) = a1(X)−τ(θ)
a2(X)

; a2(·) > 0; such

that −T (X, θ) has cdf G and Lebesgue density g. We consider prior measures π and π0, where

π0(θ) = π(θ)I[0,∞)(τ(θ)), and π is the Haar right invariant measure. We further assume that the

decision problem is invariant under a group G of transformations and that the pivot satisfies the

2



invariance requirement T (x, θ) = T (gx, ḡθ), for all x ∈ X , θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ, with X , Θ, G, and

Ḡ being isomorphic. Referring to Marchand and Strawderman (2006, Lemma 2 and Corollary 1) for

further details, we recall a key feature of the above structure, which is that the posterior distribution

under π of T (x, θ) coincides, for all x, with the frequentist distribution of T (X, θ) (which is free of

θ) and thus has cdf G.

For symmetric and unimodal g, Marchand and Strawderman (2006) show that the (1− α)× 100%

HPD credible set has frequentist coverage C(θ) greater than 1−α
1+α

for all θ such that τ(θ) ≥ 0.

For non-symmetric densities g, Marchand and Strawderman (2006) provide proof in some cases,

and evidence in others, of satisfactory performance for the HPD credible set. More precisely,

the proof of the validity of the lower bound 1−α
1+α

is achieved with an additional assumption on

the type of asymmetry (skewness) of the distribution of the pivot T (X, θ), while the evidence is

based on numerical evaluations of a theoretical and unexplicit lower bound for frequentist coverage

(e.g., Example 2 of Marchand and Strawderman, 2006 concerning a lower bounded Gamma scale

parameter). Nevertheless, a clear result or lower bound for frequentist coverage in such cases is

lacking, and it is our motivation here to try to fill this gap.

Indeed, the main finding here is as follows. For prior measure π0, we obtain a class of (1−α)×100%

credible sets for τ(θ) for which

C(θ) >
1− α

1 + α
, for all θ such that τ(θ) ≥ 0. (1)

This is achieved irrespectively of G and is thus totally general in the context described above. Our

class of credible sets includes an “equal-tailed modification” of the HPD procedure which we describe

below, and which coincides with the HPD procedure whenever g is symmetric and unimodal. Hence,

our findings as applied to the equal tailed procedure extends those of the symmetric case.

It is by considering a class of Bayesian credible sets, rather than only the HPD procedure, that
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we are able to establish clear results on frequentist coverage. It is indeed with the analysis of the

spending function related to credible set that we can pinpoint conditions for which the lower bound

(1) holds. The main findings are elaborated upon in Section 2 and various applications are presented

in Section 3. To facilitate the presentation of the results, here is a list of definitions and notations

used.

Cheklist

• 1− α: credibility or posterior coverage or nominal frequentist coverage (α ∈ (0, 1))

• T (X, θ) = a1(X)−τ(θ)
a2(X)

: pivot

• π: unrestricted prior density chosen as the right Haar invariant measure

• π0 : prior density given by the truncation of π onto the restricted parameter space

• G: cumulative distribution function (cdf) of −T (X, θ)|x and of −T (X, θ)|θ under π (which
coincide for all x, θ)

• g = G′: probability density function (pdf) of −T (X, θ)

• G−1: inverse cdf

• α(·): spending function

• Iπ0,α(·)(X) = [l(X), u(X)]: Bayesian credible set of credibility 1− α associated with the prior
π0 and the spending function α(·)

• C(θ): the frequentist coverage at θ of the confidence interval Iπ0,α(·)(X) given by C(θ) =
Pθ(Iπ0,α(·)(X) ∋ τ(θ))

• y0 = −G−1( α
1+α

)

• t(x) = a1(x)
a2(x)

• ∆0(x) = (1− α)(1−G(−t(x)))
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2. Main results

We begin this section by describing two different, yet equivalent, and instructive approaches to

constructing a credible set for τ(θ).

