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Abstract. We establish higher-order weighted Sobolev and Hölder regularity for solutions to
variational equations defined by the elliptic Heston operator, a linear second-order degenerate-
elliptic operator arising in mathematical finance [19]. Furthermore, given C∞-smooth data, we
prove C∞-regularity of solutions up to the portion of the boundary where the operator is degen-
erate. In mathematical finance, solutions to obstacle problems for the elliptic Heston operator
correspond to value functions for perpetual American-style options on the underlying asset.
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1. Introduction

Suppose O j H is a domain (possibly unbounded) in the open upper half-space H := Rd−1×R+

(where d ≥ 2 and R+ := (0,∞)), and ∂1O := ∂O ∩ H is the portion of the boundary ∂O of O
which lies in H, and ∂0O is the interior of ∂H ∩ ∂O, where ∂H = Rd−1 × {0} is the boundary of
H̄ := Rd−1 × R̄+ and R̄+ := [0,∞). We allow ∂0O to be non-empty and consider a second-order,
linear elliptic differential operator, A, on O which is degenerate along ∂0O. In this article, when
d = 2 and the operator A is given by (1.3), we prove higher-order regularity up to the boundary
portion, ∂0O — as measured by certain weighted Sobolev spaces, H k+2(O,w) (Definition 4.3),

and weighted Hölder spaces, Ck,2+α
s (Ō) (Definition 2.15) — for suitably defined weak solutions,

u ∈ H1(O,w) (see (2.2) for its definition), to the elliptic boundary value problem,

Au = f (a.e.) on O, (1.1)

u = g on ∂1O, (1.2)

where f : O → R is a source function and the function g : ∂1O → R prescribes a Dirichlet
boundary condition. We denote O := O ∪ ∂0O throughout our article. Furthermore, when
f ∈ C∞(O), we will also show that u ∈ C∞(O) (see Corollary 1.7). Since A becomes degenerate
along ∂0O, such regularity results do not follow from the standard theory for strictly elliptic
differential operators [18, 22].

Because κθ > 0 (see Assumption 1.1 below), no boundary condition is prescribed for the
equation (1.1) along ∂0O. Indeed, we recall from [3] that the problem (1.1), (1.2) is well-posed,
given f ∈ L2(O,w) and g ∈ H1(O,w) obeying mild pointwise growth conditions, when we seek
weak solutions in H1(O,w) or strong solutions in H2(O,w). The elliptic Heston operator is
defined by

Av := −y
2

(
vxx + 2%σvxy + σ2vyy

)
−
(
c0 − q −

y

2

)
vx − κ(θ − y)vy + c0v, v ∈ C∞(H), (1.3)

and −A is the generator of the two-dimensional Heston stochastic volatility process with killing
[19], a degenerate diffusion process well known in mathematical finance and a paradigm for a
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broad class of degenerate Markov processes, driven by d-dimensional Brownian motion, and cor-
responding generators which are degenerate-elliptic integro-differential operators. The coefficients
of A are required to satisfy the

Assumption 1.1 (Ellipticity condition for the coefficients of the Heston operator). The coeffi-
cients defining A in (1.3) are constants obeying

σ 6= 0, −1 < % < 1, (1.4)

and κ > 0, θ > 0, c0 ≥ 0, and1 q ∈ R.

In [12], we proved that a weak solution, u ∈ H1(O,w), to (1.1), (1.2) is Hölder continuous up
to ∂O in the sense that u ∈ Cαs,loc(Ō) (Definition 2.9), while in [3], we proved that u ∈ H2(O,w),
for suitable f and g in both cases. In §1.1, we state the main results of our article and set them
in context in §1.2, where we provide a survey of previous related research by other authors. We
point out some of the mathematical difficulties and issues of broader interest in §1.3. The results
of this article may be generalized to a broader class of degenerate-elliptic operators and expected
extensions of our results to such a class are discussed in §1.4. We provide a guide in §1.5 to the
remainder of this article. We refer the reader to §1.6 for our notational conventions.

1.1. Summary of main results. We summarize our main results concerning interior higher-
order Sobolev regularity in §1.1.1, while our results on interior higher-order Hölder regularity are
given in §1.1.2. Here, our use of the term “interior” is in the sense intended by [4], for example,
U ⊂ O is an interior subdomain of a domain O j H if Ū ⊂ O and by “interior regularity” of a
function u on O, we mean regularity of u up to ∂0O — see Figure 1.1.

O

∂0O

∂1O

B+
R0

(z0)

B+
R(z0)

z0

Figure 1.1. Boundaries and regions in the statement of Theorem 1.2.

1Although q has a financial interpretation as a dividend yield, which is non-negative, our analysis allows q ∈ R.
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1.1.1. Higher-order interior Sobolev regularity. We explain in §2.1 how solutions, u ∈ H1(O,w),
to a variational equation (2.11) defined by the operator, A, may be interpreted as weak solutions
to (1.1), where the Sobolev space, H1(O,w), is defined in (2.2). See Definitions 4.3 and 4.4 for
the descriptions of the weighted Sobolev spaces, H k+2(O,w) and W k,p(O,w), respectively.

Theorem 1.2 (Interior H k+2 regularity on half-balls). Let R0 > R be positive constants and
let k ≥ 0 be an integer. Then there is a positive constant, C = C(A, k,R,R0), such that the
following holds. Let O j H be a domain and let z0 ∈ ∂0O be such that

H ∩BR0(z0) ⊂ O.

Suppose that f ∈ L2(O,w) and that u ∈ H1(O,w) is a solution to the variational equation (2.11).
If f ∈W k,2(B+

R0
(z0),w), then

u ∈H k+2(B+
R(z0),w),

and u solves (1.1) on B+
R(z0) and

‖u‖H k+2(B+
R(z0),w) ≤ C

(
‖f‖Wk,2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

)
. (1.5)

We also have the following analogues of [18, Theorem 8.10].

Theorem 1.3 (Interior H k+2 regularity on domains). Let k ≥ 0 be an integer and let O j H be
a domain. Suppose that f ∈ L2(O,w) and u ∈ H1(O,w) is a solution to the variational equation

(2.11). If f ∈W k,2
loc (O,w), then

u ∈H k+2
loc (O,w),

and u solves (1.1). Moreover, for positive constants d1 < Λ and each pair of subdomains, O ′ ⊂
O ′′ ⊂ O with O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥ d1 and height(O ′′) ≤ Λ, there is a positive
constant, C = C(A, d1, k,Λ), such that u obeys

‖u‖H k+2(O′,w) ≤ C
(
‖f‖Wk,2(O′′,w) + ‖u‖L2(O′′,w)

)
. (1.6)

Remark 1.4 (Regularity up to the “non-degenerate boundary”). Of course, regarding the conclu-
sion of Theorem 1.3, standard elliptic regularity results for linear, second-order, strictly elliptic op-

erators [18, Theorem 8.13] also imply, when k ≥ 0, that u ∈W k+2,2
loc (O∪∂1O) if f ∈W k,2

loc (O∪∂1O),

and g ∈ W k+2,2
loc (O ∪ ∂1O) ∩H1(O,w), and ∂1O is Ck+2, and u − g ∈ H1

0 (O,w). However, our
focus in this article is on regularity of u up to the “degenerate boundary”, ∂0O, so we shall omit
further mention of this or other similarly straightforward generalizations.

Finally, we have an analogue of [18, Theorem 8.9].

Theorem 1.5 (Existence and uniqueness of solutions with interior H k+2 regularity). Let k ≥
0 be an integer and let O j H. Suppose that2 f ∈ L∞(O) ∩ W k,2

loc (O,w), and (1 + y)g ∈
W 2,∞(O), and the constant, c0, in (1.3) obeys c0 > 0. Then there exists a unique solution

u ∈ H1(O,w) ∩ H k+2
loc (O,w) to the variational equation (2.11) with boundary condition u −

g ∈ H1
0 (O,w). Moreover, u solves (1.1) and, for positive constants d1 < Λ and each pair of

subdomains, O ′ ⊂ O ′′ ⊂ O with O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥ d1 and height(O ′′) ≤ Λ, there
is a positive constant, C = C(A, d1, k,Λ), such that the estimate (1.6) holds.

2The hypotheses on f and g are relaxed in [3, 11] to allow for unbounded f and g with suitable growth properties.
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1.1.2. Higher-order interior Hölder regularity. See Definitions 2.9 and 2.14 for descriptions of

the Daskalopoulos-Hamilton family of Ck,αs Hölder norms. We have the following analogue of
Theorem 1.2.

Theorem 1.6 (Interior Ck,αs regularity for a solution to the variational equation). Let k ≥ 0 be
an integer, let p > max{4, 2 + k + β}, and let R0 be a positive constant. Then there are positive
constants R1 = R1(k,R0) < R0, and C = C(A, k, p,R0), and α = α(A, k, p,R0) ∈ (0, 1) such that
the following holds. Let O j H be a domain. If f ∈ L2(O,w), and u ∈ H1(O,w) is a solution to
the variational equation (2.11), and z0 ∈ ∂0O is such that

H ∩BR0(z0) ⊂ O,

and f ∈W 2k,p(B+
R0

(z0), yβ−1), then

u ∈ Ck,αs (B̄+
R1

(z0)),

and u solves (1.1) on B+
R1

(z0). Moreover, u obeys

‖u‖
Ck,αs (B̄+

R1
(z0))
≤ C

(
‖f‖W 2k,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
. (1.7)

Given Theorem 1.6, one easily obtains — but via purely Sobolev space and Moser itera-
tion methods — the following degenerate-elliptic analogue of the C∞-regularity result for the
degenerate-parabolic model for the linearization of the porous medium equation [4, Theorem
I.1.1].

Corollary 1.7 (Interior C∞-regularity). Let O j H be a domain. If f ∈ L2(O,w) and u ∈
H1(O,w) is a solution to the variational equation (2.11), and f ∈ C∞(O), then u ∈ C∞(O) and
u solves (1.1).

We also have an analogue of Theorem 1.3 and of [18, Theorem 6.17].

Theorem 1.8 (Interior Ck,αs regularity on domains). Let k ≥ 0 be an integer and let p >
max{4, 3 + k + β}. Then there is a positive constant α = α(A, k, p) ∈ (0, 1) such that the
following holds. Let O j H be a domain. If f ∈ L2(O,w) and u ∈ H1(O,w) is a solution to the

variational equation (2.11), and f ∈W 2k+2,p
loc (O,w), then

u ∈ Ck,αs (O).

Moreover, u solves (1.1) and, for positive constants d1 < Λ and each pair of subdomains, O ′ ⊂
O ′′ ⊂ O with O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥ d1 and 3 O ′′ ⊂ (−Λ,Λ)× (0,Λ), there is a positive
constant, C = C(A, d1, k, p,Λ), such that

‖u‖
Ck,αs (Ō′)

≤ C
(
‖f‖W 2k+2,p(O′′,w) + ‖u‖L2(O′′,w)

)
. (1.8)

Corollary 1.9 (Interior a priori Ck,αs estimate on domains of finite height). If in addition to the
hypotheses of Theorem 1.8, the hypothesis on f is strengthened to f ∈ W 2k+2,p(O, yβ−1), then
for positive constants d1 < Λ and each pair of subdomains, O ′ ⊂ O ′′ ⊂ O with O ′ b O ′′ and
dist(∂1O ′, ∂1O ′′) ≥ d1 and height(O ′′) ≤ Λ, there is a positive constant, C = C(A, d1, k, p,Λ),
such that

‖u‖
Ck,αs (Ō′)

≤ C
(
‖f‖W 2k+2,p(O′′,yβ−1) + ‖u‖L2(O′′,yβ−1)

)
. (1.9)

3While the equation (1.1) is translation-invariant in the x-direction, the estimate (1.8) is not when γ 6= 0 in the
definition (2.5) of the weight, w.
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Remark 1.10 (Regularity up to the “non-degenerate boundary”). Regarding the conclusion of
Theorem 1.8, standard elliptic regularity results for linear, second-order, strictly elliptic operators

[18, Theorems 6.19 & 9.19] also imply, when k ≥ 0, that u ∈ W k+2,p
loc (O) (Ck+2,α(O)) if f ∈

W k,p
loc (O) (respectively, Ck,α(O)), while if f ∈ W k,p

loc (O ∪ ∂1O), and g ∈ W k+2,p
loc (O ∪ ∂1O) ∩

H1(O,w), and ∂1O is Ck+1,1 (respectively, Ck+2,α), and u− g ∈ H1(O,w), then u ∈W k+2,p
loc (O ∪

∂1O) (respectively, Ck+2,α(O ∪∂1O)). As before, because our focus in this article is on regularity
of u up to the “degenerate boundary”, ∂0O, we shall omit further mention of such straightforward
generalizations.

Lastly, we give an analogue of the existence and interior Schauder a priori estimate results
[4, Theorems I.1.1, I.1.2, & I.12.2] for the initial value problem for a degenerate-parabolic model
for the linearization of the porous medium equation on a half-space, and of [18, Theorems 6.13
& 6.19], in the case of boundary value problems for strictly elliptic operators. We recall the

description of the weighted Hölder space, Ck,2+α
s (O), due to Daskalopoulos and Hamilton [4], in

Definition 2.15. While the interior a priori estimate (1.10) is stated in Theorem 1.11 for bounded
subdomains, O ′′ ⊂ H, for the sake of clarity, the estimate should easily extend to unbounded
domains using the family of Hölder spaces and Hölder norms defined in [13].

Theorem 1.11 (Existence and uniqueness of solutions with interior Ck,2+α
s regularity). Let

k ≥ 0 be an integer and let K be a finite right-circular cone. Then there is a positive constant
α = α(A, k,K) ∈ (0, 1) such that the following holds. Let O j H be a domain obeying a uniform

exterior cone condition along ∂1O with cone K. If f ∈ C2k+6,α
s (O) ∩ C(Ō) and g ∈ C(Ō) with

(1 + y)g ∈ C2(Ō), and the constant, c0, in (1.3) obeys c0 > 0, then there is a unique solution,

u ∈ Ck,2+α
s (O) ∩ Cα(O ∪ ∂1O) ∩ L∞(O),

to the boundary value problem, (1.1), (1.2). Moreover, for positive constants d1 < Λ and each
pair of subdomains, O ′ ⊂ O ′′ ⊂ O with O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥ d1 and diam(O ′′) ≤ Λ,
there is a positive constant, C = C(A, d1, k, p,Λ), such that

‖u‖
Ck,2+α
s (Ō′)

≤ C
(
‖f‖

C2k+6,α
s (Ō′′)

+ ‖u‖C(Ō′′)

)
. (1.10)

Remark 1.12 (Schauder a priori estimates and approach to existence of solutions). As we explain

in [14], the proof of existence of solutions, u ∈ Ck,2+α
s (O)∩C(Ō), to the boundary value problem,

(1.1), (1.2), given f ∈ Ck,αs (O) and g ∈ C(Ō), is considerably more difficult when ∂1O is non-
empty because, unlike in [4], one must consider the impact of the “corner” points, ∂0O ∩ ∂1O, of
the subdomain, O ⊂ H, where the “non-degenerate boundary”, ∂1O, intersects the “degenerate
boundary”, ∂H.

Remark 1.13 (Refinements of Theorem 1.11). Our existence result and Schauder a priori es-
timate in Theorem 1.11 may appear far from optimal because of the strong hypothesis that

f ∈ C2k+6,α
s (O), the fact that the Hölder exponent, α ∈ (0, 1), is not arbitrary, and the presence

of the cone condition hypothesis. However, the regularity hypothesis for f in Theorem 1.11 may

be relaxed to f ∈ Ck,αs (O), with α ∈ (0, 1) arbitrary, and the cone conditions on O removed,
using an interior Schauder a priori estimate which we develop by quite different methods in [14].

Remark 1.14 (Campanato spaces). In the context of non-degenerate elliptic equations, Cam-
panato spaces [32] provide a natural bridge between Sobolev spaces and Hölder spaces and allow
one to prove Schauder a priori estimates and Hölder regularity using Sobolev space methods.
It would be interesting to explore whether the conclusions of Theorems 1.6 and 1.8, and thus
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Theorem 1.11 in particular, could be sharpened with the aid of a suitable version of Campanato
spaces adapted to the weights appearing in our definitions of weighted Sobolev and Hölder spaces.

Given an additional geometric hypothesis on O near points in ∂0O ∩ ∂1O, the property u ∈
Cα(O ∪ ∂1O) ∩ L∞(O) simplifies to u ∈ Cαs,loc(Ō) ∩ C(Ō).

Corollary 1.15 (Existence and uniqueness of globally continuous Ck,2+α
s (O) solutions). Suppose,

in addition to the hypotheses of Theorem 1.11, that the domain, O, satisfies a uniform exterior
and interior cone condition on ∂0O ∩ ∂1O with cone K in the sense of Definition 2.3. Then the
solution, u, obeys

u ∈ Ck,2+α
s (O) ∩ Cαs,loc(Ō) ∩ C(Ō),

and, if O is bounded, then u ∈ Ck,2+α
s (O) ∩ Cαs (Ō).

In a different direction, given additional hypotheses on f , we easily obtain

Corollary 1.16 (Interior a priori Ck,2+α
s estimate on domains of finite height). If in addition

to the hypotheses of Theorem 1.11, the hypothesis on f is strengthened to f ∈ C2k+6,α
s (Ō) then,

for positive constants d1 < Λ and each pair of subdomains, O ′ ⊂ O ′′ ⊂ O with O ′ b O ′′ and
dist(∂1O ′, ∂1O ′′) ≥ d1 and height(O ′′) ≤ Λ, there is a positive constant, C = C(A, d1, k, p,Λ),
such that

‖u‖
Ck,2+α
s (Ō′)

≤ C
(
‖f‖

C2k+6,α
s (Ō′′)

+ ‖u‖C(Ō′′)

)
. (1.11)

1.2. Survey of previous related research. We provide a brief survey of some related research
by other authors on regularity theory for solutions to degenerate elliptic and parabolic partial
differential equations most closely related to the results described in our article. For a discussion
of previous research related to supremum bounds and Hölder continuity near the boundary for
weak solutions to the Heston equation, we refer the reader to our article [12].

Naturally, the principal feature which distinguishes the equation (1.1), when the operator A
is given by (1.3), from the linear, second-order, strictly elliptic operators in [18], is the fact that
A becomes degenerate when y = 0 and, because κθ > 0 in (1.3), boundary conditions may be
omitted along y = 0.

The literature on degenerate elliptic and parabolic equations is vast, with the well-known
articles of Fabes, Kenig, and Serapioni [7, 8], Fichera [15, 16], Kohn and Nirenberg [21], Murthy
and Stampacchia [27, 28] and the monographs of Levendorskĭı [24] and Olĕınik and Radkevič
[29, 30, 31], being merely the tip of the iceberg. As far as the authors can tell, however, there
has been far less research on higher-order regularity of solutions up to the portion of the domain
boundary where the operator becomes degenerate. In this context, the work of Daskalopoulos
and her collaborators [4, 5] and of Koch stands out in recent years because of their introduction
of the cycloidal metric on the upper-half space, weighted Hölder norms, and weighted Sobolev
norms which provide the key ingredients required to unlock the existence, uniqueness, and higher-
order regularity theory for solutions to the porous medium equation and the degenerate-parabolic
model equation on the upper half-space for the linearization of the porous medium equation.

