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Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and
to compare their performance, no clear consensus exists on what is the best method and under which
conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when
using different generators of LRC time series. Here, we compare the performances of four estimators
[Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving
Average (BDMA), and centred Detrending Moving Average (CDMA)]. We use three different gen-
erators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We
find that CDMA has the best performance and DFA is only slightly worse in some situations, while
FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than
FA. Hence, CDMA and DFA remain “The Methods of Choice” in determining the Hurst index of
time series.

A complex system, be it ecological, biological, techno-
logical, social, economic or financial, is usually embedded
in a complex network, which is composed of a large num-
ber of interacting heterogeneous constituents linked via
interwoven nonlinear heterogenous ties [1]. The observed
signals of the physical quantities characterizing a com-
plex system often exhibit long-range correlations [2]. It
is of crucial importance and significance to quantify such
long-range correlations to have a deep understanding of
the dynamics of the underlying complex systems. More
than ten techniques have been invented to detect long-
range correlations in time series [3, 4], such as the rescaled
range (R/S) analysis [5], the wavelet transform module
maxima (WTMM) approach [6–10], the fluctuation anal-
ysis (FA) [11], the detrended fluctuation analysis (DFA)
[12], the detrending moving average analysis (DMA) [13],
and so on.

Our work focuses on three methods (FA, DFA and
DMA) that are very popular especially in the econo-
physics community. Consider a time series {x(t) : t =
1, 2, · · · , N} with zero mean and its profile y(t) con-
structed as the cumulative sum of x(t). The three meth-
ods proceed to obtain fluctuation functions F (s) specific
to a timescale s. For long-range correlated time series,
we have

F (s) ∼ sα, (1)

where α is a scaling exponent. In FA, the fluctuation
function is computed as follows [11]

F (s) =
√
〈[y(t+ s)− y(t)]2〉, (2)
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which is actually a special case of the structure func-
tion in turbulence [14]. In contrast, both DFA and DMA
adopt detrending techniques. The time series y(t) is cov-
ered by Ns disjoint boxes of size s. When the whole time
series y(t) cannot be completely covered by Ns boxes, we
can utilize 2Ns boxes to cover the time series by start-
ing from both ends of the time series. In each box, a
trend function g(t) of the sub-series is determined. The
residuals are calculated by

ε(t) = y(t)− g(t), (3)

where the trend g(t) is a polynomial function in the DFA
algorithm [12] and a moving average function over s data
points in the DMA method [13]. The fluctuation function
F (s) is then obtained as the r.m.s. of the residual time
series:

F (s) =

√√√√ 1

N

N∑
t=1

[ε(t)]
2
. (4)

Note that all these methods have a multifractal ver-
sion [15–19] and can be generalized to handle high-
dimensional fractals and multifractals [19–21]. When y(t)
is a fractional Brownian motion (FBM), the scaling ex-
ponent α is identical to the Hurst index H [22–25].

Several groups have attempted to assess the perfor-
mance and relative merits of these techniques. Xu et
al. [26] compare the performances of DFA and DMA on
long-range power-law correlated time series synthesized
using the modified Fourier filtering method [27], and find
that DFA is superior to different DMA variants. Bashan
et al. [28] observe that the centred DMA performs as well
as DFA for long time series with weak trends and slightly
outperforms DFA for short data with weak trends. They
conclude that DFA “remains the method of choice” when
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FIG. 1. Scaling plots of 〈F 〉 against s. Each plot contains four curves obtained from four different analysis methods (FA,
BDMA, CDMA and DFA) and each curve represents a fluctuation function averaged over 100 repeated simulated time series
with the error bars showing the standard deviations. The three rows correspond to three generators (FGN-DH, FBM-RMD
and WFBM from top to bottom). Each column corresponds to a fixed Hurst index (Hin = 0.1, 0.3, 0.5, 0.7, and 0.9 from left to
right). The curves have been shifted vertically for better visibility.

the trend is not a priori known. Serinaldi [29] uses the
Davies-Harte algorithm to generate fractional Gaussian
noises (FGNs) and FBMs by summing the FGNs [30],
and find that DFA and DMA have comparable perfor-
mances. Jiang and Zhou [31] report that DFA and the
centred DMA perform similarly and both of them out-
perform the backward and forward DMA methods, when
the FBMs are generated using the Fourier-based Wood-
Chan algorithm [32]. Huang et al. [33] find comparative
performances of FA and DFA for FBMs with H = 1/3,
which are generated with the Wood-Chan algorithm [32].
In contrast, Bryce and Sprague [34] argue that FA out-
performs DFA, for FGNs withH = 0.3 that are generated
using the Davies-Harte algorithm [30].