(A) (Spending function approach)

A (1 − α) × 100% credible interval for τ(θ) associated with prior π0 can be generated by

a spending function α(·) : ℜp → [0, α], such that Iπ0
(X) = [l(X), u(X)] 2 with Pπ0

(τ(θ) ≥

u(x)|x) = α(x) (and consequently Pπ0
(τ(θ) ≤ l(x)|x) = α − α(x) ). More precisely, we have

the following under Assmption 1.

Lemma 1. For a given spending function α(·), we have lα(·)(x) = a1(x)+a2(x)G
−1{G(−t(x))+

(α − α(x))(1 − G(−t(x))} and uα(·)(x) = a1(x) + a2(x)G
−1{1 − α(x)(1 − G(−t(x))}, with

t(x) = a1(x)
a2(x)

.

Proof. Since the posterior cdf of −T (X, θ) under π is given by G, we have by definition of

π0, for y ≥ 0:

Pπ0
(τ(θ) ≥ y| x) =

Pπ(τ(θ) ≥ y| x)

Pπ(τ(θ) ≥ 0| x)
=

1− G(y−a1(x)
a2(x)

)

1−G(−t(x))
. (2)

Hence, we obtain for β ∈ (0, 1), y > 0, Pπ0
(τ(θ) ≥ y| x) = β ⇔ y = a1(x) + a2(x)G

−1{1 −

β + βG(−t(x))}, and the result follows with the choices β = α(x) and β = 1− (α− α(x)) for

u(x) and l(x) respectively.

Example 1. The HPD procedures studied by Marchand and Strawderman (2006) for symmet-

ric and unimodal g are given by the bounds l(x) = max{0, a1(x)+a2(x)G
−1(1−(1−α)G(t(x))

2
)} and

u(x) = a1(x) + a2(x)min{G−1(1 − αG(t(x))), G−1(1+(1−α)G(t(x))
2

)} . With these given bounds,

2we suppress the dependence on α(·) unless required
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one may verify directly from (2) that the corresponding spending function is equal to

min{α,
α

2
+

G(−t(x)

2(1−G(−t(x)))
}, (3)

with α(x) = α if and only if t(x) ≤ −G−1( α
1+α

) = G−1( 1
1+α

) since g is symmetric about 0.

Conversely, applying Lemma 1 with the spending function choice α(·) in (3) leads to the HPD

procedure above (using the equality of G(·) and 1−G(−·) for symmetric about g).

(B) (Approach based on quantiles of the pivot)

Alternatively, a second approach for cases where l(x) > 0 begins with choices γ1 and γ2, which

will be made for each x, such that G(γ2)−G(−γ1) = ∆, for a given ∆ ∈ (0, 1). Since, for any

x, we require 1− α = Pπ0
(l(x) ≤ τ(θ) ≤ u(x)|x), we must have by (2):

G(
u(x)− a1(x)

a2(x)
)−G(

l(x)− a1(x)

a2(x)
) = (1− α)(1−G(−t(x))),

and this can be achieved with choices −γ1 and γ2 above for ∆ = ∆0(x) = (1−α)(1−G(−t(x)))

yielding u(x)−a1(x)
a2(x)

= γ2(∆0(x)) and
l(x)−a1(x)

a2(x)
= −γ1(∆0(x)), in other words

l(x) = a1(x)− a2(x) γ1(∆0(x)), and u(x) = a1(x) + a2(x) γ2(∆0(x)) , (4)

whenever l(x) > 0. In view of the lower bound restriction on τ(θ) (i.e., τ(θ) ≥ 0), and the

corresponding requirement that l(X) ≥ 0, observe that not all choices of −γ1 (and hence of

γ2) are feasible in (4) and that we must have

−γ1(∆0(x)) ≥ −
a1(x)

a2(x)
.