Koch [20] develops a regularity theory for certain linear, degenerate elliptic and parabolic
partial differential operators in divergence form (with a degeneracy similar to that of (1.3))
which serve as models for the linearization of the porous medium equation. However, while
Koch uses Sobolev weights which are comparable to ours, his methods — which use Moser
iteration and pointwise estimates for fundamental solutions — are very different from those we
employ in [12], which use Moser iteration and the abstract John-Nirenberg inequality. Since our
approach avoids the use of potential theory and its pointwise estimates, we circumvent any need
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to consider pointwise estimates for the fundamental solution for the Heston operator (1.3) which,
although tantalizingly explicit in its various forms [9, 10, 14, 19], appears quite intractable for
the analysis required to emulate the role of the fundamental solution for the Laplace operator
in the development of Schauder or Lp theory in [18]. Moreover, the structure of the lower-order
terms in the linear operators is simpler in [20], whereas the new ux term present in (1.3) causes
considerable difficulty. Finally, Koch does not consider the case where ∂O = ∂0O ∪ ∂1O, where
A is degenerate along ∂0O but non-degenerate along ∂1O.

1.3. Some mathematical highlights of this article. Our approach in §3 and §4 of our article
to the higher-order Sobolev regularity theory for weak solutions to equation (1.1), that is, solutions
to the variational equation (2.11), may appear to proceed by adapting a traditional strategy (such
as that of [18, §8.3 & §8.4]), but the degeneracy of the operator, A, in (1.3) makes this strategy
far more complicated than one might expect from [18].

As we explained in [3], it is surprisingly difficult to improve the L2(O,w)-estimate for y1/2Du
implicit in the a priori H1(O,w)-estimate for a solution to (2.11) to an L2(O,w)-estimate for
the gradient, Du. For this purpose, we use a trick due to Koch [20, Lemma 4.6.1] which works
nicely when the domain, O, is the upper half-plane, H. However, while elementary methods
then yield an interior L2(O ′,w)-estimate for Du on a subdomain O ′ ⊂ O $ H with Ō ′ ⊂ O
and dist(∂1O ′, ∂1O) > 0, it is unclear how to justify a global L2(O,w)-estimate for Du on a
subdomain O $ H without a priori knowledge of the existence of smooth solutions, u ∈ C∞(Ō)
to the boundary value problem (1.1), (1.2). Therefore, we instead confine our attention in this
article to “interior” regularity of solutions to the variational equation (2.11), that is, regularity
of such solutions up to the “degenerate boundary”, ∂0O, and defer a discussion of global a priori
estimates and regularity of solutions up to ∂O to later work. While we adapt the finite-difference
methods of [18, §8.3 & §8.4] in §3.2 to prove H2

loc(O,w)-regularity of solutions to the variational
equation (2.11), finite-difference methods do not extend to give H2(O,w)-regularity of solutions,
u, on neighborhoods of the “corner points”, ∂0O∩∂0O, where the degenerate and non-degenerate
boundary portions intersect. (As noted earlier, standard methods from [18] give H2

loc(O∪∂1O,w)-
regularity of solutions to the variational equation (2.11), that is, regularity of solutions up to the
non-degenerate boundary, ∂1O.)

While the essential idea in §4 underlying the development of higher-order Sobolev regularity,
H k+2

loc (O,w) with k ≥ 1, of a solution u ∈ H1(O,w) to the variational equation (2.11) is to take
derivatives of the equation (1.1) and estimate k + 2 derivatives of u in terms of k derivatives of
f , such an approach is complicated by the presence of the degeneracy factor, y, multiplying the
second-order derivatives, yuxx, yuxy, yuyy, in (1.3). For example, differentiating (1.1) once with
respect to y yields unweighted second-order derivative terms, uxx, uxy, uyy, without the degeneracy
factor, y, and these are even harder to estimate, precisely because the operator, A, in (1.3) is
degenerate elliptic. It is this feature which partly accounts for the complexity of our Definition
4.3 of the higher-order weighted Sobolev spaces, H k+2(O,w).

Naturally, the same difficulty arises in §5 when we consider higher-order Hölder regularity,

Ck,αs (O) with k ≥ 1 and Ck,2+α
s (O), of a solution u ∈ H1(O,w). However, at this stage, the

difficulties have largely been overcome in §4. While it may be unorthodox to prove higher-order
Hölder regularity, Schauder a priori estimates, and Schauder existence results parallel to those
of [18, §6.1 & §6.3] using a variational approach, it is not without precedent as illustrated by
previous applications of Campanato spaces in the context of linear, second order, strictly elliptic
operators [32].
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As we explain in more detail in [14], it is a challenging problem to prove existence of solutions,

u — whether in Ck,2+α
s (O)∩C(Ō) or Ck,2+α

s (Ō) — to the elliptic boundary value problem (1.1),
(1.2) entirely within a Schauder framework parallel to that of [4] (where boundary conditions
such as (1.2) along the “fixed boundary” do not arise since ∂1O is empty in their application)
and this motivates the variational approach which we employ here. One reason for the difficulty
is due to complications which emerge when one attempts to apply the continuity method to prove

existence of solutions u ∈ Ck,2+α
s (Ō) to (1.1), (1.2), say with g = 0 on ∂1O, by analogy with the

method of proof of [18, Theorem 6.8]. While the reflection principle (across the axis x = 0) does
not hold for the operator, A, in (1.3), it does hold for the simpler model operator,

A0v := −y
2

(
vxx + σ2vyy

)
− κ(θ − y)vy + c0v, v ∈ C∞(H),

since the vxy and vx terms are absent and so, provided f obeys f(−x, y) = −f(x, y) for (x, y) ∈ H
(and thus f(0, ·) = 0), one can solve

A0u0 = f on O, u = 0 on ∂1O,

for a solution, u0, when the domain, O, is the quadrant R+ × R+.
However, if u ∈ C2+α

s (Ō) solves (1.1), (1.2) then, letting y → 0 in (1.1), we find that

−(c0 − q)ux(0, 0) = f(0, 0),

since uy(0, 0) = 0 (because u(0, ·) = 0) and as u ∈ C2+α
s (Ō) implies lim(x,y)→(0,0) yD

2u = 0 [4, 13].
Hence, when c0−q = 0, we see that we can only solve (1.1), (1.2) when f obeys the compatibility
condition f(0, 0) = 0, whereas this compatibility condition for f is not present when c0 − q 6= 0.

Furthermore, we can only use the method of continuity to produce a solution u ∈ Ck,2+α
s (Ō)

when we already have a global a priori Schauder estimate analogous to that of [18, Theorem
6.6] and developing such an estimate is a challenging problem, albeit one we address elsewhere.
Finally, the continuity method in the proof of [18, Theorem 6.8] is justified because the first-order
derivative terms in linear, second-order, strictly elliptic operators with variable coefficients can
be treated as lower-order terms due to interpolation inequalities [18, Lemma 6.35]. In the case
of the Heston operator (and operators with similar structure), the first-order derivative terms
cannot be treated as lower-order, as we can observe from the interpolation inequality [13, Lemma
3.2 & Equation (3.8)].

1.4. Extensions. The Heston stochastic volatility process and its associated generator serve as
paradigms for degenerate Markov processes and their degenerate-elliptic generators which appear
widely in mathematical finance, so we briefly comment on two directions for extending our work
in this article.

1.4.1. Degenerate elliptic and parabolic operators in higher dimensions. Generalizations of the
Heston process to higher-dimensional, degenerate diffusion processes may be accommodated by
extending the framework developed in this article and we shall describe extensions in a sequel.
First, the two-dimensional Heston process has natural d-dimensional analogues [17] defined, for
example, by coupling non-degenerate (d−1)-diffusion processes with degenerate one-dimensional
processes [2, 26, 34]. Elliptic differential operators arising in this way have time-independent,
affine coefficients but, as one can see from standard theory [18, 22, 23, 25] and previous work of
Daskalopoulos and her collaborators [4, 5] on the porous medium equation, we would not expect
significant new difficulties to arise when extending the methods and results of this article to the
case of elliptic and parabolic operators in higher dimensions and variable coefficients, depending
on both spatial variables or time and possessing suitable regularity and growth properties.
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Specifically, as we explain further in Remark 2.8, we expect that all of the main results of
this article should extend to the case of a degenerate-elliptic operator on a subdomain O of a
half-space H = Rd−1 × R+,

Av := −xdaijvxixj − bivxi + cv, v ∈ C∞(O), (1.12)

under the assumptions that the matrix (aij) is strictly elliptic, bd ≥ ν > 0, for some constant
ν > 0, and c ≥ 0 and the coefficients (aij), (bi), and c have suitable growth and regularity
properties. See [13] for an analysis with applications to probability theory based on a parabolic
version of this type of elliptic operator as well as [11] for weak maximum principles for a general
class of degenerate-elliptic operators.

1.4.2. Regularity near the fixed boundary and global a priori estimates. The important question
of higher-order regularity for solutions u to the elliptic boundary value problem (1.1), (1.2) —

for example, whether solutions belong to Ck,2+α
s (Ō) when f belongs to Ck,αs (Ō) and g belongs

to Ck,2+α
s (Ō) and O is bounded with ∂1O of class Ck+2,α and Ck,2+α-transverse to ∂H — is one

which we defer to a subsequent article.

1.5. Outline of the article. For the convenience of the reader, we provide a brief outline of
the article. In §2, we review local supremum estimates and local Cαs (O)-regularity results for
solutions, u ∈ H1(O,w), to the variational equation (2.11), and which we proved in [12]. In
§3, we establish the H2(O,w)-regularity for solutions, u ∈ H1(O,w), concluding with Theorem
3.16. In §4, we establish the H k+2(O,w)-regularity for solutions, u ∈ H1(O,w), for all k ≥ 0,
with proofs of Theorems 1.2 and 1.3, together with Theorem 1.5 and Corollary 1.7. Section 5

contains our proofs of Ck,αs (O)-regularity of solutions, u ∈ H1(O,w), in the form of Theorems

1.6 and 1.8, together with proofs of Ck,2+α
s (O)-regularity and a Schauder a priori estimate, as

part of Theorem 1.11, and Corollary 1.15. Appendix A collects some useful facts from our earlier
articles, together with proofs of a more technical nature.

1.6. Notation and conventions. In the definition and naming of function spaces, including
spaces of continuous functions, Hölder spaces, or Sobolev spaces, we follow Adams [1] and alert
the reader to occasional differences in definitions between [1] and standard references such as
Gilbarg and Trudinger [18] or Krylov [22, 23].

We let N := {0, 1, 2, 3, . . .} denote the set of non-negative integers. For r > 0 and P0 =
(x0, y0) ∈ R2, we let Br(P0) := {(x, y) ∈ R2 : (x − x0)2 + (y − y0)2 < r2} denote the open ball
with center P0 and radius r and, given a domain O ⊂ R2, we denote B+

r (P0) := O ∩ Br(P0),
when the domain O is understood from the context.

If V ⊂ U ⊂ Rd are open subsets, we write V b U when U is bounded with closure Ū ⊂ V . By
supp ζ, for any ζ ∈ C(R2), we mean the closure in R2 of the set of points where ζ 6= 0.

We use C = C(∗, . . . , ∗) to denote a constant which depends at most on the quantities appearing
on the parentheses. In a given context, a constant denoted by C may have different values
depending on the same set of arguments and may increase from one inequality to the next. We
let C(A), C(A, ∗), and so on, denote constants which may depend on one or more of the constant
coefficients of the operator A (that is, c0, q, κ, θ, %, σ).

2. Review of supremum estimates and Hölder regularity results

We describe the main results in [12] concerning boundedness and Cαs Hölder regularity of “weak
solutions” to (1.1) (and (1.2)). In §2.1, we review our definition of the variational equation (2.11)
corresponding to (1.2), together with the required Sobolev spaces. In §2.2, we recall our local
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supremum estimates for solutions, u ∈ H1(O,w), to the variational equation (2.11) which we
proved in [12], while in §2.3, we review our Hölder continuity results for solutions, u ∈ H1(O,w),
which we also proved in [12]. Finally, in §2.4, we give the definitions of higher-order weighted
Hölder spaces due to Daskalopoulos and Hamilton [4].

2.1. Preliminaries. We review our definitions of weighted Sobolev spaces from [3, Definition
2.20]. For 1 ≤ p <∞, let

Lp(O,w) := {u ∈ L1
loc(O) : ‖u‖Lp(O,w) <∞}, (2.1)

H1(O,w) := {u ∈W 1,2
loc (O) : ‖u‖H1(O,w) <∞}, (2.2)

where

‖u‖pLp(O,w) :=

∫
O
|u|pw dx dy, (2.3)

‖u‖2H1(O,w) :=

∫
O

(
y|Du|2 + (1 + y)u2

)
w dx dy, (2.4)

with weight function w : H→ (0,∞) given by4

w(x, y) := yβ−1e−γ
√

1+x2−µy, (x, y) ∈ H, (2.5)

where

β :=
2κθ

σ2
and µ :=

2κ

σ2
, (2.6)

and 0 < γ < γ0(A), where γ0 depends only on the constant coefficients of A in (1.3). We denote
H0(O,w) = L2(O,w).

Remark 2.1 (Role of γ). In [3] and [11], we require the constant, γ, in (2.5) to be positive for
the purpose of proving existence and uniqueness, respectively, for solutions to (2.11) when O is
unbounded. However, while we shall continue to assume γ > 0 in this article for consistency, this
constant plays no role in regularity arguments or when O is bounded and, for the latter purposes,
one could set γ = 0.

We recall that [3, Definition 2.22]

a(u, v) :=
1

2

∫
O

(
uxvx + %σuyvx + %σuxvy + σ2uyvy

)
yw dx dy

− γ

2

∫
O

(ux + %σuy) v
x√

1 + x2
yw dx dy

−
∫

O
(a1y + b1)uxvw dx dy +

∫
O
c0uvw dx dy, ∀u, v ∈ H1(O,w),

(2.7)

is the bilinear form associated with the Heston operator, A, in (1.3), where

a1 :=
κ%

σ
− 1

2
and b1 := c0 − q −

κθ%

σ
. (2.8)

We shall also avail of the

Assumption 2.2 (Condition on the coefficients of the Heston operator). The coefficients defining
A in (1.3) have the property that b1 = 0 in (2.8).

4In [3], we used the equivalent factor, |x|, but we use
√

1 + x2 here since the resulting weight is in C∞(H).
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Assumption 2.2 involves no loss of generality because, using a simple affine changes of variables
on R2 which map (H, ∂H) onto (H, ∂H) (see [3, Lemma 2.2]), we can arrange that b1 = 0. The
conditions (1.4) ensure that y−1A is uniformly and strictly elliptic on H. Indeed,

y

2
(ξ2

1 + 2%σξ1ξ2 + σ2ξ2
2) ≥ ν0y(ξ2

1 + ξ2
2), ∀(ξ1, ξ2) ∈ R2, (2.9)

where

ν0 :=
1

2
(1− |%|) min{1, σ2}, (2.10)

and ν0 > 0 by Assumption 1.1.
Given a subset T ⊂ ∂O, we let H1

0 (O ∪T,w) be the closure5 in H1(O,w) of C∞0 (O ∪T ). Given
a source function f ∈ L2(O,w) and recalling that O = O ∪ ∂0O, we call a function u ∈ H1(O,w)
a solution to the variational equation for the Heston operator if

a(u, v) = (f, v)L2(O,w), ∀v ∈ H1
0 (O,w). (2.11)

Given a subset T ⊂ ∂O and g ∈ H1(O,w), we say that u ∈ H1(O,w) obeys u = g on T ⊂ ∂O in
the sense of H1 if

u− g ∈ H1
0 (O ∪ T c,w), (2.12)

where T c := ∂O \ T . In our application, we shall only consider T j ∂1O. If u ∈ H2(O,w) (see
(3.9) for its definition) and g ∈ H1(O,w), we recall from [3, Lemma 2.29] that u is a solution to
(1.1) (a.e. on O) and (1.2) (in the sense of H1) if and only if u−g ∈ H1

0 (O,w) and u is a solution
to the variational equation (2.11).

2.2. Local supremum bounds near the degenerate boundary. We say that a domain,
U ⊂ H, obeys an exterior cone condition relative to H at a point z0 ∈ ∂U if there exists a finite,
right circular cone K = Kz0 ⊂ H̄ with vertex z0 such that Ū ∩Kz0 = {z0} (compare [18, p. 203]).
A domain, U , obeys a uniform exterior cone condition relative to H on T ⊂ ∂U if U satisfies an
exterior cone condition relative to H at every point z0 ∈ T and the cones Kz0 are all congruent
to some fixed finite cone, K (compare [18, p. 205]).

Definition 2.3 (Interior and exterior cone conditions). Let K be a finite, right circular cone.
We say that O obeys interior and exterior cone conditions at z0 ∈ ∂0O ∩ ∂1O with cone K if
the domains O and H \ Ō obey exterior cone conditions relative to H at z0 with cones congruent
to K. We say that O obeys uniform interior and exterior cone conditions on ∂0O ∩ ∂1O with
cone K if the domains O and H \ Ō obey exterior cone conditions relative to H at each point
z0 ∈ ∂0O ∩ ∂1O with cones congruent to K.

In the statement of the supremum estimates, we use the following

Definition 2.4 (Volume of sets). If S ⊂ H̄ is a Borel measurable subset, we let |S|β denote the

volume of S with respect to the measure yβ dx dy, and |S|w denote the volume of S with respect
to the measure w dx dy.

We recall from [12] the following analogues of [20, Proposition 4.5.1] and [18, Theorem 8.15];
we have reformulated the results here in terms of Euclidean balls in order to make them more
readily applicable in our present article (see Appendix A.4 for details).

5Note that H1
0 (O ∪ T̄ ,w) = H1

0 (O ∪T,w) = H1
0 (O ∪ T̊ ,w), since C∞0 (O ∪ T̄ ) = C∞0 (O ∪T ) = C∞0 (O ∪ T̊ ), where

T̊ and T̄ denote the interior and closure, respectively, of T in ∂O.
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Theorem 2.5 (Supremum estimates near points in ∂0O). [12, Theorem 1.7 & Remark 1.10] Let
p > 2 + β and let R0 be a positive constant. Then there are positive constants, C = C(A, p,R0)
and R1 = R1(R0) < R0, such that the following holds. Let O j H be a domain. If u ∈ H1(O,w)
satisfies the variational equation (2.11) with source function f ∈ L2(O,w), and z0 ∈ ∂0O is such
that

H ∩BR0(z0) ⊂ O,

and f obeys

f ∈ Lp(B+
R0

(z0), yβ−1), (2.13)

then u ∈ L∞(B+
R1

(z0)), and

‖u‖L∞(B+
R1

(z0)) ≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
. (2.14)

Theorem 2.6 (Supremum estimates near points in ∂0O ∩ ∂1O). [12, Theorem 1.7] Let K be
a finite right circular cone, let p > 2 + β, and let R0 > 0 be a positive constant. Then there
are positive constants, C = C(A,K, p,R0) and R1 = R1(K,R0), such that the following holds.
Let O $ H be a domain. If u ∈ H1(O,w) satisfies the variational equation (2.11) with source

function f ∈ L2(O,w) and z0 ∈ ∂0O ∩ ∂1O is such that O obeys an interior cone condition at z0

with cone K, and

u = 0 on ∂1O ∩BR0(z0) (in the sense of H1),

and f obeys (2.13), then u ∈ L∞(B+
R1

(z0)) and u satisfies (2.14).