We notice that these studies concentrate on DFA ver-
sus DMA or DFA versus FA and report what appears
to be contradictory results when considered together. A
careful reading unveils that these studies cannot be di-
rectly compared because they have adopted different syn-
thesis algorithms (or generators) for the long-range cor-
related time series to be tested. Indeed, comparing the
performances of long-range correlation detection meth-
ods is not an easy task for the following reasons. Firstly,
there are many algorithms to generate FGNs and FBMs
[35], and one should be careful not to draw too rapid con-
clusions on the relative performance of long-range corre-
lation detection methods that may be sensitive to the
micro-structure of the generated time series that depend
on the specific synthesis algorithm. Secondly, real time
series may contain a priori unknown nontrivial trends
[36–39], which complicates significantly the detection of
long-range correlations, because trends and long-range

correlations often lead to similar signals. Thirdly, there
is no consensus on an objective determination approach
of the scaling range, which plays a crucial role in the
estimation of the scaling exponents. Often, studies use
quite short scaling ranges (a decade or less), which is an
hindrance for determining the genuine presence of long-
range correlations [40–42].

In this work, we focus on comparing FA, DFA and two
versions of DMA, where a linear detrending is adopted in
DFA and the backward and centred versions of DMA (de-
noted BDMA and CDMA respectively) are investigated
since the forward DMA performs the worst according to
the literature. The comparison between FA, DFA and
two versions of DMA is conducted on time series gener-
ated using three different algorithms, thus generating a
3×4 matrix of comparisons: (1) FGNs using the Davies-
Harte algorithm (FGN-DH) [30] so that we can compare
with the analysis by Bryce and Sprague [34], (2) FBMs
using a wavelet-based generator (WFBM) [43], which in-
put Hurst indexes are very close to the estimated DFA ex-
ponents even when H < 0.5 [44], and (3) FBMs using the
random midpoint displacement algorithm (FBM-RMD)
[45], because the numerical results of the generated time
series are in excellent agreement with the analytical re-
sults for DMA [25]. Besides, we do not consider trends
or other hidden nonlinear structures.

Results

Fluctuation functions. Figure 1 compares the fluc-
tuation functions calculated with four different scaling
analysis methods (FA, BDMA, CDMA, DFA) on time
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FIG. 2. Local slopes of the fluctuation functions. Each plot contains four curves obtained from four different scaling
analysis methods (FA, BDMA, CDMA and DFA) and each curve represents a slope function averaged over 100 repeated
simulated time series with the error bars showing the standard deviations. The three rows correspond to three generators (FGN-
DH, FBM-RMD and WFBM from top to bottom). Each column corresponds to a fixed Hurst index (Hin = 0.1, 0.3, 0.5, 0.7, and
0.9 from left to right). The horizontal dashed lines indicates the exact value of the Hurst index used to generate the synthetic
time series.

series generated using three different generators (FGN-
DH, FBM-RMD and WFBM). We notice that panel (b)
confirms the results in Ref. [34], which compares the per-
formances of FA and DFA on FGNs with Hin. One can
also notice that the error bar increases with s for each
curve.

When the scale s is small and the Hurst index Hin is
small, the curvature of the fluctuation function for DFA
is remarkable, while the FA curve looks quite straight.
In addition, the DMA curves also exhibit some mild cur-
vature. With the increase of the Hurst index Hin of the
analysed time series, the curvature of the DFA and DMA
curves decreases. We thus confirm that FA performs best
in most cases and DFA performs worst at small scales.

However, the conclusions are very different at large
scales. The DFA curves have the smallest error bars,
the centred DMA curves show the second smallest error
bars, and the FA curves exhibit the largest error bars.
More significantly, the DFA and CDMA curves are very
straight, while the FA and BDMA curves exhibit some
clear curvature with the magnitude of the curvature be-
comes larger with the increase of the Hurst index Hin.

These observations are qualitatively the same for dif-
ferent time series generators.

Local slopes. Figure 2 compares the local slopes, which
are the estimates of the Hurst exponent, calculated with
four different scaling analysis methods on the time series
generated using three different generators. Comparing
the three plots of each column, it is found that the rela-
tive performances are qualitatively the same for the three
time series generators. For each scaling analysis method,

the error bars become larger with the increase of the scale
for each fixed Hurst index Hin or with the increase of the
Hurst index Hin at fixed scale. Again, the error bars of
the DFA curve are the largest in each plot.

At large scales, we find that FA is the worst in the
sense that the FA curves have the largest error bars and
deviate the most from the theoretical line 〈Hout〉 = Hin.
In contrast, DFA and CDMA have comparable perfor-
mances and perform best.

At small scales, the order of performance, as measured
by the proximity of the estimates of the scaling exponents
to the true Hurst values and by the size of the error
bars, is FA � CDMA � BDMA � DFA for Hin = 0.1
in the first column, CDMA � FA � BDMA � DFA for
Hin = 0.3 in the second column, CDMA ' FA � BDMA
� DFA for Hin = 0.5 in the third column, FA � BDMA
� CDMA � DFA for Hin = 0.7 in the fourth column,
and FA � BDMA � CDMA ' DFA for Hin = 0.9 in the
fifth column, where A � B means that A is superior to
B.