Example 2. With the above construction in (4), an equal-tailed choice of −γ1 and γ2, that is

−γ1(∆) = G−1(1−∆
2

) and γ2(∆) = G−1(1+∆
2

), leads to the credible set bounds

l(x) = a1(x) + a2(x)G
−1(

1−∆0(x)

2
), and u(x) = a1(x) + a2(x)G

−1(
1 + ∆0(x)

2
), (5)

6



when l(x) > 0. These above bounds coincide with those of the HPD procedure (when l(x) > 0) in

the symmetric case of Example 1, as well as the spending function given in (3) as can be verified

directly from (2) (Please note that the terminology “equal tails” does not mean α(x) = α/2 but

rather to the choice of the quantiles −γ1 and γ2 under G.)

We define y0 = −G−1( α
1+α

) and t(x) = a1(x)
a2(x)

. Observing that l(x) ≤ 0 in (5) if and only if t(x) ≤ y0,

we are lead to investigate the frequentist performance of Bayesian credible intervals which have

l(x) = 0, or equivalently α(x) = α whenever t(x) ≤ y0, and which include the equal-tailed procedure

of Example 2. We now have the following.

Theorem 1. Under the conditions of Theorem 1 of Marchand and Strawderman (2006), that is

Assumption 1, consider Bayesian credible intervals Iπ0,α(·) associated with prior π0 and a spending

function α(·) such that α(x) = α for all x with t(x) ≤ y0. For the frequentist coverage C(θ) =

Pθ(Iπ0,α(·)(X) ∋ τ(θ)), we then have

(a) C(θ) = 1
1+α

for all θ such that τ(θ) = 0;

(b) Moreover, we have C(θ) > 1−α
1+α

for all θ such that τ(θ) ≥ 0 as long as α(x) satisfies, for all x,

(1− α)G(−t(x)) + α2

1+α

1−G(−t(x))
≤ α(x) ≤ (

α

1 + α
)

1

1−G(−t(x))
. (6)

Proof.

(a) For θ such that τ(θ) = 0, we have

Pθ(Iπ0,α(·)(X) ∋ 0) = Pθ(α(X) = 0) = Pθ(t(X) ≤ y0) = 1−G(−y0) =
1

1 + α
,

since −t(X) has cdf G whenever τ(θ) = 0.
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(b) As in Marchand and Strawderman (2006), first observe that the confidence interval I1(X) =

[l1(X), u1(X)] = max{0, a1(X) + a2(X)G−1( α
1+α

)}, a1(X) + a2(X)G−1( 1
1+α

)} has the same

frequentist coverage as I∗1 (X) = [a1(X) + a2(X)G−1( α
1+α

)}, a1(X) + a2(X)G−1( 1
1+α

)}] equal

to Pθ(G
−1( α

1+α
) ≤ τ(θ)−a1(X)

a2(X)
≤ G−1( 1

1+α
)) = G(G−1( 1

1+α
)) − G(G−1( α

1+α
)) = 1−α

1+α
. Now, we

show that the given conditions on α(·) imply that Iπ0,α(·) ⊇ I1 which will lead to the result

directly. Indeed, we have by the upper bound in (6) and Lemma 1: uα(·)(x) ≥ a1(x) +

a2(x)G
−1(1 − α

1+α
) = u1(x). Similarly, from the lower bound (6) and Lemma 1 we obtain

l(x) ≤ a1(x) + a2(x)G
−1{G(−t(x) + α(1 − G(−t(x))) − α2

1+α
− (1 − α)G(−t(x))} = a1(x) +

a2(x)G
−1( α

1+α
) = l1(x).

Corollary 1. Under Assumption 1, the equal-tails credible interval Iπ0,α(·) defined by the spending

function α(·) in (3) has minimum frequentist coverage C(θ) greater than 1−α
1+α

for all θ such that

τ(θ) ≥ 0.