Remark 2.7 (Use of the weight yβ−1 versus w in Theorems 2.5 and 2.6). Notice that on the right-
hand-side of estimate (2.14) we have ‖f‖Lp(BR0

(z0),yβ−1) instead of ‖f‖Lp(BR0
(z0),w). This allows

us to conclude that the constant C appearing in (2.14) is independent of the point z0 ∈ ∂0O. By

(2.5), the weight w contains the factor e−γ
√

1+x2
, which means that the constant C will depend

on the x-coordinate of the point z0 ∈ ∂0O, if we replace ‖f‖Lp(BR0
(z0),yβ−1) by ‖f‖Lp(BR0

(z0),w)

on the right-hand-side of (2.14).

Remark 2.8 (Supremum estimates and Hölder regularity in higher dimensions). Theorems 2.5,
2.6, 2.10, 2.11, 2.12, and 2.13 are stated for the case d = 2. However, as we noted in [12], when
d > 2 and the operator A in (1.3) is replaced by one of the form (1.12), then the conclusions
of these theorems (and hence their consequences in this article) remain valid, with virtually no
change in the proofs, expect for slight changes in the hypotheses. For example, when d > 2,
the hypothesis p > 2 + β in Theorems 2.5 and 2.6 is replaced by p > d + β and the constants
C and R1 now additionally depend on d. Similarly, in Theorems 2.10, 2.11, 2.12, and 2.13, the
hypothesis p > max{4, 2 + β} is replaced by p > max{2d, d+ β} and the constants C, R1, and α
now additionally depend on d.

2.3. Hölder continuity up to the degenerate boundary for solutions to the variational
equation. We recall the definition of the Koch distance function, s(·, ·), on H introduced by
Koch in [20, p. 11],

s(z, z0) :=
|z − z0|√

y + y0 + |z − z0|
, ∀z = (x, y), z0 = (x0, y0) ∈ H̄, (2.15)

where |z− z0|2 = (x− x0)2 + (y− y0)2. The Koch distance function is equivalent to the cycloidal
distance function introduced by Daskalopoulos and Hamilton in [4, p. 901] for the study of the
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porous medium equation. For r > 0 and z0 ∈ Ō, we define the corresponding cycloidal balls and
their intersections with subdomains of H by

Br(z0) := {z ∈ H : s(z, z0) < r} ,
B+
r (z0) := O ∩Br(z0),

(2.16)

while B̄r(z0) = {z ∈ H̄ : s(z, z0) ≤ r} and B̄+
r (z0) = Ō∩B̄r(z0) denote the closures these subsets

in Ō and H̄, respectively.
Observe that

s(z, z0) ≤ |z − z0|1/2, ∀z, z0 ∈ H̄, (2.17)

and thus

H ∩Br2(z0) ⊂ Br(z0), ∀z0 ∈ H̄, r > 0. (2.18)

The reverse inequality and inclusion take their simplest form when y0 = 0, in which case the
inequalities y ≤ |z − z0| and

|z − z0| = s(z, z0)
√
y + |z − z0| ≤ s(z, z0)

√
2|z − z0|,

give

|z − z0| ≤ 2s(z, z0)2, ∀z ∈ H̄, z0 ∈ ∂H, (2.19)

and

Br(z0) ⊂ H ∩B2r2(z0), ∀z0 ∈ ∂H, r > 0. (2.20)

(Analogues of (2.19) and (2.20) when y0 > 0 are given in Appendix A.3.)
Following [1, §1.26], for a domain U ⊂ H, we let C(U) denote the vector space of continuous

functions on U and let C(Ū) denote the Banach space of functions in C(U) which are bounded
and uniformly continuous on U , and thus have unique bounded, continuous extensions to Ū , with
norm

‖u‖C(Ū) := sup
U
|u|.

Noting that U may be unbounded, we let Cloc(Ū) denote the linear subspace of functions u ∈ C(U)
such that u ∈ C(V̄ ) for every precompact open subset V b Ū . Daskalopoulos and Hamilton
provide the

Definition 2.9 (Cαs norm and Banach space). [4, p. 901] Given α ∈ (0, 1) and a domain U ⊂ H,
we say that u ∈ Cαs (Ū) if u ∈ C(Ū) and

‖u‖Cαs (Ū) <∞,

where

‖u‖Cαs (Ū) := [u]Cαs (Ū) + ‖u‖C(Ū), (2.21)

and

[u]Cαs (Ū) := sup
z1,z2∈U
z1 6=z2

|u(z1)− u(z2)|
s(z1, z2)α

. (2.22)

We say that u ∈ Cαs (U) if u ∈ Cαs (V̄ ) for all precompact open subsets V b U , recalling that
U := U ∪ ∂0U . We let Cαs,loc(Ū) denote the linear subspace of functions u ∈ Cαs (U) such that

u ∈ Cαs (V̄ ) for every precompact open subset V b Ū .

It is known that Cαs (Ū) is a Banach space [4, §I.1] with respect to the norm (2.21). We recall
the following analogues of [18, Theorem 8.27 & 8.29] and [20, Theorem 4.5.5 & 4.5.6].
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Theorem 2.10 (Hölder continuity near points in ∂0O for solutions to the variational equation).
[12, Theorem 1.11] Let p > max{4, 2 + β} and let R0 be a positive constant. Then there are
positive constants, R1 = R1(R0) < R0, and C = C(A, p,R0), and α = α(A, p,R0) ∈ (0, 1) such
that the following holds. Let O j H be a domain. If u ∈ H1(O,w) satisfies the variational
equation (2.11) with source function f ∈ L2(O,w) and z0 ∈ ∂0O is such that

H ∩BR0(z0) ⊂ O,

and f obeys (2.13), then u ∈ Cαs (B̄+
R1

(z0)), and

[u]Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L∞(B+

R0
(z0))

)
. (2.23)

Theorem 2.11 (Hölder continuity near points in ∂0O ∩ ∂1O for solutions to the variational
equation). [12, Theorem 1.11] Let K be a finite, right circular cone, let p > max{4, 2 + β}, and
let R0 be a positive constant. Then there are positive constants, R1 = R1(K,R0) < R0, and
C = C(A,K,R0, p), and α = α(A,K, p,R0) ∈ (0, 1), such that the following holds. Let O $ H
be a domain. If u ∈ H1(O,w) satisfies the variational equation (2.11) with source function
f ∈ L2(O,w) and z0 ∈ ∂0O ∩ ∂1O is such that f obeys (2.13), and

u = 0 on ∂1O ∩BR0(z0) (in the sense of H1),

and O obeys an interior and exterior cone condition with cone K at z0 and a uniform exterior
cone condition with cone K along ∂1O ∩BR0(z0), then u ∈ Cαs (B̄+

R1
(z0)) and satisfies (2.23).

Theorems 2.10 and 2.11 are not stated in the form we need for our application, since the
estimate (2.23) has an L∞ rather than an L2 norm of u on the right-hand side and a Hölder
semi-norm rather than a norm of u on the left-hand side. However, by combining Theorems 2.5
and 2.10, we obtain

Theorem 2.12 (Hölder continuity near points in ∂0O for solutions to the variational equation).
Let p > max{4, 2 + β} and let R0 be a positive constant. Then there are positive constants,
R1 = R1(R0) < R0, and C = C(A, p,R0), and α = α(A, p,R0) ∈ (0, 1) such that the following
holds. Let O j H be a domain. If u ∈ H1(O,w) satisfies the variational equation (2.11) with
source function f ∈ L2(O,w) and z0 ∈ ∂0O is such that

H ∩BR0(z0) ⊂ O,

and f obeys (2.13), then u ∈ Cαs (B̄+
R1

(z0)) and

‖u‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0))

)
. (2.24)

Similarly, by combining Theorems 2.6 and 2.11 we obtain

Theorem 2.13 (Hölder continuity near points in ∂0O ∩ ∂1O for solutions to the variational
equation). Let K be a finite, right circular cone, let p > max{4, 2 + β}, and let R0 be a positive
constant. Then there are positive constants, R1 = R1(K,R0) < R0, and C = C(A,K,R0, p),
and α = α(A,K, p,R0) ∈ (0, 1), such that the following holds. Let O $ H be a domain. If
u ∈ H1(O,w) satisfies the variational equation (2.11) with source function f ∈ L2(O,w) and
z0 ∈ ∂0O ∩ ∂1O is such that f obeys (2.13), and

u = 0 on ∂1O ∩BR0(z0) (in the sense of H1),

and O obeys an interior and exterior cone condition with cone K at z0 and a uniform exterior
cone condition with cone K along ∂1O ∩BR0(z0), then u ∈ Cαs (B̄+

R1
(z0)) and satisfies (2.24).
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The translation of [12, Theorem 1.11] into the forms stated in Theorems 2.10, 2.11, 2.12, and
2.13 is given in Appendix A.4.

2.4. Higher-order Daskalopoulos-Hamilton Hölder spaces. We shall need the following

higher-order weighted Hölder Ck,αs and Ck,2+α
s norms and Banach spaces pioneered by Daskalopou-

los and Hamilton [4]. We record their definition here for later reference.

Definition 2.14 (Ck,αs norms and Banach spaces). [4, p. 902] Given an integer k ≥ 0, α ∈ (0, 1),

and a domain U ⊂ H, we say that u ∈ Ck,αs (Ū) if u ∈ Ck(Ū) and

‖u‖
Ck,αs (Ū)

<∞,

where

‖u‖
Ck,αs (Ū)

:=
k∑
j=0

‖Dju‖Cαs (Ū). (2.25)

When k = 0, we denote C0,α
s (Ū) = Cαs (Ū).

Definition 2.15 (Ck,2+α
s norms and Banach spaces). [4, pp. 901–902] Given an integer k ≥ 0,

α ∈ (0, 1), and a domain U ⊂ H, we say that u ∈ Ck,2+α
s (Ū) if u ∈ Ck+1,α

s (Ū), the derivatives,
Dk+2−m
x Dm

y , 0 ≤ m ≤ k+ 2, of order k+ 2 are continuous on U , and the functions, yDk+2−m
x Dm

y ,
0 ≤ m ≤ k + 2, extend continuously up to the boundary, ∂U , and those extensions belong to
Cαs (Ū). We define

‖u‖
Ck,2+α
s (Ū)

:= ‖u‖
Ck+1,α
s (Ū)

+ ‖yD2u‖
Ck,αs (Ū)

.

We say that6 u ∈ Ck,2+α
s (U) if u ∈ Ck,2+α

s (V̄ ) for all precompact open subsets V b U . When

k = 0, we denote C0,2+α
s (Ū) = C2+α

s (Ū).

For any non-negative integer k, we let Ck0 (U) denote the linear subspace of functions u ∈ Ck(U)
such that u ∈ Ck(V̄ ) for every precompact open subset V b U and define C∞0 (U) := ∩k≥0C

k
0 (U).

Note that we also have C∞0 (U) = ∩k≥0C
k,α
s (U) = ∩k≥0C

k,2+α
s (U).

3. H2 regularity for solutions to the variational equation

In this section, we develop H2
loc(O,w)-regularity results for a solution, u ∈ H1(O,w), to the

variational equation (2.11), whose existence was established in [3]. In §3.1, we give a self-contained
proof (that is, independent of results in [3]) of an important and powerful interior a priori estimate
(Proposition 3.8) for solutions, u ∈ H1(O,w), to the variational equation (2.11) by exploiting
an idea of Koch [20]. In §3.2, we prove H2

loc(O,w)-regularity (Theorem 3.16) for a solution,
u ∈ H1(O,w), using finite-difference methods independent of results in [3]).

3.1. Interior Koch estimate and interior W 1,2 regularity. We first recall the following
elementary a priori estimate for a solution to the variational equation (2.11).

Lemma 3.1 (A priori estimate for solutions to the variational equation). [3, Lemma 3.20] Let
O j H be a domain. Then there is a positive constant, C = C(A), such that the following holds.
If f ∈ L2(O,w) and u ∈ H1(O,w) is a solution to the variational equation (2.11), then7

‖u‖H1(O,w) ≤ C
(
‖f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
. (3.1)

6In [4, p. 901], when defining the spaces Ck,αs (A ) and Ck,2+α
s (A ), it is assumed that A is a compact subset of

the closed half-plane, {y ≥ 0}.
7The result trivially holds if (1 + y)u /∈ L2(O,w).
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Recall from [3, Definition 3.1] that Aλ := A+ λ(1 + y), for any constant λ ≥ 0.

Theorem 3.2 (Existence of smooth solutions on the half-plane). [14] Let f ∈ C∞0 (H) and λ ≥ 0.
Then there is a function u ∈ C∞(H̄) such that

Aλu = f on H.

Proposition 3.3 (Koch estimate on the half-plane). There is a positive constant, C = C(A),
such that the following holds. If f ∈ L2(H,w) and u ∈ H1(H,w) is a solution to the variational
equation (2.11) with O = H, then 8

‖Du‖L2(H,w) ≤ C
(
‖f‖L2(H,w) + ‖(1 + y)u‖L2(H,w)

)
.

Remark 3.4 (Proof of the Koch estimate on the half-plane). Proposition 3.3 is proved as [3,
Proposition 5.8] when O = H with the aid of Theorem 3.2 (this is [3, Theorem 5.2] when O = H).
However, the hypothesis in [3, Proposition 5.8] that [3, Theorem 5.2] holds for O $ H and
u ∈ H1

0 (O,w) appears difficult to verify.

In order to prove an interior version of the Koch estimate on subdomains of the half-plane, we
shall need the following commutator identity.

Lemma 3.5 (Heston bilinear map commutator identity). [3, Corollary 2.46] Let u, v ∈ H1(O,w)
and let ζ ∈ C∞(Ō) be such that supp ζ ⊂ O. Then9

a(ζu, v) = a(u, ζv) + ([A, ζ]u, v)L2(O,w). (3.2)

Proof. For u ∈ C∞(Ō) and v ∈ C∞(O), then

a(ζu, v) = (A(ζu), v)L2(O,w) (by Lemma A.3)

= (ζAu, v)L2(O,w) + ([A, ζ]u, v)L2(O,w)

= (Au, ζv)L2(O,w) + ([A, ζ]u, v)L2(O,w)

= a(u, ζv) + ([A, ζ]u, v)L2(O,w).

By approximation, the result continues to hold for u ∈ H1(O,w) and v ∈ H1(O,w). �

Hence, if u ∈ H1(O,w) is a solution to the variational equation (2.11) and ζ ∈ C∞(Ō) is such
that supp ζ ⊂ O, then ζu ∈ H1(H,w) obeys, for all v ∈ H1

0 (O,w),

a(ζu, v) = a(u, ζv) + ([A, ζ]u, v)L2(O,w)

= (f, ζv)L2(O,w) + ([A, ζ]u, v)L2(O,w)

= (ζf + [A, ζ]u, v)L2(H,w).

Because supp ζ ⊂ O, the preceding variational equation remains unchanged when the space of
test functions, H1

0 (O,w), is replaced by H1(H,w) and so ζu ∈ H1(H,w) obeys the variational
equation,

a(ζu, v) = (fζ,u, v)L2(H,w), ∀v ∈ H1(H,w), (3.3)

where, if height(supp ζ) <∞,

fζ,u := ζf + [A, ζ]u ∈ L2(H,w). (3.4)

8The result trivially holds if (1 + y)u /∈ L2(O,w).
9This a simpler version of [3, Corollary 2.46].
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We recall from [3, Equation (2.33)]) that

[A, ζ]v = −y
(
(ζx + %σζy)vx + (%σζx + σ2ζy)vy

)
− y

2

(
ζxx + 2%σζxy + σ2ζyy

)
v

− (r − q − y/2)ζxv − κ(θ − y)ζyv.

(3.5)

Noting that the derivatives vx and vy in (3.5) are multiplied by the factor y, we immediately
obtain the

Lemma 3.6 (Lp commutator estimate). Let O j H be a domain and let M be a positive constant.
Then there is a positive constant, C = C(A,M), such that the following holds. If ζ ∈ C∞(Ō) is

such that ‖ζ‖C2(Ō) ≤M and v ∈W 1,p
loc (O), for 1 ≤ p ≤ ∞, then10

‖[A, ζ]v‖Lp(O,w) ≤ C
(
‖yDv‖Lp(O,w) + ‖(1 + y)v‖Lp(O,w)

)
.

Moreover, if height(supp ζ) ≤ Λ < ∞ and p = 2, then there is a positive constant, C =
C(A,M,Λ), such that

‖[A, ζ]v‖L2(O,w) ≤ C‖v‖H1(O,w).

Recall from [3, Proposition 5.1] that, for a constant C = C(A),

Lemma 3.7 (Weighted a priori first-order derivative estimate for a solution to the variational
equation). [3, Proposition 5.1 (1)] There is a positive constant, C = C(A), such that the following
holds. Let O j H be a domain, f ∈ L2(O,w), and u ∈ H1(O,w) be a solution to the variational
equation (2.11). Then11

‖yDu‖L2(O,w) ≤ C
(
‖y1/2f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
, (3.6)

We have the following interior version of Proposition 3.3 for a solution u ∈ H1(O,w) to the
variational equation (2.11), given f ∈ L2(O,w).

Proposition 3.8 (Interior Koch estimate). Let O j H be a domain and let d1 > 0. Then there
is a constant C = C(A, d1) such that the following holds. Let f ∈ L2(O,w) and suppose that
u ∈ H1(O,w) satisfies the variational equation (2.11). If O ′ ⊂ O is a subdomain such that
Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1, then11

‖Du‖L2(O′,w) ≤ C
(
‖(1 + y)1/2f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
. (3.7)

Proof. Choose a cutoff function ζ ∈ C∞(Ō) such that 0 ≤ ζ ≤ 1 on O and ζ = 1 on O ′ and
supp ζ ⊂ O ′′, for a subdomain O ′′ ⊂ O such that Ō ′′ ⊂ O and dist(∂1O ′′, ∂1O) ≥ d1/2. The
conclusion now follows from Proposition 3.3, Equations (3.3) and (3.4), and Lemmas 3.6 and
3.7. �

The far more elementary a priori estimate in Lemma 3.1 may also be localized by an argument
very similar to that used to prove Proposition 3.8.

Lemma 3.9 (Interior H1 a priori estimate for a solution to the variational equation). Let O j H
be a domain and let d1 > 0. Then there is a constant C = C(A, d1) such that the following holds.

10The result trivially holds if yDv /∈ Lp(O,w) or (1 + y)v /∈ Lp(O,w).
11The result trivially holds if (1 + y)1/2f /∈ L2(O,w) or (1 + y)u /∈ L2(O,w).
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Let f ∈ L2(O,w) and suppose that u ∈ H1(O,w) satisfies the variational equation (2.11). If
O ′ ⊂ O is a subdomain such that Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1, then11

‖u‖H1(O′,w) ≤ C
(
‖(1 + y)1/2f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
. (3.8)

Proof. Choose a cutoff function ζ ∈ C∞(Ō) such that 0 ≤ ζ ≤ 1 on O and ζ = 1 on O ′ and
supp ζ ⊂ O ′′, for a subdomain O ′′ ⊂ O such that Ō ′′ ⊂ O and dist(∂1O ′′, ∂1O) ≥ d1/2. The
conclusion now follows from Lemma 3.1, Equations (3.3) and (3.4), and Lemmas 3.6 and 3.7. �

3.2. Interior H2 regularity. Recall from [3, Definition 2.20] that

H2(O,w) := {u ∈W 2,2
loc (O) : ‖u‖H2(O,w) <∞}, (3.9)

where

‖u‖2H2(O,w) :=

∫
O

(
y2|D2u|2 + (1 + y)2|Du|2 + (1 + y)u2

)
w dx dy. (3.10)

We say that u ∈ H2
loc(O,w) if u ∈ H2(U,w) for every U b O.