Effect of scaling range. In order to perform the scaling
analysis onto real systems using any of the above meth-
ods, it is of crucial importance to determine the scaling
range. This is because the estimate of the scaling ex-
ponent may vary dramatically if one changes the scaling
range. We now investigate the effect of the scaling range
on the estimation accuracy of the Hurst index performed
with the four scaling analysis methods applied to time
series synthesized by the three different generators.

Let us first consider the FGNs. We find that the FA
gives accurate estimates when Hin < 0.5, while the es-
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FIG. 3. Impacts of the scaling range on the Hurst index estimates. Each plot has a different scaling range [sleft, sright,
where sleft = 4, 10, 20 from left column to right column and sright = 999, 1992, 5000 from top row to bottom row. In each plot,
there are three clusters of curves. Each cluster corresponds to the three generators (FGN-DH, FBM-RMD and WFBM from
top to bottom). The top and bottom clusters have been shifted vertically by +0.25 and -0.25 respectively for better visibility.
In each clusters, there are four sets of points with their error bars that are obtained from four different analysis methods (FA,
BDMA, CDMA and DFA). Each point shows the average slope of the Hurst index estimates over 100 simulated time series.
The error bars show the standard deviations.

timated indexes deviate more and more from the theo-
retical values when Hin increases in the persistent time
series range, for all nine scaling ranges. The DFA esti-
mates are not accurate only when sright = 999 (first row)
and Hin < 0.5 and DFA outperforms FA for all the other
cases. More intriguingly, CDMA gives very accurate esti-
mates of the Hurst indexes and performs the best almost
in all situations. Overall, DFA outperforms BDMA and
FA is the worst estimator.

For the time series generated with FBM-RMD and
WFBM, the relative performances of the four scaling
analysis methods are qualitatively the same. When
Hin � 0.5, FA � BDMA � CDMA � DFA. For other
situations, DFA and CDMA give very accurate estimates
of the Hurst indexes and perform the best, while FA per-
forms the worst.

Taking all these observations together, we conclude
that CDMA has the best performance and DFA is slightly

worse. When the scaling range is properly determined,
DFA and CDMA have similar performances. In contrast,
FA has the worst performance, especially in the sense
that it cannot provide accurate estimations of the Hurst
index for persistent time series.

Discussion

We have investigated the performances of four estima-
tors (FA, DFA, BDMA, and CDMA) for the characteri-
zation of long-range power-law correlated time series syn-
thesized with three different generators (FGN-DH, FBM-
RMD and WFBM). We have illustrated that, overall,
CDMA and DFA are the best and exhibit comparable
performances, while FA performs the worst. In particu-
lar, CDMA and DFA are less sensitive than FA to the
choice of the scaling range. We depart significantly from
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the conclusion of Ref. [34] that FA is superior to DFA, by
showing that this statement holds only for very special
cases (FGNs with Hin = 0.3) that cannot be extended to
other situations.

An important issue is the effect of the length of time
series on the results and conclusions, especially for short
time series. We repeated the analysis by generating time
series of length 2000, which corresponds to time windows
of 8 years of trading at the daily scale, or less than a week
of data sampled at the minute time scale. The analysis
comparing the results for windows of 2000 time steps to
those for windows of 20000 time steps is presented in
Supplementary Information and confirms that the con-
clusions remain unchanged, because the corresponding
plots for the two cases with different time series lengths
are almost indistinguishable, except that the results for
shorter time series have larger fluctuations.

Methods

Description and preprocessing of the data: For

each generator (FGN-DH, FBM-RMD or WFBM), we
synthesize 100 time series of length 20000 for a given
Hurst index Hin. These time series are used in all the
analyses. The discrete values of the fluctuation function
F (s) of each time series for each scaling analysis method
are calculated at 32 s-values logarithmically sampled in
the interval [4, 5000].

Figure 1 details: Each point (〈F (s)〉, s) shows the
average of 100 F (s) values over the 100 time series for
each Hin at scale s for a given generator and a given
estimator.

Figure 2 details: For each time series, we calculate
the local slope of lnF (s), which is the centred difference
using two adjacent data points. Each point shows the
average and the standard deviation estimated over the
corresponding 100 local slopes.

Figure 3 details: For each time series, we calculate
the slope of lnF (s) using the data points within the cho-
sen scaling range. Each point shows the average and the
standard deviation over the corresponding 100 slopes.
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70, 635 (1993).
[9] J.-F. Muzy, E. Bacry, and A. Arnéodo, Phys. Rev. E 47,
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FIG. 5. Comparing local slopes of the fluctuation functions. The plots labeled (a)-(o) are the same as in the paper
where the length of time series is 20000, while the plots labeled with (a-1) to (o-1) are the results where the length of time
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FIG. 6. Comparing impacts of the scaling range on the Hurst index estimates. The plots labeled (a)-(o) are the
same as in the paper where the length of time series is 20000, while the plots labeled with (a-1) to (o-1) are the results where
the length of time series is 2000.
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