Proof. It suffices to show directly that (6) is satisfied for the selection α(x) = αeqt(x) given in (3)

for x such that t(x) ≥ y0. Indeed, we have for such x’s:

αeqt(x)(1−G(−t(x))) =
α

2
+

1− α

2
G(−t(x)) ≤

α

2
+

1− α

2
G(−y0) =

α

1 + α
,

and

αeqt(x)(1 −G(−t(x)))− (1− α)G(−t(x))−
α2

1 + α
=

α(1− α)

2(1 + α)
−

1− α

2
G(−t(x))

≥
α(1− α)

2(1 + α)
−

1− α

2
G(−y0)) = 0. ✷

Remark 1. In cases where the underlying pivotal distribution is non-symmetric, Corollary 1 is a

new result, generalizing Theorem 1 of Marchand and Strawderman (2006), by virtue of Example

1 and is widely applicable given the lack of assumptions on g. Also, the bounds of the equal tails
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procedure are easier to evaluate than that of the HPD credible interval. And the findings of Theorem

1 go beyond a single procedure, even in the symmetric case, by providing a class of credible sets, as

specified by a spending function, with frequentist coverage bounded below by 1−α
1+α

.

3. Examples

At the risk of some redundancy with the examples provided by Marchand and Strawderman (2006),

it is still beneficial here to present various applications with accompanying commentary. Assumption

1 is satisfied in all of the examples below with the underlying family of transformations (distribu-

tions) being either the location family, the scale family, or the location-scale family.

(A) (a single location parameter) X ∼ f0(x − θ); τ(θ) = θ ≥ 0; T (X, θ) = X − θ; π0(θ) =

1[0,∞)(θ). In such cases, all Bayes credible sets Iπ0,α(·) (with credibility 1−α), with the spending

function α(·) satisfying the conditions of Theorem 1 and the bounds in (6), have necessarily

minimum frequentist coverage bounded below by 1−α
1+α

. Through the transformations X →

X − a and X → −X + a, one can reduce all lower bounded restrictions θ ≥ a and upper

bounded restrictions θ ≤ a to the case θ ≥ 0 considered here and we will not make further

explicit mention of such transformations below.

Remark 2. Results such as those in (A) are applicable as well for several observations by condition-

ing on a maximal invariant. Indeed, suppose that X = (X1, . . . , Xn) ∼ f0(x1− θ, . . . , xn− θ), where

f0 is known and the Xi’s are not necessarily independently distributed. Set V = (X2−X1, . . . , Xn−

X1) as a maximal invariant. One can then proceed, for a given value v of V , with an interval

estimate Iπ0,α(·,v)(X1, v) as given in Lemma 1 with G ≡ Gv representing the cdf of the pivot X1 − θ

conditional on V = v, and α(x, v) satisfying the conditions of Theorem 1 and (6). In such a case,
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Theorem 1 applies to the conditional frequentist coverage C(θ, v) = Pθ(Iπ0,α(·,v)(X, v) ∋ τ(θ)|V = v)

yielding the inequality C(θ, v) > 1−α
1+α

for all θ ≥ 0. Since this is true for all v, the unconditional

frequentist coverage C(θ) of the Bayes credible set Iπ0,α(·,·)(X, V ) will also exceed 1−α
1+α

for all θ ≥ 0

(see Marchand and Strawderman, 2006, for more details related to a multivariate Student model)

In the same vein, all the scenarios below (B to G), although presented for simplicity in the single

observation case, are also applicable in presence of a sample by conditioning on a maximal invariant.

(B) (a lower bounded scale parameter) X ∼ 1
θ
f1(

x
θ
) 1(0,∞)(x) with θ ≥ a; τ(θ) = log(θ) −

log(a) ≥ 0; T (X, θ) = log(X)− log(a)−τ(θ); π0(θ) =
1
θ
1[0,∞)(τ(θ)). Here, an interval estimate

of τ(θ) provides an interval estimate of θ. Important models include Gamma, Weibull, Fisher,

among others. A familiar setup where the results can be applied arises in random effects

analysis of variance models with a Fisher distributed pivot (see Zhang and Woodroofe, 2002,

for details).