We denote the finite difference with respect to x of a function v on O by

δhxv(x, y) :=
1

h
(v(x+ h, y)− v(x, y)) , (3.11)

for h ∈ R \ {0} and all (x, y) ∈ O with (x + h, y) ∈ O. We have the following analogue and
extension of [6, Theorem 5.8.3] or [18, Lemmas 7.23 & 7.24].

Lemma 3.10 (Convergence and bounds on finite differences). Let O j H be a domain and let
O ′ ⊂ O be a subdomain such that Ō ′ ⊂ O.

(1) There is a constant C = C(dist(∂1O ′, ∂1O)) such that the following holds. If u ∈ L2(O,w)
with ux ∈ L2(O,w), then

‖δhxu‖L2(O′,w) ≤ C‖ux‖L2(O,w),

for all h ∈ R such that 0 < 2|h| < dist(∂1O ′, ∂1O).
(2) If u ∈ L2(O,w) and there is a constant K > 0 such that

‖δhxu‖L2(O′,w) ≤ K,

for all h ∈ R such that 0 < 2|h| < dist(∂1O ′, ∂1O), then ux ∈ L2(O ′,w) exists and obeys
‖ux‖L2(O′,w) ≤ K.

Proof. The proof of Item (1) adapts line-by-line from the proofs of [6, Theorem 5.8.3 (i)] or [18,
Lemma 7.23]. To prove Item (2), it is enough to notice that L2(O,w) is a separable Hilbert space
(therefore, reflexive also) and so [18, Problem 5.4] applies. The proof of [18, Lemma 7.24] now
adapts line-by-line. �

We shall adapt the proof of [18, Theorem 8.8] in order to establish

Theorem 3.11 (Interior regularity of second-order derivatives parallel to the degenerate bound-
ary). Let O j H be a domain and let d1 > 0. Then there is a constant C = C(A, d1) such that
the following holds. Let f ∈ L2(O,w) and suppose that u ∈ H1(O,w) satisfies the variational
equation (2.11). If O ′ ⊂ O is a subdomain such that Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1, then12

yuxx, yuxy ∈ L2(O ′,w),

12The result trivially holds if (1 + y)ux /∈ L2(O,w).
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and

‖yDux‖L2(O′,w) ≤ C
(
‖f‖L2(O,w) + ‖y1/2Du‖L2(O,w) + ‖(1 + y)ux‖L2(O,w) + ‖u‖L2(O,w)

)
.

Remark 3.12 (Comparison with regularity results and their proofs in [3]). While stronger results
than Theorem 3.11 are proved as Corollary 5.15 and Theorem 5.17 in [3], where (in the case of [3,
Corollary 5.15]) the subdomain O ′ is replaced by O under suitable hypotheses on ∂1O and Dux
is replaced by D2u, the proof of [3, Corollary 5.15] relies on a hypothesis (see [3, Theorem 5.2])
in [3] that there exist solutions u ∈ C∞(Ō) to Au = f on O and u = 0 on ∂1O when f ∈ C∞0 (O)
and ∂1O is C∞-transverse to ∂H. In contrast, our proof of Theorem 3.11 does not rely on [3,
Theorem 5.2], whose proof appears difficult, and instead uses more elementary methods (finite
differences, in particular). See also Remark 3.4.

Using the L2(O,w)-analogue13 of the finite-difference integration-by-parts formula [6, Equation
(6.3.16)], we find that, for f, v ∈ L2(O,w),

− (f, δ−hx v)L2(O,w) = ((wh/w)δhxf, v)L2(O,w) + ((δhxw/w)f, v)L2(O,w), (3.12)

where the finite-difference product rule [6, Equation (6.3.17)] gives

δhx(wf) = whδhxf + fδhxw a.e. on O,

with wh(x, y) := w(x+ h, y).

Proof of Theorem 3.11. We may assume without loss of generality that (1 + y)ux ∈ L2(O,w).
From the integral identities (2.7) and (2.11) (using our Assumption 2.2 that b1 = 0), we have

1

2

∫
O

(
uxvx + %σuyvx + %σuxvy + σ2uyvy

)
yw dx dy

=
γ

2

∫
O

(ux + %σuy) v
x√

1 + x2
yw dx dy

+

∫
O
a1uxvyw dx dy −

∫
O
c0uvw dx dy +

∫
O
fvw dx dy, ∀v ∈ C∞0 (O).

We may replace v by the difference quotient, δ−hx v, in the preceding identity, provided |h| <
1
2 dist(supp v, ∂1O), and use the L2(O,w) finite-difference integration-by-parts formula (3.12) to
find that ∫

O
(wh/w)

(
(δhxux)vx + %σ(δhxuy)vx + %σ(δhxux)vy + σ2(δhxuy)vy

)
yw dx dy

+

∫
O

(δhxw/w)
(
uxvx + %σuyvx + %σuxvy + σ2uyvy

)
yw dx dy

= −
∫

O

(
ux(δ−hx vx) + %σuy(δ

−h
x vx) + %σux(δ−hx vy) + σ2uy(δ

−h
x vy)

)
yw dx dy

13The proof adapts line-by-line.
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and give

− 1

2

∫
O

(wh/w)
(

(δhxux)vx + %σ(δhxuy)vx + %σ(δhxux)vy + σ2(δhxuy)vy

)
yw dx dy

=
1

2

∫
O

(δhxw/w)
(
uxvx + %σuyvx + %σuxvy + σ2uyvy

)
yw dx dy

+
γ

2

∫
O

(ux + %σuy) (δ−hx v)
x√

1 + x2
yw dx dy

+

∫
O
a1ux(δ−hx v)yw dx dy −

∫
O
c0u(δ−hx v)w dx dy +

∫
O
f(δ−hx v)w dx dy.

Therefore,

1

2

∫
O

(wh/w)
(

(δhxux)vx + %σ(δhxuy)vx + %σ(δhxux)vy + σ2(δhxuy)vy

)
yw dx dy

≤ C‖y1/2Du‖L2(O,w)

(
‖y1/2Dv‖L2(O,w) + ‖y1/2δ−hx v‖L2(O,w)

)
+ C

(
‖u‖L2(O,w) + ‖f‖L2(O,w)

)
‖δ−hx v‖L2(O,w)

≤ C‖y1/2Du‖L2(O,w)‖y1/2Dv‖L2(O,w) + C
(
‖u‖L2(O,w) + ‖f‖L2(O,w)

)
‖vx‖L2(O,w),

where the final inequality follows from Lemma 3.10 (1). Now choose ζ ∈ C∞(O) with 0 ≤ ζ ≤ 1
on O and ζ = 1 on O ′ and supp ζ ⊂ O, and set v = yζ2δhxu with |h| < 1

2 dist(supp ζ, ∂1O).
Therefore, applying (2.9), we obtain

ν0

∫
O

(wh/w)|ζDδhxu|2y2 w dx dy

≤ 1

2

∫
O

(wh/w)ζ2
(

(δhxux)2 + 2%σ(δhxuy)(δ
h
xux) + σ2(δhxuy)

2
)
y2 w dx dy,

and using

yζ2δhxux = (yζ2δhxu)x − 2yζζxδ
h
xu = vx − 2yζζxδ

h
xu,

yζ2δhxuy = (yζ2δhxu)y − ζ2δhxu− 2yζζyδ
h
xu = vy − (ζ2 + 2yζζy)δ

h
xu,

we obtain

ν0

∫
O

(wh/w)|ζDδhxu|2y2 w dx dy

≤ 1

2

∫
O

(wh/w)
(

(δhxux)
(
vx − 2yζζxδ

h
xu
)

+ %σ(δhxuy)
(
vx − 2yζζxδ

h
xu
)

+ %σ(δhxux)
(
vy − (ζ2 + 2yζζy)δ

h
xu
)

+ σ2(δhxuy)
(
vy − (ζ2 + 2yζζy)δ

h
xu
))

yw dx dy

=
1

2

∫
O

(wh/w)
(

(δhxux)vx + %σ(δhxuy)vx + %σ(δhxux)vy + σ2(δhxuy)vy

)
yw dx dy

− 1

2

∫
O

(wh/w)
(

(δhxux)2yζζxδ
h
xu+ %σ(δhxuy)2yζζxδ

h
xu

+ %σ(δhxux)(ζ2 + 2yζζy)δ
h
xu+ σ2(δhxuy)(ζ

2 + 2yζζy)δ
h
xu
)
yw dx dy.
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Hence, there is a positive constant C = C(A, dist(∂1O ′, ∂1O)) such that

‖ζyDδhxu‖2L2(O,w)

≤ C‖y1/2Du‖L2(O,w)‖y1/2Dv‖L2(O,w) + C
(
‖u‖L2(O,w) + ‖f‖L2(O,w)

)
‖vx‖L2(O,w)

+ C‖ζyDδhxu‖L2(O,w)‖(1 + y)δhxu‖L2(supp ζ,w)

≤ C‖y1/2Du‖L2(O,w)

(
‖ζyDδhxu‖L2(O,w) + ‖(1 + y)δhxu‖L2(supp ζ,w)

)
+ C

(
‖u‖L2(O,w) + ‖f‖L2(O,w)

) (
‖ζyδhxux‖L2(O,w) + ‖yδhxu‖L2(supp ζ,w)

)
+ C‖ζyDδhxu‖L2(O,w)‖(1 + y)δhxu‖L2(supp ζ,w),

where, to obtain the final inequality, we used

vx = yζ2δhxux + 2yζζxδ
h
xu, vy = yζ2δhxuy + (ζ2 + 2yζζy)δ

h
xu.

Applying Young’s inequality (that is, 2ab ≤ εa2 + ε−1b2, for any ε > 0 and a, b ∈ R) to the terms
on the right containing the factor ‖ζyDδhxu‖L2(O,w) and rearranging, we obtain

‖ζyDδhxu‖2L2(O,w)

≤ C‖y1/2Du‖2L2(O,w) + C‖y1/2Du‖L2(O,w)‖(1 + y)δhxu‖L2(supp ζ,w)

+ C
(
‖u‖L2(O,w) + ‖f‖L2(O,w)

)2
+ C

(
‖u‖L2(O,w) + ‖f‖L2(O,w)

)
‖yδhxu‖L2(supp ζ,w)

+ C‖(1 + y)δhxu‖2L2(supp ζ,w),

for all h ∈ R such that |h| < 1
2 dist(supp ζ, ∂1O). Again applying Lemma 3.10 (1), we see that

‖yDux‖2L2(O′,w)

≤ C‖y1/2Du‖L2(O,w)

(
‖y1/2Du‖L2(O,w) + ‖(1 + y)ux‖L2(O,w)

)
+ C

(
‖u‖L2(O,w) + ‖f‖L2(O,w)

) (
‖u‖L2(O,w) + ‖f‖L2(O,w) + ‖yux‖L2(O,w)

)
+ C‖(1 + y)ux‖2L2(O,w),

and taking square roots completes the proof. �

Proceeding by analogy with the proof of [18, Theorem 8.12] to estimate yuyy, we obtain

Lemma 3.13 (Interior regularity of second-order derivatives orthogonal to the degenerate bound-
ary). There is a constant C = C(A) such that the following holds. Let O j H be a domain and
let O ′ j O be a subdomain. Let f ∈ L2(O,w) and suppose that u ∈ H1(O,w) satisfies the
variational equation (2.11). If yuxx, yuxy ∈ L2(O ′,w), then

yuyy ∈ L2(O ′,w),

and

‖yuyy‖L2(O′,w) ≤ C
(
‖yuxx‖L2(O′,w) + ‖yuxy‖L2(O′,w) + ‖(1 + y)Du‖L2(O′,w)

+ ‖u‖L2(O′,w) + ‖f‖L2(O′,w)

)
.

(3.13)

Proof. From [18, Theorem 8.8], we know that u ∈ W 2,2
loc (O) and Au = f a.e. on O, and thus by

(1.3), we have

σ2

2
yuyy = −y

2
(uxx + 2%σuxy)−

(
c0 − q −

y

2

)
ux − κ(θ − y)uy + c0u− f.



HIGHER-ORDER REGULARITY FOR SOLUTIONS TO VARIATIONAL EQUATIONS 23

Hence, there is a constant, C = C(A), such that (3.13) holds. �

Therefore, we find that

Theorem 3.14 (Interior regularity of second-order derivatives). Let O j H be a domain and let
d1 > 0. Then there is a constant C = C(A, d1) such that the following holds. Let f ∈ L2(O,w)

and suppose that u ∈ H1(O,w) satisfies the variational equation (2.11). If (1+y)1/2f and (1+y)u
belong to L2(O,w) and O ′ ⊂ O is a subdomain such that Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1, then

yuxx, yuxy, yuyy ∈ L2(O ′,w),

and

‖yD2u‖L2(O′,w) ≤ C
(
‖(1 + y)1/2f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
.

Proof. The conclusion follows by combining the estimates in Proposition 3.8, Theorem 3.11,
Lemma 3.13 and the a priori H1(O,w)-estimate for a solution u given by Lemma 3.1 and the
L2(O,w)-estimate for yDu in Lemma 3.7. �

Consequently, we have the

Theorem 3.15 (Interior H2 regularity and a priori estimate). Let O j H be a domain and let
d1 > 0. Then there is a constant C = C(A, d1) such that the following holds. If f ∈ L2(O,w)
and u ∈ H1(O,w) satisfies the variational equation (2.11), then u ∈ H2

loc(O,w). Moreover, if

(1 + y)1/2f and (1 + y)u belong to L2(O,w) and O ′ ⊂ O is a subdomain such that Ō ′ ⊂ O and
dist(∂1O ′, ∂1O) ≥ d1, then u ∈ H2(O ′,w) and

‖u‖H2(O′,w) ≤ C
(
‖(1 + y)1/2f‖L2(O,w) + ‖(1 + y)u‖L2(O,w)

)
.

Proof. The conclusion follows by combining Proposition 3.8 with Theorem 3.14, the a priori
H1(O,w)-estimate for a solution u given by Lemma 3.1, and the L2(O,w)-estimate for yDu in
Lemma 3.7. �

In the sequel, we shall most often apply Theorem 3.15 in the following special form.

Theorem 3.16 (Interior H2 regularity for a solution to the variational equation). Let O j H be a
domain and let R < R0 be positive constants. Then there is a positive constant, C = C(A,R,R0),
such that the following holds. If f ∈ L2(O,w) and u ∈ H1(O,w) is a solution to the variational
equation (2.11), and z0 ∈ ∂0O is such that

H ∩BR0(z0) ⊂ O,

then

u ∈ H2(B+
R(z0),w),

and

‖u‖H2(B+
R(z0),w) ≤ C

(
‖f‖L2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

)
. (3.14)
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4. Higher-order Sobolev regularity for solutions to the variational equation

In this section, we develop higher-order “interior” regularity results for a solution, u ∈ H1(O,w),
to the variational equation (2.11). After providing motivation for their construction in §4.1, we
describe the families of higher-order weighted Sobolev spaces which we shall need for this article,
namely H k(O,w) (Definition 4.3) and W k,p(O,w) (Definition 4.4).

We begin our development of higher-order Sobolev regularity theory in §4.2, where we establish
H2

loc(O,w)-regularity (Proposition 4.11) of the derivatives, Dk
xu, of a solution, u ∈ H1(O,w), to

the variational equation (2.11), while in §4.3, we establishH2
loc(O,w)-regularity (Proposition 4.13)

of the derivative, uy. The preceding regularity results are combined in §4.4 to give H 3
loc(O,w)-

regularity (Theorem 4.14) of a solution, u ∈ H1(O,w). We conclude in §4.5 with a proof of two

of the main results of our article, Theorems 1.3 and Theorem 1.5, and H k+2
loc (O,w)-regularity of

a solution, u ∈ H1(O,w), for any integer k ≥ 0.

4.1. Motivation and definition of higher-order weighted Sobolev norms. We now extend
our previous definition of H`(O,w) when ` = 0, 1, 2 (see [3, Definitions 2.15 & 2.20]) to allow
` ≥ 2. For k ≥ 0, it is natural to define Hk+2(O,w) as a Sobolev space contained in the domain
of Dk−m

x Dm
y A, so the operators

Dk−m
x Dm

y A : Hk+2(O,w)→ L2(O,w), m ∈ N, 0 ≤ m ≤ k,
are bounded, and we use this principle as a guide to our definition.

From the expression (1.3) for A, we have, for v ∈ C∞(O),

[Dx, A]v := DxAv −ADxv = 0 on O,

and so
[Dm

x , A]v ≡ ADm
x v −Dm

x Av = 0 on O, ∀m ∈ N,
whereas

[Dy, A]v ≡ DyAv −ADyv = −1

2

(
vxx + 2%σvxy + σ2vyy

)
+

1

2
vx + κvy on O, (4.1)

is a (non-trivial) second-order, elliptic operator with constant coefficients (and therefore commutes
with both Dx and Dy). Hence,

D2
yAv = DyADyv +Dy[Dy, A]v

= AD2
yv + [Dy, A]Dyv + [Dy, A]Dyv

= AD2
yv + 2[Dy, A]Dyv,

while

D3
yAv = D2

yADyv +D2
y[Dy, A]v

= AD3
yv + 2[Dy, A]D2

yv + [Dy, A]D2
yv

= AD3
yv + 3[Dy, A]D2

yv,

and, by induction,

[Dm
y , A]v ≡ Dm

y Av −ADm
y v = m[Dy, A]Dm−1

y v on O, ∀m ∈ N.
By combining the two cases, we obtain

[Dk−m
x Dm

y , A]v ≡ Dk−m
x Dm

y Av −ADk−m
x Dm

y v = m[Dy, A]Dk−m
x Dm−1

y v on O, (4.2)

for all k,m ∈ N with 0 ≤ m ≤ k.
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Given v ∈ Hk(O,w) and k ≥ 2 and a suitable definition of Hk(O,w), we should expect that

Dm
x D

n
yAv ∈ L2(O,w), 0 ≤ m+ n ≤ k − 2,

and so,

ADm
x D

n
y v, [Dy, A]Dm

x D
n−1
y v ∈ L2(O,w), 0 ≤ m+ n ≤ k − 2.

The second condition is fulfilled when

Dm
x D

n
y v ∈ L2(O,w), 0 ≤ m+ n ≤ k − 1,

whereas the expression (1.3) for A implies that the first condition is fulfilled when

yDm
x D

n
y v ∈ L2(O,w), 1 ≤ m+ n ≤ k,

Dm
x D

n
y v ∈ L2(O,w), 0 ≤ m+ n ≤ k − 1.

Therefore, when k ≥ 2, and keeping in mind that we want Hk(O,w) ⊂ H1(O,w), for all k ≥ 2,
we make the

Definition 4.1 (Higher-order weighted Sobolev spaces). Let O j H be a domain. For any integer
k ≥ 1, set

Hk+2(O,w) :=
{
v ∈W k+2,2

loc (O) : ‖v‖Hk+2(O,w) <∞
}
,

where

‖v‖2Hk+2(O,w) :=

∫
O
y2|Dk+2v|2 w dx dy +

k+1∑
j=1

∫
O

(1 + y)2|Djv|2 w dx dy

+

∫
O

(1 + y)v2 w dx dy,

(4.3)

and Djv denotes the vector (Dj−m
x Dm

y v : 0 ≤ m ≤ j), for 0 ≤ j ≤ k.

As we shall later see, Definition 4.1 is not well-adapted to a development of a higher-order
regularity theory for solutions to (1.1) or (2.11), and it is best regarded as a stepping stone to the
one we ultimately adopt for our regularity theory, namely Definition 4.3. By way of motivation,
we observe that the expression (4.1) for the commutator [Dy, A] involves both derivatives with
respect to x and y. The alternative “commutator” provided by (4.4) will prove more useful than
(4.1) in our approach to the higher-order regularity since it only involves derivatives with respect
to x.

Lemma 4.2 (Alternative commutator of A and Dy). For any integer m ≥ 1,

Dm
y Av −AmDm

y v = mBDm−1
y v on O, ∀v ∈ C∞(H), (4.4)

where

Bv := −1

2
vxx +

1

2
vx, (4.5)

and Am is obtained from the expression for A in (1.3) by replacing θ by θm := θ+mσ2/(2κ) (and
β by βm := β +m), and q by qm := q −m%σ, and c0 by c0,m := c0 +mκ.
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Proof. We compute that

DyAv = −y
2

(
vxxy + 2%σvxyy + σ2vyyy

)
−
(
c0 − q −

y

2

)
vxy − κ(θ − y)vyy

− 1

2

(
vxx + 2%σvxy + σ2vyy

)
+

1

2
vx + κvy + c0vy

= −y
2

(
vxxy + 2%σvxyy + σ2vyyy

)
−
(
c0 − q + %σ − y

2

)
vxy − κ

(
θ +

σ2

2κ
− y
)
vyy

− 1

2
vxx +

1

2
vx + (c0 + κ)vy

= A1Dyv +Bv,

where A1 is defined by replacing θ by θ1 = θ+σ2/(2κ) (and β by β1 = β+1), and q by q1 = q−%σ,
and the coefficient, c0, of v by c0,1 = c0 + κ, and Bv = −1

2vxx + 1
2vx. Note that B is a linear,

second-order differential operator which commutes with Dy. Computing D2
yAv, we see that

D2
yAv = Dy(DyAv) = Dy (A1Dyv +Bv)

= A2D
2
yv +BDyv +DyBv

= A2D
2
yv + 2BDyv,

where A2 is defined by replacing θ1 by θ2 = θ1 +σ2/(2κ) = θ+2σ2/(2κ) (and β1 by β2 = β1 +1 =
β+2), and q1 by q2 = q1−%σ = q−2%σ, and the coefficient, c0,1, of v by c0,2 = c0,1 +κ = c0 +2κ.
It is now clear that the stated formula for Dm

y Av follows by induction. �

Recall that the weight function (2.5) for our weighted Sobolev spaces is given by

w(x, y) = yβ−1e−γ
√

1+x2−µy, (x, y) ∈ H,

where β = 2κθ/σ2 and µ = 2κ/σ2, and thus is defined by the coefficients of A (and γ). We denote
the weight defined by the corresponding coefficients of the operator Am by

wm(x, y) := ymw(x, y) = yβ+m−1e−γ
√

1+x2−µy, (x, y) ∈ H, m ≥ 1, (4.6)

noting that βm = β +m and κm = κ. Similarly, the bilinear map, a(u, v), defined in (2.7) by the
coefficients of A (and γ) has an analogue, which we denote by am(u, v), defined by the coefficients
of Am (and γ), for u ∈ C∞(Ō) and v ∈ C∞0 (O), with the property that

am(u, v) = (Amu, v)L2(O,wm), ∀u ∈ C∞(Ō), v ∈ C∞0 (O). (4.7)

When k,m ∈ N, one may define Hk(O,wm) by simply replacing the weight w by wm in the
definitions of Hk(O,w). We shall need to introduce the following alternative definition of higher-
order Sobolev spaces which lie between Hk+2(O,wk) and Hk+2(O,w) when k ≥ 1.

Definition 4.3 (Alternative higher-order weighted Sobolev spaces). Let O j H be a domain.
For ` = 0, 1, 2, define H `(O,w) := H`(O,w) and, for any integer k ≥ 1, set

H k+2(O,w) :=
{
v ∈W k+2,2

loc (O) : ‖v‖H k+2(O,w) <∞
}
,
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where

‖v‖2H k+2(O,w) :=

∫
O
y2
(
|Dk+2

x v|2 + |Dk+1
x Dyv|2 + |Dk

xD
2
yv|2

)
w dx dy

+
k∑

m=1

∫
O
y2|Dk−m

x Dm+2
y v|2 wm dx dy

+
k∑
j=0

∫
O

(1 + y)2
(
|Dj+1

x v|2 + |Dj
xDyv|2

)
w dx dy

+
k∑
j=1

j∑
m=1

∫
O

(1 + y)2|Dj−m
x Dm+1

y v|2 wm dx dy

+

∫
O

(1 + y)v2 w dx dy.

(4.8)

We denote H 2(O,w) = H2(O,w) when k = 0.

For example, if k = 1,

‖v‖2H 3(O,w) :=

∫
O
y2
(
v2
xxx + v2

xxy + v2
xyy + yv2

yyy

)
w dx dy

+

∫
O

(1 + y)2
(
v2
xx + v2

xy + yv2
yy

)
w dx dy

+

∫
O

(1 + y)2
(
v2
x + v2

y

)
w dx dy +

∫
O

(1 + y)v2 w dx dy.

(4.9)

Observe that if O ⊂ H is a subdomain of finite height, then

L2(O,w) ⊂ L2(O,wm), (4.10)

for all m ∈ N. When k ≥ 1,

‖v‖Hk+2(O,wk) ≤ C‖v‖H k+2(O,w) ≤ C‖v‖Hk+2(O,w),

and so

Hk+2(O,w) ⊂H k+2(O,w) ⊂ Hk+2(O,wk),

when O has finite height. Definition 4.3 gives the following inductive inequality,

‖v‖2H k+3(O,w) ≤
∫

O
y2
(
|Dk+3

x v|2 + |Dk+2
x Dyv|2 + |Dk+1

x D2
yv|2

)
w dx dy

+
k+1∑
m=1

∫
O
y2|Dk+1−m

x Dm+2
y v|2 wm dx dy

+

∫
O

(1 + y)2
(
|Dk+2

x v|2 + |Dk+1
x Dyv|2

)
w dx dy

+
k+1∑
m=1

∫
O

(1 + y)2|Dk+1−m
x Dm+1

y v|2 wm dx dy

+ ‖v‖2H k+2(O,w),

(4.11)

for k ≥ 0. Equation (4.22) gives the inductive inequality for H 3(O,w).
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We recall the definition of a weighted Sobolev space and norm, where the weight is the same

for all derivatives of the function (denoted W k,p
w (O) in [33, Definition 2.1.1], though we shall not

require that w be an Ap weight in this article).

Definition 4.4 (Higher-order weighted Sobolev spaces with a single weight). Let O j H be a
domain and let w ∈ L1

loc(O) be a weight function, so that w > 0 a.e. on O. For any 1 ≤ p < ∞
and integer k ≥ 0, set

W k,p(O, w) :=
{
v ∈W k,p

loc (O) : ‖v‖Wk,p(O,w) <∞
}
,

where

‖v‖Wk,p(O,w) :=

 k∑
j=0

∫
O
|Djv|pw dxdy

1/p

. (4.12)

We denote W k,p(O, w) = Lp(O, w) when k = 0.

Finally, we shall need the following “interior” versions of the weighted Sobolev spaces defined
in this subsection.

Definition 4.5 (Interior weighted Sobolev norms). Let T ⊂ ∂O be relatively open in R2 and
let k ≥ 0 be an integer. We say that v ∈ Hk

loc(O ∪ T,w) (respectively, H k
loc(O ∪ T,w) or

W k,p
loc (O ∪ T,w)) if for every subdomain U ⊂ O such that U b O ∪ T , we have v ∈ Hk(U,w)

(respectively, H k(U,w) or W k,p(U,w)).

4.2. Interior H2 regularity for first-order derivatives parallel to the degenerate bound-
ary. We proceed in a manner similar to that in [18, p. 186].

Lemma 4.6 (Variational equation for the derivative of a solution with respect to x). Let O j H
be a domain with finite height,14 let f ∈ L2(O,w), and suppose that u ∈ H1(O,w) satisfies the
variational equation (2.11). If15

f ∈W 1,2(O,w), u ∈ H2(O,w), and ux ∈ H1(O,w),

then ux ∈ H1(O,w) obeys

a(ux, v) = (fx, v)L2(O,w), (4.13)

for all v ∈ H1
0 (O,w).

Proof. Suppose first that u ∈ C∞(Ō) and v ∈ C∞0 (O). Then vx ∈ C∞0 (O) and

a(u,−vx) = (Au,−vx)L2(O,w) (by Lemma A.3)

= (Aux, v)L2(O,w) + (Au, v(logw)x)L2(O,w)

= a(ux, v) + (Au, v(logw)x)L2(O,w),

where from (2.5) we see that

(logw)x = −γ x√
1 + x2

on H.

14As one can see from the proof, the hypothesis that O has finite height is only used in a very mild way and
the condition could be removed using more precise bounds, but we shall not need such an extension.

15While the right-hand side of the identity (4.13) is well-defined when fx ∈ L2(O,w), we appeal to an approxi-
mation argument requiring f ∈W 1,2(O,w).
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Now suppose, more generally, that u ∈ H2(O,w) with ux ∈ H1(O,w), as in our hypotheses.
For v ∈ C∞0 (O), we may choose a subdomain O ′ b O such that supp v ⊂ O ′ and ∂1O ′ is C1-
orthogonal to ∂H in the sense of Definition A.1. According to Theorem A.2, there is a sequence
{un}n∈N ⊂ C∞(Ō ′) such that un → u in H2(O ′,w) as n → ∞ and hence, for each v ∈ C∞0 (O)
with supp v ⊂ O ′,

(Aun, v)L2(O,w) → (Au, v)L2(O,w) and a(un,x, v)→ a(ux, v), n→∞,

since, in the second case, by (2.7) we see that

|a(un,x − ux, v)| ≤ C
(
‖yD(un,x − ux)‖L2(O,w) + ‖un,x − ux‖L2(O,w)

)
‖v‖W 1,2(O,w)

≤ C‖un − u‖H2(O,w)‖v‖W 1,2(O,w),

where C = C(height(O)). Therefore, by approximation and also the fact that v ∈ C∞0 (O) is
arbitrary, the preceding variational equation continues to hold for u ∈ H2(O,w) with ux ∈
H1(O,w), that is,

a(u,−vx) = a(ux, v) + (Au, v(logw)x)L2(O,w), ∀v ∈ C∞0 (O).

Since u ∈ H2(O,w), then (2.11) implies that Au = f a.e. on O by Lemma A.3 and thus the
preceding identity gives

a(u,−vx) = a(ux, v) + (f, v(logw)x)L2(O,w), ∀v ∈ C∞0 (O).

Moreover, by substituting −vx for v in (2.11), using the fact that f ∈W 1,2(O,w) by hypothesis,
so fx ∈ L2(O,w), and appealing to Theorem A.2 to choose a sequence {fn}n∈N ⊂ C∞(Ō) such
that fn → f in W 1,2(O,w) and so fn,x → fx in L2(O,w) as n→∞, we obtain

a(u,−vx) = (f,−vx)L2(O,w)

= (fx, v)L2(O,w) + (f, v(logw)x)L2(O,w), ∀v ∈ C∞0 (O),

where the integration-by-parts identity is justified by approximation, just as in the proof of
Lemma A.3. Combining these identities yields (4.13) for all v ∈ C∞0 (O) and hence for all v ∈
H1

0 (O,w). �

Remark 4.7 (Need for the regularity condition on u in Lemma 4.6). If we only knew that u ∈
H2(O,w), then the definition (3.9) of H2(O,w) would imply that y|D2u|, (1+y)|Du| ∈ L2(O,w)

and so y1/2|Dux|, (1 + y)1/2ux ∈ L2(O, yw) = L2(O,w1) and thus ux ∈ H1(O,w1), but not
necessarily H1(O,w), by the definition (2.2) of H1(O,w).

Lemma 4.8 (Variational equation for higher-order derivatives of a solution with respect to x).
Let O j H be a domain with finite height, let k ≥ 1 be an integer, let f ∈ L2(O,w), and suppose
that u ∈ H1(O,w) satisfies the variational equation (2.11). If

Dk
xf ∈ L2(O,w), u ∈H k+1(O,w), and Dk

xu ∈ H1(O,w),

then Dk
xu ∈ H1(O,w) obeys

a(Dk
xu, v) = (Dk

xf, v)L2(O,w), v ∈ H1
0 (O,w). (4.14)

Proof. By hypothesis,

fx ∈ L2(O,w), u ∈ H2(O,w), and ux ∈ H1(O,w),

and so Lemma 4.6 implies that ux obeys

a(ux, v) = (fx, v)L2(O,w), ∀v ∈ H1
0 (O,w).
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By induction we may assume that the conclusion holds when k is replaced by k − 1. Note that
u ∈H k+1(O,w) by hypothesis and so, by Definition 4.3, we see that ux obeys

yDk
xux, yD

k−1
x Dyux, yD

k−2
x D2

yux ∈ L2(O,w),

yDk−m
x Dm

y ux ∈ L2(O,wm−2) 3 ≤ m ≤ k.

Therefore, u ∈H k+1(O,w) =⇒ ux ∈H k(O,w) when k ≥ 2. Since

Dk−1
x fx = Dk

xf ∈ L2(O,w), ux ∈H k(O,w), and Dk−1
x ux = Dk

xu ∈ H1(O,w),

we can apply Lemma 4.8 to the preceding variational equation, with k − 1 and ux ∈ H1(O,w)
and fx ∈ L2(O,w) replacing k and u ∈ H1(O,w) and f ∈ L2(O,w), respectively, to give

a(Dk
xu, v) = a(Dk−1

x ux, v) = (Dk−1
x fx, v)L2(O,w) = (Dk

xf, v)L2(O,w), ∀v ∈ H1
0 (O,w).

This completes the proof. �

In order to establish a refinement of Lemma 4.6 which yields ux ∈ H1(O,w) as a conclusion,
assuming only u ∈ H2(O,w), we shall need to substitute v ∈ C∞0 (O ′), where O ′ b O, by a finite
difference, −δ−hx v, rather than −vx, by analogy with the proof of [18, Theorem 8.8].

Proposition 4.9 (Variational equation for the derivative of a solution with respect to x). Let
O j H be a domain and let d1,Λ be positive constants. Then there is a positive constant,
C = C(A, d1,Λ), such that the following holds. Let f ∈ L2(O,w) and suppose that u ∈ H1(O,w)
satisfies the variational equation (2.11). If

fx ∈ L2(O,w),

then ux ∈ H1
loc(O,w) and, for any subdomain O ′ ⊂ O with Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1 and

height(O ′) ≤ Λ, one has

ux ∈ H1(O ′,w),

and

a(ux, v) = (fx, v)L2(O′,w), ∀v ∈ H1
0 (O ′,w), (4.15)

and

‖ux‖H1(O′,w) ≤ C
(
‖fx‖L2(O,w) + ‖f‖L2(O,w) + ‖u‖L2(O,w)

)
.

Proof. We partially follow the idea of the proof of [18, Theorem 8.8], but the argument is simpler
here because of the relatively strong hypothesis that fx ∈ L2(O,w) as well as f ∈ L2(O,w)).

Choose a subdomain O ′′ ⊂ O such that Ō ′ ⊂ O ′′ and Ō ′′ ⊂ O and ∂1O ′′ is C1-orthogonal to
∂H, while dist(∂1O ′, ∂1O ′′) ≥ d1/4 and dist(∂1O ′′, ∂1O) ≥ d1/2 and height(O ′′) ≤ 2Λ. Observe
that if (x, y) ∈ O ′′, then (x±h, y) ∈ O provided dist((x, y), ∂1O) < |h|, so in choosing h, we shall
always assume that 0 < |h| < 1

2 dist(O ′′, ∂1O). For any v ∈ C∞0 (O ′′), observe that δ−hx v ∈ C∞0 (O),

so we may substitute −δ−hx v for v as a test function in (2.11).
For any w ∈ C∞(Ō), noting that δhxAw = Aδhxw on O ′′, we obtain

−a(w, δ−hx v) = −(Aw, δ−hx v)L2(O,w) (by Lemma A.3)

= (δhxAw, (w
h/w)v)L2(O,w) + (Aw, (δhxw/w)v)L2(O,w) (by (3.12))

= (Aδhxw, (w
h/w)v)L2(O,w) + (Aw, (δhxw/w)v)L2(O,w)

= a(δhxw, (w
h/w)v) + a(w, (δhxw/w)v), ∀v ∈ C∞0 (O ′′),
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where, in the last equality, we use the fact that (wh/w)v ∈ C∞0 (O ′′) when v ∈ C∞0 (O ′′), recalling
by (2.5) that

w(x, y) = yβ−1e−γ
√

1+x2−µy, (x, y) ∈ H.
Recall that supp v ⊂ O ′′. Since C∞(Ō ′′) is dense in H1(O ′′,w) by Theorem A.2, we may choose
{wn}n∈N ⊂ C∞(Ō ′′) with wn → u strongly in H1(O ′′,w) to see that

−a(u, δ−hx v) = a(δhxu, (w
h/w)v) + a(u, (δhxw/w)v), ∀v ∈ C∞0 (O ′′).

Therefore, for all v ∈ C∞0 (O ′′), the preceding identity yields

a(δhxu, (w
h/w)v) = −a(u, δ−hx v)− a(u, (δhxw/w)v)

= −(f, δ−hx v)L2(O,w) − (f, (δhxw/w)v)L2(O,w) (by (2.11))

= (δhxf, (w
h/w)v)L2(O,w) (by (3.12)),

and consequently,

a(δhxu, v) = (δhxf, v)L2(O′′,w), ∀v ∈ C∞0 (O ′′).

Since C∞0 (O ′′) is dense in H1
0 (O ′′,w) by definition, we obtain

a(δhxu, v) = (δhxf, v)L2(O′′,w), ∀v ∈ H1
0 (O ′′,w). (4.16)

The interior a priori estimate (3.8) for solutions to the preceding equation yields

‖δhxu‖H1(O′,w) ≤ C
(
‖δhxf‖L2(O′′,w) + ‖δhxu‖L2(O′′,w)

)
, 0 < 2|h| < dist(O ′′, ∂1O),

where C = C(A,Λ). Choose a subdomain O ′′′ ⊂ O such that Ō ′′ ⊂ O ′′′ and Ō ′′′ ⊂ O, while
dist(∂1O ′′′, ∂1O) ≥ d1/4 and dist(∂1O ′′, ∂1O ′′′) ≥ d1/8 and height(O ′′) ≤ 4Λ. By Lemma 3.10 (1)
and the facts that fx ∈ L2(O,w) by hypothesis and ux ∈ L2(O ′′′,w) by Proposition 3.8, we see
that

‖δhxf‖L2(O′′,w) + ‖δhxu‖L2(O′′,w) ≤ ‖fx‖L2(O′′′,w) + ‖ux‖L2(O′′′,w), 0 < 2|h| < dist(O ′′, ∂1O
′′′),

and so

‖δhxu‖H1(O′,w) ≤ C
(
‖fx‖L2(O′′′,w) + ‖ux‖L2(O′′′,w)

)
, 0 < 2|h| < dist(O ′′, ∂1O

′′′).

Therefore, since (δhxu)x = δhxux and (δhxu)y = δhxuy, we have

‖y1/2δhxux‖L2(O′,w) ≤ C1,

‖y1/2δhxuy‖L2(O′,w) ≤ C1,

‖δhxu‖L2(O′,w) ≤ C1, 0 < 2|h| < dist(O ′, ∂1O
′′),

where C1 := C(‖fx‖L2(O′′′,w) + ‖ux‖L2(O′′′,w)). Lemma 3.10 (2) (and its proof) gives ux ∈
H1(O ′,w) and weak convergence, after passing to a diagonal subsequence,

y1/2δhxux ⇀ y1/2uxx, y1/2δhxuy ⇀ y1/2uxy, δhxu ⇀ ux weakly in L2(O ′,w) as h→ 0,

and thus,

δhxu ⇀ ux weakly in H1(O ′,w) as h→ 0.