Remark 3. Further applications consist of power parameter families where we have a scale family

for an observable Y and the model of interest are the distributions for X = eY . As as simple illus-

tration, consider the Pareto model for X with densities γ

xγ+11(1,∞)(x) and the parametric constraint

γ ∈ (1, γ0). In such cases, we have that γ0 log(X) ∼ Exp(θ) with θ = γ0
γ
≥ 1 and the results in (B)

apply.

(C) (location-scale families ) (X1, X2) ∼ f0(
x1−θ1
θ2

, x2

θ2
) 1(0,∞)(x2); τ(θ) = θ1 ≥ 0; T (X, θ) =

X1−θ1
X2

; π0(θ) =
1
θ2
1(0,∞)(θ2)1[0,∞)(θ1). This setup encompasses the basic normal case: X1, . . .Xn

ind. N(µ, σ2) with σ2 unknown and µ ≥ 0, and more generally linear models Y = Zβ+ ǫ, ǫ ∼

N(0, σ2In) where the objective is to estimate a lower-bounded linear combination τ(θ) = l′β,

by setting X1 = β̂(Z ′Z)−1Z ′Y , X2 = ‖Y −Zβ‖2, θ1 = β, θ2 = σ. Here, the pivot T (X, θ) has
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a Student distribution. Alternatively, if the objective is to estimate a lower bounded scale θ2,

one can proceed as in (B).

(D) (linear combination of several location parameters) X = (X1, . . . , Xp) ∼ f0(x1 −

θ1, . . . , xp − θp); τ(θ) =
∑p

i=1 aiθi; π0(θ) = 1[0,∞)(τ(θ)), T (X, θ) = (
∑p

i=1 aiXi) − τ(θ). This

setup includes, for instance, estimating a difference θ1 − θ2 with an order constraint θ1 ≥ θ2.

(E) (multivariate location-scale families with homogeneous scale )

In (D), we can incorporate a common scale and apply the results of this paper for estimating a

lower bounded linear combination with X = (X1, . . . , Xp , Xp+1) ∼ f0(
x1−θ1
θp+1

, . . . , xp−θp
θp+1

, xp+1

θp+1
),

τ(θ) =
∑p

i=1 aiθi, T (X, θ) =
(
∑p

i=1
aiXi)−τ(θ)

Xp+1
, and π0(θ) =

1
θp+1

1(0,∞)(θp+1)1[0,∞)(τ(θ)).

(F) (several scale parameters )

(X1, . . . , Xp) ∼ (Πp
i=1

1
θi
) f1(

x1

θ1
, . . . , xp

θp
); τ(θ) =

∑p
i=1 ai log(θi). This can consist, for instance,

of estimating a lower bounded ratio θ2
θ1

≥ a of two scale parameters.

(G) (quantiles in location-scale families) Xi ∼ N(µ, σ) iid; τ(θ) = µ + ησ ≥ 0, π0(µ, σ) =

1
σ
1(0,∞)(σ)1(0,∞)(µ + ησ). T (X, θ) = X̄−µ−ησ

S
. Here, T (X, θ) is distributed as non-central

Student. The applications are not restricted to normality and are applicable in general for

location-scale families as in (C).

Concluding remarks

For a large variety of situations with a lower bounded parametric constraint, we have obtained

a class of Bayesian (1 − α) × 100% credible sets which provide minimal frequentist probability

coverage exceeding 1−α
1+α

. These Bayesian confidence intervals includes an equal tailed modification
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or approximation of the HPD credible set which coincides with the latter when the distribution

of the underlying pivot is symmetric. We have made use of the spending function interpretation

of Bayesian confidence intervals. In seeking to evaluate the frequentist performance of Bayesian

confidence intervals, our results illustrate that the choice of bounds matters, so that there does

not necessarily exist a single universal assessment of their frequentist performance even in a given

specific problem.
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