Therefore,

‖ux‖H1(O′,w) ≤ lim inf
h→0

‖δhxu‖H1(O′,w).

and, by combining the preceding inequalities,

‖ux‖H1(O′,w) ≤ C
(
‖fx‖L2(O′′′,w) + ‖ux‖L2(O′′′,w)

)
.
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Finally, Proposition 3.8 yields

‖ux‖L2(O′′′,w) ≤ C
(
‖f‖L2(O,w) + ‖u‖L2(O,w)

)
,

for C = C(A, d1,Λ) and the conclusion follows from the preceding two estimates. �

Clearly, by repeatedly applying Proposition 4.9, induction on k ≥ 1 yields the following refine-
ment of Lemma 4.8.

Proposition 4.10 (Variational equation for higher-order derivatives of a solution with respect
to x). Let O j H be a domain, let d1,Λ be positive constants, and let k ≥ 1 be an integer. Then
there is a positive constant, C = C(A, d1, k,Λ), such that the following holds. Let f ∈ L2(O,w)
and suppose that u ∈ H1(O,w) satisfies the variational equation (2.11). If

Dj
xf ∈ L2(O,w), 1 ≤ j ≤ k,

then Dk
xu ∈ H1

loc(O,w) and, for any subdomain O ′ ⊂ O with Ō ′ ⊂ O and dist(∂1O ′, ∂1O) ≥ d1

and height(O ′) ≤ Λ, one has

Dk
xu ∈ H1(O ′,w),

and

a(Dk
xu, v) = (Dk

xf, v)L2(O′,w), ∀v ∈ H1
0 (O ′,w),

and

‖Dk
xu‖H1(O′,w) ≤ C

 k∑
j=0

‖Dj
xf‖L2(O,w) + ‖u‖L2(O,w)

 .

Proof. Proposition 4.9 yields the conclusion when k = 1 and so we can take k ≥ 2 and assume, by
induction, that the result holds for k−1 in place of k. Choose a subdomain O ′′ ⊂ O with Ō ′ ⊂ O ′′

and Ō ′′ ⊂ O, while dist(∂1O ′, ∂1O ′′) ≥ d1/4 and dist(∂1O ′′, ∂1O) ≥ d1/2 and height(O ′′) ≤ 2Λ.
By the induction hypothesis, Dk−1

x u ∈ H1
loc(O,w) ∩H1(O ′′,w) and Dk−1

x u obeys

a(Dk−1
x u, v) = (Dk−1

x f, v)L2(O′′,w), ∀v ∈ H1
0 (O ′′,w).

Hence, by applying Proposition 4.9 to the preceding variational equation in place of (2.11), we
see that Dk

xu ∈ H1(O ′,w) and, because the choice of subdomain O ′′ ⊂ O with Ō ′′ ⊂ O was
arbitrary, that also Dk

xu ∈ H1
loc(O,w). Moreover, Proposition 4.9 yields

‖Dk
xu‖H1(O′,w) ≤ C

(
‖Dk

xf‖L2(O′′,w) + ‖Dk−1
x f‖L2(O′′,w) + ‖Dk−1

x u‖L2(O′′,w)

)
,

for C = C(A, d1,Λ), while the induction hypothesis gives

‖Dk−1
x u‖H1(O′′,w) ≤ C

k−1∑
j=0

‖Dj
xf‖L2(O,w) + ‖u‖L2(O,w)

 ,

for C = C(A, d1, k,Λ). We obtain the conclusion by combining the preceding estimates. �

As the regularity questions of interest to us only concern regularity of a solution to the vari-
ational equation (2.11), it will be convenient to consider, for z0 ∈ ∂H and 0 < R < R1 < R0,
half-balls U ⊂ U ′ ⊂ V , where

U := B+
R(z0), U ′ := B+

R1
(z0), and V = B+

R0
(z0), (4.17)

and we recall that B+
R(z0) := BR(z0) ∩ O, for any R > 0 and z0 ∈ R2. Note that U b U ′ and

U ′ b V .
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Proposition 4.11 (InteriorH2 regularity for higher-order derivatives of a solution with respect to
x). Let R < R0 be positive constants and let k ≥ 1 be an integer. Then there is a positive constant,
C = C(A, k,R,R0), such that the following holds. Let O j H be a domain, let f ∈ L2(O,w), and
suppose that u ∈ H1(O,w) is a solution to the variational equation (2.11). If U ⊂ V are as in
(4.17) with V ⊂ O, and

Dj
xf ∈ L2(V,w), 1 ≤ j ≤ k,

then

Dk
xu ∈ H2(U,w),

and

‖Dk
xu‖H2(U,w) ≤ C

 k∑
j=0

‖Dj
xf‖L2(V,w) + ‖u‖L2(V,w)

 . (4.18)

Proof. Choose an auxiliary half-ball, U ′ as in (4.17), with U ′ = B+
R1

(z0) and U ⊂ U ′ ⊂ V , and

fix R1 = (R +R0)/2. Since Dj
xf ∈ L2(V,w), 1 ≤ j ≤ k by hypothesis, we can apply Proposition

4.10 to give Dk
xu ∈ H1(U ′,w) and

a(Dk
xu, v) = (Dk

xf, v)L2(U ′,w), ∀v ∈ H1
0 (U ′,w).

We can now apply Theorem 3.16 to the preceding variational equation to give Dk
xu ∈ H2(U,w)

and

‖Dk
xu‖H2(U,w) ≤ C

(
‖Dk

xf‖L2(U ′,w) + ‖Dk
xu‖L2(U ′,w)

)
,

where C = C(A,R,R1). But

‖Dk
xu‖L2(U ′,w) ≤ ‖Dk

xu‖H1(U ′,w),

and by Proposition 4.10, we obtain

‖Dk
xu‖H1(U ′,w) ≤ C

 k∑
j=0

‖Dj
xf‖L2(V,w) + ‖u‖L2(V,w)

 ,

where C = C(A, k,R1, R0). Combining the preceding estimates completes the proof. �

4.3. Interior H2 regularity for first-order derivatives orthogonal to the degenerate
boundary. We have the following analogue of Lemma 4.6. Observe that if u ∈ H2(O,w), then

the definition (3.9) ofH2(O,w) implies that y|D2u|, (1+y)|Du| ∈ L2(O,w) and so y1/2|Duy|, (1+

y)1/2uy ∈ L2(O, yw) = L2(O,w1) and thus uy ∈ H1(O,w1) by the definition (2.2) of H1(O,w).

Lemma 4.12 (Variational equation for the derivative of a solution with respect to y). Let O j H
be a domain, let f ∈ L2(O,w), and suppose that u ∈ H1(O,w) satisfies the variational equation
(2.11). If16

f ∈ H1(O,w), u ∈ H2(O,w), and uxx ∈ L2(O,w1),

then uy obeys

a1(uy, v) = (fy, v)L2(O,w1) − (Bu, v)L2(O,w1), (4.19)

for all v ∈ H1
0 (O,w1).

16While the right-hand side of the identity (4.19) is well-defined when fy ∈ L2(O,w1), we appeal to an approx-
imation argument requiring at least f ∈ H1(O,w) to justify integration by parts involving f .
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Proof. Again, suppose first that u ∈ C∞(Ō) and v ∈ C∞0 (O). Then (yv)y ∈ C∞0 (O) too and

a(u, (yv)y) = (Au, (yv)y)L2(O,w) (by Lemma A.3)

= −((Au)y, yv)L2(O,w) − (Au, yv(logw)y)L2(O,w)

= −(A1uy, yv)L2(O,w) − (Bu, yv)L2(O,w) − (Au, yv(logw)y)L2(O,w) (by (4.4))

= −(A1uy, v)L2(O,w1) − (Bu, v)L2(O,w1) − (Au, yv(logw)y)L2(O,w) (by (4.6))

= −a1(uy, v)− (Bu, v)L2(O,w1) − (Au, yv(logw)y)L2(O,w) (by (4.7)),

where from (2.5) we see that

(logw)y = (β − 1)y−1 − µ on H.

As in the proof of Lemma 4.6, for v ∈ C∞0 (O), we may choose a subdomain O ′ b O such that
supp v ⊂ O ′ and ∂1O ′ is C1-orthogonal to ∂H. If we now assume only that u ∈ H2(O,w) and
uxx ∈ L2(O,w1), as in our hypotheses, there is a sequence {un}n∈N ⊂ C∞(Ō ′) such that un → u
in H2(O ′,w) as n→∞ by Theorem A.2. But then un,xx ⇀ uxx weakly in L2(O ′,w1) as n→∞
since, for v ∈ C∞0 (O) with supp ⊂ O ′ and all n ∈ N,∣∣(un,xx − uxx, v)L2(O,w1)

∣∣ =
∣∣(yun,xx − yuxx, v)L2(O,w)

∣∣
≤ ‖y(un,xx − uxx)‖L2(O,w)‖v‖L2(O,w)

≤ ‖un − u‖H2(O,w)‖v‖L2(O,w).

Therefore, by approximation, the variational identity continues to hold for u ∈ H2(O,w), which
ensures ux ∈ L2(O,w) ⊂ L2(O,w1), and uxx ∈ L2(O,w1) (thus Bu ∈ L2(O,w1)), that is,

a(u, (yv)y) = −a1(uy, v)− (Bu, v)L2(O,w1)

− (Au, yv(logw)y)L2(O,w), ∀v ∈ C∞0 (O).

Also, since u ∈ H2(O,w), then (2.11) implies that Au = f a.e. on O by Lemma A.3. Hence,
(2.11) and the fact that f ∈ H1(O,w) and thus fy ∈ L2(O,w1) by hypothesis, yields

a(u, (yv)y) = (f, (yv)y)L2(O,w)

= −(fy, yv)L2(O,w) − (f, yv(logw)y)L2(O,w)

= −(fy, v)L2(O,w1) − (f, yv(logw)y)L2(O,w), ∀v ∈ C∞0 (O),

while the preceding variational identity gives

a(u, (yv)y) = −a1(uy, v)− (Bu, v)L2(O,w1)

− (f, yv(logw)y)L2(O,w), ∀v ∈ C∞0 (O).

Combining these variational identities yields (4.19), for all v ∈ C∞0 (O), and hence the variational
identity holds for all v ∈ H1

0 (O,w). �

Proposition 4.13 (Interior H2 regularity for a derivative of a solution with respect to y). Let
R < R0 be positive constants. Then there is a positive constant, C = C(A,R,R0), such that the
following holds. Let O j H be a domain and let U ⊂ V be as in (4.17), with V ⊂ O. Suppose
that f ∈ L2(O,w) and u ∈ H1(O,w) is a solution to the variational equation (2.11). If

f ∈W 1,2(V,w), u ∈ H2(V,w), and ux ∈ H1(V,w),

then uy ∈ H2(U,w1) and

‖uy‖H2(U,w1) ≤ C
(
‖f‖W 1,2(V,w) + ‖u‖L2(V,w)

)
. (4.20)
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Proof. The argument is similar to the proof of Proposition 4.11, except that the appeal to Proposi-
tion 4.9 is replaced by an appeal to Lemma 4.12 and we need to keep track of the different Sobolev
weights which now arise. Notice that u ∈ H1(O,w) by hypothesis, and so y1/2ux ∈ L2(V,w) or
equivalently ux ∈ L2(V,w1). Moreover, f ∈ H1(V,w), since f ∈W 1,2(V,w) by hypothesis. Also,

ux ∈ H1(V,w) by hypothesis, and so y1/2uxx ∈ L2(V,w) or, equivalently, uxx ∈ L2(V,w1). Fi-
nally, the hypothesis u ∈ H2(O,w) implies uy ∈ H1(V,w1). Therefore, Lemma 4.12, with V in
place of O, gives

a1(uy, v) = (fy, v)L2(V,w1) − (Bu, v)L2(V,w1), ∀v ∈ H1
0 (V ,w1).

Choose an auxiliary half-ball, U ′ as in (4.17), with U ′ = B+
R1

(z0) and U ⊂ U ′ ⊂ V , and fix

R1 = (R + R0)/2. We can apply Theorem 3.16 to the preceding equation in place of (2.11) to
deduce that uy ∈ H2(U,w1) and

‖uy‖H2(U,w1) ≤ C
(
‖fy −Bu‖L2(U ′,w1) + ‖uy‖L2(U ′,w1)

)
,

≤ C
(
‖fy‖L2(U ′,w1) + ‖ux‖L2(U ′,w1) + ‖uxx‖L2(U ′,w1) + ‖uy‖L2(U ′,w1)

)
,

where C = C(A,R,R1). But

‖Du‖L2(U ′,w1) ≤ ‖u‖H2(U ′,w1) ≤ C‖u‖H2(U ′,w),

where the first inequality follows from (3.9) and the second from (4.10), with C = C(R1). By
Theorem 3.16, since u obeys (2.11), we obtain

‖u‖H2(U ′,w) ≤ C
(
‖f‖L2(V,w) + ‖u‖L2(V,w)

)
,

where C = C(A,R1, R0). Finally,

‖uxx‖L2(U ′,w1) ≤ ‖ux‖H2(U ′,w1) ≤ C‖ux‖H2(U ′,w),

and applying Proposition 4.11, we obtain

‖ux‖H2(U ′,w) ≤ C
(
‖fx‖L2(V,w) + ‖f‖L2(V,w) + ‖u‖L2(V,w)

)
.

Combining the preceding estimates gives

‖uy‖H2(U,w1) ≤ C
(
‖fy‖L2(U ′,w1) + ‖fx‖L2(V,w) + ‖f‖L2(V,w) + ‖u‖L2(V,w)

)
≤ C

(
‖fy‖L2(V,w) + ‖fx‖L2(V,w) + ‖f‖L2(V,w) + ‖u‖L2(V,w)

)
,

and this completes the proof. �

4.4. Interior H 3 regularity. By combining Propositions 4.11 and 4.13, we obtain

Theorem 4.14 (Interior H 3 regularity). Let R < R0 be positive constants. Then there is a
positive constant, C = C(A,R,R0), such that the following holds. Let O j H be a domain and
let U ⊂ V be as in (4.17), with V ⊂ O. Suppose that f ∈ L2(O,w) and that u ∈ H1(O,w) is a
solution to the variational equation (2.11). If

f ∈W 1,2(V,w),

then u ∈H 3(U,w) and

‖u‖H 3(U,w) ≤ C
(
‖f‖W 1,2(V,w) + ‖u‖L2(V,w)

)
. (4.21)
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Proof. Since f ∈ L2(O,w), Theorem 3.16 implies that u ∈ H2(V,w). Choose an auxiliary half-
ball, U ′ as in (4.17), with U ′ = B+

R1
(z0) and U ⊂ U ′ ⊂ V , and fix R1 = (R + R0)/2. By

hypothesis, we have f ∈W 1,2(V,w) and so Proposition 4.11 yields ux ∈ H2(U ′,w) and

‖yuxxx‖L2(U ′,w) + ‖yuxxy‖L2(U ′,w) + ‖(1 + y)uxx‖L2(U ′,w) + ‖(1 + y)uxy‖L2(U ′,w)

≤ ‖ux‖H2(U ′,w)

≤ C
(
‖fx‖L2(V,w) + ‖f‖L2(V,w) + ‖u‖L2(V,w)

)
.

Because f ∈ W 1,2(U ′,w) by hypothesis, and u ∈ H2(U ′,w), and ux ∈ H1(U ′,w) (since ux ∈
H2(U ′,w)), then Proposition 4.13 gives uy ∈ H2(U,w1) and

‖yuyyy‖L2(U,w1) + ‖(1 + y)uyy‖L2(U,w1)

≤ ‖uy‖H2(U,w1)

≤ C
(
‖Df‖L2(V,w) + ‖f‖L2(V,w) + ‖u‖L2(V,w)

)
.

Because u ∈ H2(V,w) by hypothesis, we obtain u ∈H 3(U,w) from Definition 4.3 since

‖u‖2H 3(U,w) = ‖yuxxx‖2L2(U,w) + ‖yuxxy‖2L2(U,w) + ‖yuyyy‖2L2(U,w1)

+ ‖(1 + y)uxx‖2L2(U,w) + ‖(1 + y)uxy‖2L2(U,w) + ‖(1 + y)uyy‖2L2(U,w1)

+ ‖(1 + y)ux‖2L2(U,w) + ‖(1 + y)uy‖2L2(U,w) + ‖(1 + y)1/2u‖2L2(U,w),

and hence

‖u‖2H 3(U,w) ≤ ‖yuxxx‖
2
L2(U,w) + ‖yuxxy‖2L2(U,w) + ‖yuyyy‖2L2(U,w1)

+ ‖(1 + y)uxx‖2L2(U,w) + ‖(1 + y)uxy‖2L2(U,w) + ‖(1 + y)uyy‖2L2(U,w1)

+ ‖u‖2H2(U,w).

(4.22)

Since u obeys (2.11), Theorem 3.16 yields

‖u‖H2(U,w) ≤ C
(
‖f‖L2(V,w) + ‖u‖L2(V,w)

)
,

and combining the preceding estimates gives (4.21). �

4.5. Interior H k+2 regularity. We can iterate the preceding arguments, used to establish
u ∈ H 3(U,w) given u ∈ H2(V,w) and additional hypotheses on f , to give higher-order Sobolev
regularity, where U ⊂ V are as in (4.17) and V ⊂ O. We begin with the following combined
generalization of Lemmas 4.8 and 4.12.

Proposition 4.15 (Variational equation for higher-order derivatives of a solution with respect
to x and y). Let O j H be a domain with finite height17, let k ≥ 1 and 0 ≤ m ≤ k be integers,
let f ∈ L2(O,w), and suppose that u ∈ H1(O,w) satisfies the variational equation (2.11). If18

f ∈W k,2(O,w), u ∈H k+1(O,w), and Dk
xu ∈ H1(O,w) (m = 0, 1),

then Dk−m
x Dm

y u ∈ H1(O,w) obeys

am(Dk−m
x Dm

y u, v) = (Dk−m
x Dm

y f, v)L2(O,wm) −m(BDk−m
x Dm−1

y u, v)L2(O,wm), (4.23)

for all v ∈ H1
0 (O,wm).

17Proposition 4.15 should, of course, hold without a hypothesis that O has finite height, but its already technical
proof is simpler with this hypothesis included and we shall only apply the result to domains of finite height.

18The need for the auxiliary condition, Dk
xu ∈ H1(O,w), when m = 0, 1 is explained in Appendix A.5.
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Remark 4.16 (Need for the auxiliary regularity condition when m = 0, 1). The role of the auxiliary
regularity condition, Dk

xu ∈ H1(O,w), when m = 0 or 1 is explained in Appendix A.5.

Proof of Proposition 4.15. Lemma 4.8 implies that (4.23) holds when m = 0 and any k ≥ 1, while
Lemma 4.12 gives the conclusion when k = m = 1. So we may assume without loss of generality
that k ≥ 2 and m ≥ 1 in our proof of Proposition 4.15. Therefore, to establish (4.23), it suffices
to consider the inductive step (k,m − 1) =⇒ (k,m) (one extra derivative with respect to y),
assuming (4.23) holds with m replaced by m − 1. The argument for this inductive step follows
the pattern of proof of Lemma 4.12.

As usual, suppose first that u ∈ C∞(Ō) and v ∈ C∞0 (O). Then (yv)y ∈ C∞0 (O) too and

am−1(Dk−m
x Dm−1

y u, (yv)y)

= (Am−1D
k−m
x Dm−1

y u, (yv)y)L2(O,wm−1) (by Lemma A.3)

= −((Am−1D
k−m
x Dm−1

y u)y, yv)L2(O,wm−1) − (Am−1D
k−m
x Dm−1

y u, yv(logw)y)L2(O,wm−1)

= −(AmD
k−m
x Dm

y u, yv)L2(O,wm−1) − (BDk−m
x Dm−1

y u, yv)L2(O,wm−1)

− (Am−1D
k−m
x Dm−1

y u, yv(logw)y)L2(O,wm−1) (by (4.4)),

that is, by Lemma A.3 and (4.6),

am−1(Dk−m
x Dm−1

y u, (yv)y) = −am(Dk−m
x Dm

y u, v)− (BDk−m
x Dm−1

y u, v)L2(O,wm)

− (Am−1D
k−m
x Dm−1

y u, yv(logw)y)L2(O,wm−1),

∀v ∈ C∞0 (O).

(4.24)

We next establish the

Claim 4.17. The identity (4.24) continues to hold when the requirement u ∈ C∞(Ō) is relaxed
to u ∈H k+1(O,w) together with, when m = 1, Dk+1

x u ∈ L2(O,w1).

Proof. The terms in the right and left-hand sides of the identity (4.24) are well-defined when

Dk−m
x Dm−1

y u ∈ H1(O,wm−1), Dk−m
x Dm

y u ∈ H1(O,wm),

Dk+1−m
x Dm−1

y u, Dk+2−m
x Dm−1

y u ∈ L2(O,wm),

Dk−m
x Dm−1

y u ∈ H2(O,wm−1).

We consider each of the five preceding terms in turn. First, according to Definition 4.3, we have
that u ∈H k+1(O,w) implies

Dk−m
x Dm−1

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

Dk+1−m
x Dm−1

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

Dk−m
x Dm

y u ∈

{
L2(O,wm−1), m ≥ 2,

L2(O,w), m = 1.

Since L2(O,wm−2) ⊂ L2(O,wm−1) (any m ≥ 2) and L2(O,w) ⊂ L2(O,wm−1) (any m ≥ 1), then

Dk−m
x Dm−1

y u, y1/2Dk+1−m
x Dm−1

y u, y1/2Dk−m
x Dm

y u ∈ L2(O,wm−1), 1 ≤ m ≤ k,
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and the definition (2.2) of H1(O,wm−1) gives

u ∈H k+1(O,w) =⇒ Dk−m
x Dm−1

y u ∈ H1(O,wm−1), 1 ≤ m ≤ k.

Second, according to Definition 4.3, we see u ∈H k+1(O,w) implies

Dk−m
x Dm

y u ∈

{
L2(O,wm−1), m ≥ 2,

L2(O,w), m = 1,
,

yDk+1−m
x Dm

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

yDk−m
x Dm+1

y u ∈

{
L2(O,wm−1), m ≥ 2,

L2(O,w), m = 1,

that is,

Dk−m
x Dm

y u ∈ L2(O,wm−1), m ≥ 1,

Dk+1−m
x Dm

y u ∈

{
L2(O,wm), m ≥ 3,

L2(O,w2), m = 1, 2,

Dk−m
x Dm+1

y u ∈ L2(O,wm+1), m ≥ 1.

Therefore, using L2(O,wm−1) ⊂ L2(O,wm) (any m ≥ 1), we obtain

Dk−m
x Dm

y u, y1/2Dk+1−m
x Dm

y u, y1/2Dk−m
x Dm+1

y u ∈ L2(O,wm), 1 ≤ m ≤ k,

and the definition (2.2) of H1(O,wm) gives

u ∈H k+1(O,w) =⇒ Dk−m
x Dm

y u ∈ H1(O,wm), 1 ≤ m ≤ k.

Third, we have seen that u ∈H k+1(O,w) implies

Dk+1−m
x Dm−1

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

and so, using L2(O,wm−2) ⊂ L2(O,wm) (any m ≥ 2), we obtain

Dk+1−m
x Dm−1

y u ∈ L2(O,wm), 1 ≤ m ≤ k.
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For the fifth term, Dk−m
x Dm−1

y u (we shall consider the fourth term last), observe that u ∈
H k+1(O,w) implies

yDk+2−m
x Dm−1

y u ∈

{
L2(O,wm−3), m ≥ 4,

L2(O,w), m = 1, 2, 3,

yDk+1−m
x Dm

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

yDk−m
x Dm+1

y u ∈

{
L2(O,wm−1), m ≥ 2,

L2(O,w), m = 1,

Dk+1−m
x Dm−1

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2,

Dk−m
x Dm

y u ∈

{
L2(O,wm−1), m ≥ 2,

L2(O,w), m = 1,

Dk−m
x Dm−1

y u ∈

{
L2(O,wm−2), m ≥ 3,

L2(O,w), m = 1, 2.

Hence, from the definition (3.9) of H2(O,wm−1), we see that

Dk−m
x Dm−1

y u ∈ H2(O,wm−1), 1 ≤ m ≤ k.

Finally, considering the fourth term19, observe that for each v ∈ C∞0 (O), we may choose a
subdomain O ′ b O such that supp v ⊂ O ′ and ∂1O ′ is C1-orthogonal to ∂H in the sense of
Definition A.1. According to Theorem A.2, there is a sequence {un}n∈N ⊂ C∞(Ō ′) such that
un → u in H k+1(O ′,w) as n→∞ and hence, for each v ∈ C∞0 (O) with supp v ⊂ O ′, we have

(Dk+2−m
x Dm−1

y un, v)L2(O,wm) → (Dk+2−m
x Dm−1

y u, v)L2(O,wm) as n→∞,

since, for all n ∈ N, ∣∣∣(Dk+2−m
x Dm−1

y (un − u), v)L2(O,wm)

∣∣∣
=
∣∣∣(ymDk+2−m

x Dm−1
y (un − u), v)L2(O,w)

∣∣∣
≤ ‖ymDk+2−m

x Dm−1
y (un − u)‖L2(O,w)‖v‖L2(O,w)

≤ C‖un − u‖H k+1(O,w)‖v‖L2(O,w),

where C = C(height(O)), noting that u ∈H k+1(O,w) implies, by Definition 4.3,

yDk+2−m
x Dm−1

y u ∈

{
L2(O,wm−3), m ≥ 4,

L2(O,w), m = 1, 2, 3,

19As explained in Appendix A.5, it is only in the case m = 1 that Dk+2−m
x Dm−1

y u ∈ L2(O,wm) is not implied by

u ∈H k+1(O,w) and this case is explicitly covered by the additional hypothesis, Dk
xu ∈ H1(O,w), which ensures,

by definition (2.2) of H1(O,w), that y1/2Dk+1
x u ∈ L2(O,w) or, equivalently, Dk+1

x u ∈ L2(O,w1).
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and, for C = C(height(O)),

‖ymDk+2−m
x Dm−1

y (un − u)‖L2(O,w) = ‖y3+(m−3)/2Dk+2−m
x Dm−1

y (un − u)‖L2(O,wm−3)

≤ C‖yDk+2−m
x Dm−1

y (un − u)‖L2(O,wm−3)

≤ C‖un − u‖H k+1(O,w), m ≥ 4,

‖ymDk+2−m
x Dm−1

y (un − u)‖L2(O,w) = ‖y1+(m−1)Dk+2−m
x Dm−1

y (un − u)‖L2(O,w)

≤ ‖yDk+2−m
x Dm−1

y (un − u)‖L2(O,w)

≤ C‖un − u‖H k+1(O,w), m = 1, 2, 3.

Therefore, by approximation, the identity (4.24) continues to hold for u ∈ H k+1(O,w) and,
when m = 1, that Dk+1

x u ∈ L2(O,w1). This completes the proof of Claim 4.17. �

By induction on m, the identity (4.23) holds for (k − 1,m − 1) in place of (k,m), and so for
all v ∈ C∞0 (O) and thus (yv)y ∈ C∞0 (O), we have

am−1(Dk−m
x Dm−1

y u, (yv)y)

= (Dk−m
x Dm−1

y f, (yv)y)L2(O,wm−1) − (m− 1)(BDk−m
x Dm−2

y u, (yv)y)L2(O,wm−1).

Therefore, integrating by parts with respect to y on the right-hand side of the preceding identity
and applying (4.6) yields

am−1(Dk−m
x Dm−1

y u, (yv)y)

= −(Dk−m
x Dm

y f, v)L2(O,wm) + (m− 1)(BDk−m
x Dm−1

y u, v)L2(O,wm)

− (Dk−m
x Dm−1

y f, yv(logw)y)L2(O,wm−1) + (m− 1)(BDk−m
x Dm−2

y u, yv(logw)y)L2(O,wm−1),

∀v ∈ C∞0 (O).

But Dk−m
x Dm−1

y f ∈ L2(O,wm−1), since f ∈W k,2(O,w) hypothesis, and Au = f a.e. on O yields

Dk−m
x Dm−1

y f = Dk−m
x Dm−1

y Au a.e. on O

= Am−1D
k−m
x Dm−1

y u+ (m− 1)BDk−m
x Dm−2

y u a.e. on O (by (4.4)),

noting that u ∈ H k+1(O,w) by hypothesis and so (by an analysis very similar to that in the
proof of Claim 4.17),

Am−1D
k−m
x Dm−1

y u, BDk−m
x Dm−2

y u ∈ L2(O,wm−1).

Substituting this identity for Dk−m
x Dm−1

y f into the preceding variational equation yields

am−1(Dk−m
x Dm−1

y u, (yv)y)

= −(Dk−m
x Dm

y f, v)L2(O,wm) + (m− 1)(BDk−m
x Dm−1

y u, v)L2(O,wm)

− (Am−1D
k−m
x Dm−1

y u, yv(logw)y)L2(O,wm−1), ∀v ∈ C∞0 (O).

(4.25)

Combining the variational equations (4.24) and (4.25) yields

am(Dk−m
x Dm

y u, v) = (Dk−m
x Dm

y f, v)L2(O,wm) −m(BDk−m
x Dm−1

y u, v)L2(O,wm), v ∈ C∞0 (O),

and hence (4.23) holds for all v ∈ H1
0 (O,w). This completes the proof of Proposition 4.15. �

We now show that Dk−m
x Dm

y u ∈ H2(U,wm), where U b O is as in (4.17), for any k ≥ 1 and
0 ≤ m ≤ k, and provide estimates for these derivatives analogous to those in Propositions 4.11
and Propositions 4.13.
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Proposition 4.18 (Interior H2 regularity for higher-order derivatives of a solution with respect
to x and y). Let R < R0 be positive constants and let k ≥ 1 and 0 ≤ m ≤ k be integers. Then
there is a positive constant, C = C(A, k,m,R,R0), such that the following holds. Let O j H be a
domain and let U ⊂ V be as in (4.17), with V ⊂ O. Suppose that f ∈ L2(O,w) and u ∈ H1(O,w)
is a solution to the variational equation (2.11). If

f ∈W k,2(V,w) and u ∈ H2(V,w),

then

Dk−m
x Dm

y u ∈ H2(U,wm),

and

‖Dk−m
x Dm

y u‖H2(U,wm) ≤ C
(
‖f‖Wk,2(V,w) + ‖u‖L2(V,w)

)
. (4.26)

Proof. Proposition 4.11 yields the conclusion for any k ≥ 1, when m = 0, while Proposition 4.13
gives the conclusion when k = m = 1. Therefore, we may assume that k ≥ 2 and m ≥ 1.

By Proposition 4.15, we see that Dk−m
x Dm

y u ∈ H1(O,w) obeys (4.23), that is

am(Dk−m
x Dm

y u, v) = (Dk−m
x Dm

y f, v)L2(V,wm) −m(BDk−m
x Dm−1

y u, v)L2(V,wm),

for all v ∈ H1
0 (V ,wm), provided (in addition to f ∈W k,2(V,w))

u ∈H k+1(V,w),

Dk
xu ∈ H1(O,w) when m = 0, 1.

The conditionDk
xu ∈ H1(O,w) follows from Proposition 4.11, since f ∈W k,2(V,w) by hypothesis.

Thus, it remains to verify that u ∈ H k+1(V,w) and justify this application of Proposition
4.15, noting that, by induction on k, we may assume Proposition 4.18 holds for k replaced by
k − 1 and so we may assume u ∈H k(V,w).

Claim 4.19. u ∈H k+1(V,w), for k ≥ 2.

Proof. According to (4.11), we have

‖v‖2H k+1(U,w) ≤ ‖yD
k+1
x u‖2L2(U,w) + ‖yDk

xDyu‖2L2(U,w) + ‖yDk−1
x D2

yu‖2L2(U,w)

+
k−1∑
m=1

‖yDk−1−m
x Dm+2

y u‖2L2(U,wm)

+ ‖(1 + y)Dk
xu‖2L2(U,w) + ‖(1 + y)Dk−1

x Dyu‖2L2(U,w)

+
k−1∑
m=1

‖(1 + y)Dk−1−m
x Dm+1

y u‖2L2(U,wm) + ‖v‖2H k(U,w),

and so we may conclude that u ∈H k+1(U,w) if the terms on the right hand side are finite.
By induction on k, Proposition 4.18 gives Dk−1−m

x Dm
y u ∈ H2(U,wm), for 0 ≤ m ≤ k − 1, and

‖Dk−1−m
x Dm

y u‖H2(U,wm) ≤ C
(
‖f‖Wk−1,2(V,w) + ‖u‖L2(V,w)

)
,
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where C = C(A, k,m,R,R0). The preceding estimate yields

‖yDk+1
x u‖2L2(U,w) + ‖yDk

xDyu‖2L2(U,w) + ‖yDk−1
x D2

yu‖2L2(U,w)

+

k−1∑
m=1

‖yDk−1−m
x Dm+2

y u‖2L2(U,wm)

+ ‖(1 + y)Dk
xu‖2L2(U,w) + ‖(1 + y)Dk−1

x Dyu‖2L2(U,w)

+

k−1∑
m=1

‖(1 + y)Dk−1−m
x Dm+1

y u‖2L2(U,wm)

≤ C
(
‖f‖Wk−1,2(V,w) + ‖u‖L2(V,w)

)2
.

Combining the preceding estimates yields u ∈ H k+1(U,w), for k ≥ 2, and completes the proof
of Claim 4.19. �

We now proceed to verify the estimate (4.26). Because Dk−m
x Dm

y f ∈ L2(V,wm) by hypothesis,

we can apply Theorem 3.16 to (4.23) and conclude that Dk−m
x Dm

y u ∈ H2(U,wm) and

‖Dk−m
x Dm

y u‖H2(U,wm) ≤ C
(
‖Dk−m

x Dm
y f‖L2(U ′,wm) + ‖Dk+1−m

x Dm−1
y u‖L2(U ′,wm)

+ ‖Dk+2−m
x Dm−1

y u‖L2(U ′,wm) + ‖Dk−m
x Dm

y u‖L2(U ′,wm)

)
,

where U ′ is as in (4.17), with U ′ = B+
R1

(z0) and U ⊂ U ′ ⊂ V and R1 = (R + R0)/2, and

C = C(A,R,R1).
We now estimate the terms on the right-hand side of the preceding inequality. Observe that

‖Dk+1−m
x Dm−1

y u‖L2(U ′,wm) ≤ ‖Dk−m
x Dm−1

y u‖H2(U ′,wm) ≤ C‖Dk−m
x Dm−1

y u‖H2(U ′,wm−1),

where the first inequality follows from (3.9) and the second from (4.10), with C = C(R1). By
induction on k and m, we may assume that Proposition 4.18 holds for k − 1 in place of k and

m− 1 in place of m and so Dk−m
x Dm−1

y u = D
k−1−(m−1)
x Dm−1

y u ∈ H2(U ′,wm−1) with

‖Dk−m
x Dm−1

y u‖H2(U ′,wm−1) ≤ C
(
‖f‖Wk−1,2(V,w) + ‖u‖L2(V,w)

)
,

where C = C(A, k,R1, R0). Similarly, observe that

‖Dk−m
x Dm

y u‖L2(U ′,wm) ≤ ‖Dk−m
x Dm−1

y u‖H2(U ′,wm) ≤ C‖Dk−m
x Dm−1

y u‖H2(U ′,wm−1),

where the last term is estimated above. Finally, we notice that

‖Dk+2−m
x Dm−1

y u‖L2(U ′,wm) ≤ ‖Dk+1−m
x Dm−1

y u‖H2(U ′,wm) ≤ C‖Dk+1−m
x Dm−1

y u‖H2(U ′,wm−1),

where C = C(R1). For a given k ≥ 2, we may assume by induction on m that Proposition 4.18
holds for m− 1 in place of m and so

Dk−(m−1)
x Dm−1

y u = Dk+1−m
x Dm−1

y u ∈ H2(U ′,wm−1),

with

‖Dk+1−m
x Dm−1

y u‖H2(U ′,wm−1) ≤ C
(
‖f‖Wk,2(V,w) + ‖u‖L2(V,w)

)
,

where C = C(A, k,m,R1, R0). Combining the preceding estimates gives (4.26). �

We can now combine our results for higher-order derivatives with respect to x and y to prove
the extension, Theorem 1.2, of Theorem 4.14 from the case k = 1 to k ≥ 1.
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Proof of Theorem 1.2. When k = 0, the conclusion is given by Theorem 3.16 while if k = 1, the
conclusion follows from Theorem 4.14, so we may assume that k ≥ 2. According to (4.11), we
have

‖v‖2H k+2(U,w) ≤ ‖yD
k+2
x u‖2L2(U,w) + ‖yDk+1

x Dyu‖2L2(U,w) + ‖yDk
xD

2
yu‖2L2(U,w)

+
k∑

m=1

‖yDk−m
x Dm+2

y u‖2L2(U,wm)

+ ‖(1 + y)Dk+1
x u‖2L2(U,w) + ‖(1 + y)Dk

xDyu‖2L2(U,w)

+
k∑

m=1

‖(1 + y)Dk−m
x Dm+1

y u‖2L2(U,wm)

+ ‖v‖2H k+1(U,w),

and so we may conclude that u ∈H k+2(U,w) if the terms on the right hand side are finite.
By induction on k, we may assume that Theorem 1.2 holds for k − 1 in place of k and so

u ∈H k+1(U,w) and

‖u‖H k+1(U,w) ≤ C
(
‖f‖Wk−1,2(V,w) + ‖u‖L2(V,w)

)
.

Moreover, Proposition 4.18 gives Dk−m
x Dm

y u ∈ H2(U,wm), for 0 ≤ m ≤ k, and

‖Dk−m
x Dm

y u‖H2(U,wm) ≤ C
(
‖f‖Wk,2(V,w) + ‖u‖L2(V,w)

)
,

where C = C(A, k,m,R,R0). The preceding estimate yields

‖yDk+2
x u‖2L2(U,w) + ‖yDk+1

x Dyu‖2L2(U,w) + ‖yDk
xD

2
yu‖2L2(U,w)

+
k∑

m=1

‖yDk−m
x Dm+2

y u‖2L2(U,wm)

+ ‖(1 + y)Dk+1
x u‖2L2(U,w) + ‖(1 + y)Dk

xDyu‖2L2(U,w)

+
k∑

m=1

‖(1 + y)Dk−m
x Dm+1

y u‖2L2(U,wm)

≤ C
(
‖f‖Wk,2(V,w) + ‖u‖L2(V,w)

)2
.

Combining the preceding estimates yields u ∈H k+2(U,w) and (1.5) for k ≥ 2. �

Next, we have

Proof of Theorem 1.3. For any z1 ∈ O, there is a constant R0 > 0 and a ball BR0(z1) such that
BR0(z1) b O and [18, Theorem 8.10] implies that u ∈W k+2,2(BR0/2(z1)) and

‖u‖Wk+2,2(BR0/2
(z1)) ≤ C

(
‖f‖Wk,2(BR0

(z1)) + ‖u‖L2(BR0
(z1))

)
, (4.27)

for some positive constant, C = C(A, k,R0). If z0 ∈ ∂0O, there is a constant R0 > 0 such
that H ∩ BR0(z0) ⊂ O (since ∂0O is defined to be the interior of ∂H ∩ ∂O) and Theorem 1.2
implies that u ∈ H k+2,2(B+

R0/2
(z0),w) and that inequality (1.5) holds. Hence, by combining

these observations, u ∈H k+2,2
loc (O,w).



44 P. FEEHAN AND C. POP

Recalling that dist(∂O ′, ∂O ′′) ≥ d1 > 0 by hypothesis, we choose R0 = d1/2. There are
sequences of points, {z0,i} ⊂ ∂0O ′ with H∩BR0(z0,j) ⊂ O ′′ and {z1,j} ⊂ O ′ with BR0(z1,j) b O ′′,
such that

Ō ′ ⊂
⋃
i,j

B+
R0/2

(z0,i) ∪BR0/2(z1,j) ⊂ O ′′.

The preceding covering of O ′ can be chosen to be uniformly locally finite (for example, by locating
the ball centers on a rectangular grid with square cells of width d1) with constant20 N = 4, in
the sense that each open ball in the covering intersects at most 4 other balls in the covering.

The definition (2.5) of the weight, w, and the definitions (2.1), (4.8), and (4.12) of the L2(O,w),
H k+2(O,w), and W k,2(O,w) norms, respectively, and the estimate (4.27) combine to give21

‖u‖H k+2(BR0/2
(z1,j),w) ≤ Ce−

γ
2
|x1,j |‖u‖Wk+2,2(BR0/2

(z1,j))

≤ Ce−
γ
2
|x1,j |

(
‖f‖Wk,2(BR0

(z1,j)) + ‖u‖L2(BR0
(z1,j))

)
(by (4.27))

≤ Ce−
γ
2
|x1,j |e

γ
2
|x1,j |

(
‖f‖Wk,2(BR0

(z1,j),w) + ‖u‖L2(BR0
(z1,j),w)

)
,

where z1,j = (x1,j , y1,j) and C = C(A, d1, k,Λ), recalling that height(O ′′) ≤ Λ by hypothesis, that
is

‖u‖H k+2(BR0/2
(z1,j),w) ≤ C

(
‖f‖Wk,2(BR0

(z1,j),w) + ‖u‖L2(BR0
(z1,j),w)

)
. (4.28)

Therefore, we obtain the inequality (1.6) from (1.5) and (4.28) and the uniform local finiteness
of the open covering of O ′. �

Similarly, we obtain

Proof of Theorem 1.5. Uniqueness of a solution u ∈ H1(O,w) to the variational inequality (2.11)
with boundary condition, u− g ∈ H1

0 (O,w) defined by g ∈ H1(O,w), follows from [11, Theorem
8.15], noting that f ∈ L∞(O,w) by hypothesis and that L∞(O) ⊂ L2(O,w) since vol(O,w) <∞,
while (1 + y)g ∈ W 2,∞(O) implies g ∈ H1(O,w). When g ≡ 0 on O, existence of a solution
u ∈ H1(O,w) to the variational inequality (2.11) follows from [3, Theorem 3.16], again noting
that f ∈ L∞(O) by hypothesis. For a non-zero g with (1+y)g ∈W 2,∞(O), we have g ∈ H2(O,w)
and

a(g, v) = (Ag, v)L2(O,w), ∀v ∈ H1
0 (O,w),

by Lemma A.3. By replacing u ∈ H1(O,w) with ũ := u − g ∈ H1
0 (O,w) and noting that

f̃ := f −Ag ∈ L∞(O), existence of a solution ũ ∈ H1
0 (O,w) to the variational inequality,

a(ũ, v) = (f̃ , v)L2(O,w), ∀v ∈ H1
0 (O,w),

again follows from [3, Theorem 3.16]. Therefore, we obtain existence of a solution u ∈ H1(O,w)
to the variational inequality (2.11) with boundary condition, u − g ∈ H1

0 (O,w). The facts that

u ∈H k+2
loc (O) and u obeys (1.6) follow from Theorem 1.3. �

20In higher dimensions, the constant N(d) depends on the dimension, d, where O ⊂ H and H = Rd−1 × R+.
21See the proof of Proposition 5.1 for a similar argument with additional details.
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5. Higher-order Hölder regularity for solutions to the variational equation

In this section, we extend the Cαs (O)-regularity results from [12] for solutions, u ∈ H1(O,w),

to the variational equation (2.11) to Ck,αs (O)-regularity, for any integer k ≥ 1. We begin in
§5.1 by proving Cαs (O)-regularity (Theorem 5.4) for the gradient of a solution, u ∈ H1(O,w),
to the variational equation (2.11). In §5.2, we establish Cαs (O)-regularity (Proposition 5.6) for
higher-order derivatives of a solution, u ∈ H1(O,w), concluding with a proof of one of our main

results, Theorem 1.6, giving Ck,αs (O)-regularity of a solution, u ∈ H1(O,w). We conclude in §5.3
with proofs of our remaining principal results, namely, Corollary 1.7, Theorem 1.8, Corollary 1.9,
Theorem 1.11, and Corollaries 1.15 and 1.16.

5.1. Hölder regularity for first-order derivatives of solutions to the variational equa-
tion. We begin with

Proposition 5.1 (Interior Cαs Hölder continuity of ux for a solution u to the variational equation).
Let p > max{4, 2 + β} and let R0 be a positive constant. Then there are positive constants,
R1 = R1(R0) < R0, and C = C(A, p,R0), and α = α(A, p,R0) ∈ (0, 1) such that the following
holds. Let O j H be a domain. If f ∈ L2(O,w), and u ∈ H1(O,w) satisfies the variational
equation (2.11), and z0 ∈ ∂0O is such that

BR0(z0) ∩H ⊂ O,

and

fx ∈ Lp(B+
R0

(z0), yβ−1),

then

ux ∈ Cαs (B̄+
R1

(z0)),

and

‖ux‖Cαs (B̄+
R1

(z0)) ≤
(
‖fx‖Lp(B+

R0
(z0),yβ−1) + ‖f‖L2(B+

R0
(z0),yβ−1)

+ ‖u‖L2(B+
R0

(z0),yβ−1)

)
.

(5.1)

Proof. By hypothesis, fx ∈ L2(B+
R0

(z0),w) since p > 2 and so Proposition 4.9 implies that

ux ∈ H1(B+
R2

(z0),w), for any R2 = R2(R0), to be determined, in the range 0 < R2 < R0 and ux
obeys

a(ux, v) = (fx, v)L2(B+
R2

(z0),w), ∀v ∈ H1
0 (B+

R2
(z0),w),

and

‖ux‖H1(B+
R2

(z0),w) ≤ C
(
‖fx‖L2(B+

R0
(z0),w) + ‖f‖L2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

)
.

The conclusion ux ∈ Cαs (B̄+
R1

(z0)) and estimate, with C = C(A, p,R0), and α = α(A, p,R0) ∈
(0, 1), and R1 = R1(R2) < R2,

‖ux‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖fx‖Lp(B+

R2
(z0),yβ−1) + ‖ux‖L2(B+

R2
(z0),yβ−1)

)
,
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follow by applying Theorem 2.12 to the variational equation for ux on B+
R2

(z0). By definition

(2.5) of w, we have

‖ux‖L2(B+
R2

(z0),yβ−1) =

(∫
B+
R0

(z0)
u2
x y

β−1 dx dy

)1/2

≤ e
1
2
γ
√

1+max{(x0+R2)2,(x0−R2)2}+ 1
2
µR2

(∫
B+
R0

(z0)
u2
x y

β−1e−γ
√

1+x2−µy dx dy

)1/2

≤ e
1
2
γ
√

1+(|x0|+R2)2+ 1
2
µR2‖ux‖H1(B+

R2
(z0),w)

≤ Ce
1
2
γ|x0|‖ux‖H1(B+

R2
(z0),w),

for C = C(A,R2). Finally, we note that

‖fx‖L2(B+
R0

(z0),w) =

(∫
B+
R0

(z0)
f2
x y

β−1e−γ
√

1+x2−µy dx dy

)1/2

≤ e−
1
2
γ
√

1+min{(x0+R2)2,(x0−R2)2}

(∫
B+
R0

(z0)
f2
x y

β−1 dx dy

)1/2

≤ Ce−
1
2
γ
√

1+(|x0|−R2)2‖fx‖Lp(B+
R0

(z0),yβ−1)

≤ Ce−
1
2
γ|x0|‖fx‖Lp(B+

R0
(z0),yβ−1),

where C = C(p,R0, R2, β), and similarly for the terms ‖f‖L2(B+
R0

(z0),w) and ‖u‖L2(B+
R0

(z0),w).

We may choose R2 = R0/2 and combining the preceding inequalities yields (5.1), with C =
C(A, p,R0). �

Next, we have

Proposition 5.2 (Interior Cαs Hölder continuity of uy for a solution u to the variational equation).
Let p > max{4, 3 + β} and let R0 be a positive constant. Then there are positive constants,
R1 = R1(R0) < R0, and C = C(A, p,R0), and α = α(A, p,R0) ∈ (0, 1) such that the following
holds. Let O j H be a domain. If f ∈ L2(O,w), and u ∈ H1(O,w) satisfies the variational
equation (2.11), and z0 ∈ ∂0O is such that

BR0(z0) ∩H ⊂ O,

and f obeys

fx, fy, fxx ∈ Lp(B+
R0

(z0), yβ−1), (5.2)

then

uy ∈ Cαs (B̄+
R1

(z0)),

and

‖uy‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖fxx‖Lp(B+

R0
(z0),yβ−1) + ‖f‖W 1,p(B+

R0
(z0),yβ−1)

+ ‖u‖L2(B+
R0

(z0),yβ−1)

)
.

(5.3)
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Proof. Since p > 2 and so f ∈ W 1,2(B+
R0

(z0), yβ−1) = W 1,2(B+
R0

(z0),w) by hypothesis, The-

orem 4.14 ensures that u ∈ H 3(B+
R0/2

(z0),w). By Definition 4.3, we therefore have u ∈
H2(B+

R0/2
(z0),w) and uxx ∈ L2(B+

R0/2
(z0),w1) and so Lemma 4.12 implies that

uy ∈ H1(B+
R0/2

(z0),w1),

and uy obeys the variational equation,

a1(uy, v) = (fy −Bu, v)L2(B+
R0/2

(z0),w1), ∀v ∈ H1
0 (B+

R0/2
(z0),w1).

We note that the preceding variational equation continues to hold on B+
R2

(z0), for any R2 in

the range 0 < R2 ≤ R0/2 and still to be determined. To apply Theorem 2.12 to the preceding
variational equation and conclude that uy ∈ Cαs (B̄+

R1
(z0)) for some R1 = R1(R2) < R2 and, for a

positive constant C = C(A, p,R2),

‖uy‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖fy‖Lp(B+

R2
(z0),yβ) + ‖ux‖Lp(B+

R2
(z0),yβ) + ‖uxx‖Lp(B+

R2
(z0),yβ)

+ ‖uy‖L2(B+
R2

(z0),yβ)

)
,

(5.4)

we need fy − Bu to obey the integrability condition (2.13) obeyed by f , with β + 1 and R2 in
place of β and R0, respectively. In other words, u must obey

ux, uxx ∈ Lp(B+
R2

(z0), yβ), (5.5)

while our hypothesis (5.2) on f ensures fy ∈ Lp(B+
R2

(z0), yβ−1) ⊂ Lp(B+
R2

(z0), yβ). For the

condition (5.5) on u, it is enough to show that ux, uxx ∈ L∞(B+
R2

(z0)).

Since fx, fxx ∈ L2(B+
R0

(z0), yβ−1) by hypothesis, Proposition 4.10 (with k = 1, 2) implies that

ux, uxx ∈ H1
0 (B+

R0/2
(z0),w) and that they obey

a(ux, v) = (fx, v)L2(B+
R0/2

(z0),w),

a(uxx, v) = (fxx, v)L2(B+
R0/2

(z0),w), ∀v ∈ H1
0 (B+

R0/2
(z0),w).

Also, because fx, fxx ∈ Lp(B+
R0

(z0), yβ−1) by hypothesis, we can apply Theorem 2.5 to the pre-

ceding variational equations to give an R3 = R3(R0) < R0/2 such that ux, uxx ∈ L∞(B+
R3

(z0))
and

‖ux‖L∞(B+
R3

(z0)) ≤ C
(
‖fx‖Lp(B+

R0/2
(z0),yβ−1) + ‖ux‖L2(B+

R0/2
(z0),yβ−1)

)
, (5.6)

‖uxx‖L∞(B+
R3

(z0)) ≤ C
(
‖fxx‖Lp(B+

R0/2
(z0),yβ−1) + ‖uxx‖L2(B+

R0/2
(z0),yβ−1)

)
. (5.7)

We now choose R2 = R3 and observe that condition (5.5) holds and the estimate (5.4) is justified
with

‖ux‖Lp(B+
R3

(z0),yβ−1) ≤ C‖ux‖L∞(B+
R3

(z0)),

‖uxx‖Lp(B+
R3

(z0),yβ−1) ≤ C‖uxx‖L∞(B+
R3

(z0)),
(5.8)
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where C = C(β, p,R3) = (
∫
B+
R3

(z0) y
β−1 dx dy)1/p. The definition (4.8) of H 3(O,w) and the

definition (2.5) of w imply that

‖uy‖L2(B+
R0/2

(z0),yβ−1) + ‖ux‖L2(B+
R0/2

(z0),yβ−1) + ‖uxx‖L2(B+
R0/2

(z0),yβ−1)

≤ Ce
γ
2
|x0|
(
‖uy‖L2(B+

R0/2
(z0),w) + ‖ux‖L2(B+

R0/2
(z0),w) + ‖uxx‖L2(B+

R0/2
(z0),w)

)
≤ Ce

γ
2
|x0|‖u‖H 3(B+

R0/2
(z0),w),

where C = C(A,R0) and the factors, e
γ
2
|x0|, arise just as in the proof of Proposition 5.1. Thus,

by Theorem 4.14,

‖uy‖L2(B+
R0/2

(z0),yβ−1) + ‖ux‖L2(B+
R0/2

(z0),yβ−1) + ‖uxx‖L2(B+
R0/2

(z0),yβ−1)

≤ Ce
γ
2
|x0|
(
‖f‖W 1,2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

)
,

≤ Ce
γ
2
|x0|e−

γ
2
|x0|
(
‖f‖W 1,2(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

≤ C
(
‖f‖W 1,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

where C = C(A, p,R0)) and the factors, e−
γ
2
|x0|, arise just as in the proof of Proposition 5.1. The

estimate (5.3) is obtained by combining the preceding inequality with (5.4), (5.6), and (5.7), and
(5.8). �

We may combine Propositions 5.1 and 5.2 to give

Proposition 5.3 (Interior Cαs Hölder continuity of Du for a solution u to the variational equa-
tion). Let p > max{4, 3 +β} and let R0 be a positive constant. Then there are positive constants,
R1 = R1(R0) < R0 and C = C(A, p,R0) and α = α(A, p,R0) ∈ (0, 1) such that the following
holds. Let O j H be a domain. If f ∈ L2(O,w) and u ∈ H1(O,w) satisfies the variational
equation (2.11), and z0 ∈ ∂0O is such that

BR0(z0) ∩H ⊂ O,

and f obeys (5.2), then

ux, uy ∈ Cαs (B̄+
R1

(z0)),

and

‖Du‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖fxx‖Lp(B+

R0
(z0),yβ−1) + ‖f‖W 1,p(B+

R0
(z0),yβ−1)

+ ‖u‖L2(B+
R0

(z0),yβ−1)

)
.

(5.9)

Proof. The conclusion ux, uy ∈ Cαs (B̄+
R1

(z0)) and estimate (5.9) follow from Propositions 5.1 and
5.2. �

Finally, we may combine Theorems 2.12 and 4.14 and Proposition 5.3 to give

Theorem 5.4 (Interior C1,α
s Hölder continuity for a solution u to the variational equation).

Let p > max{4, 3 + β} and let R0 be a positive constant. Then there are positive constants,
R1 = R1(R0) < R0 and C = C(A, p,R0) and α = α(A, p,R0) ∈ (0, 1) such that the following
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holds. Let O j H be a domain. If f ∈ L2(O,w), and u ∈ H1(O,w) satisfies the variational
equation (2.11), and z0 ∈ ∂0O is such that

BR0(z0) ∩H ⊂ O,

and f obeys (2.13) and (5.2), then

u ∈ C1,α
s (B̄+

R1
(z0)),

and

‖u‖
C1,α
s (B̄+

R1
(z0))
≤ C

(
‖fxx‖Lp(B+

R0
(z0),yβ−1) + ‖f‖W 1,p(B+

R0
(z0),yβ−1)

+ ‖u‖L2(B+
R0

(z0),yβ−1)

)
.

(5.10)

Proof. Since f, fx, fy ∈ Lp(B+
R0

(z0), yβ−1) ⊂ L2(B+
R0

(z0),w), Theorem 4.14 implies that u ∈
H 3(B+

R2
(z0),w) for any 0 < R2 < R0. By applying Theorem 2.12 and Proposition 5.3, with

R2 in place of R0, we obtain u ∈ C1,α
s (B̄+

R1
(z0)) for some R1 < R2 and, say, R2 = R0/2. The

inequality (5.10) is obtained by combining (2.24) and (5.9). �

5.2. Hölder regularity for higher-order derivatives of solutions to the variational equa-
tion. We first give an extension of Proposition 5.1 from the case k = 1 to arbitrary k ≥ 1.

Proposition 5.5 (Interior Cαs Hölder continuity of higher-order derivatives with respect to x
for a solution to the variational equation). Let p > max{4, 2 + β}, let R0 be a positive constant,
and let k ≥ 1 be an integer. Then there are positive constants, R1 = R1(R0) < R0, and C =
C(A, k, p,R0), and α = α(A, p,R0) ∈ (0, 1) such that the following holds. Let O j H be a domain.
If f ∈ L2(O,w), and u ∈ H1(O,w) satisfies the variational equation (2.11), and z0 ∈ ∂0O is such
that

BR0(z0) ∩H ⊂ O,

and

Dj
xf ∈ Lp(B+

R0
(z0), yβ−1), 1 ≤ j ≤ k,

then

Dk
xu ∈ Cαs (B̄+

R1
(z0)),

and, if z0 = (x0, 0),

‖Dk
xu‖Cαs (B̄+

R1
(z0)) ≤ C

 k∑
j=0

‖Dj
xf‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

 . (5.11)

Proof. The argument is similar to the proof of Proposition 5.1. By hypothesis, Dj
xf ∈ L2(B+

R0
(z0),w),

1 ≤ j ≤ k, since p > 2 and so Proposition 4.10 implies that Dk
xu ∈ H1(B+

R2
(z0),w), for any

R2 = R2(R0), to be determined, in the range 0 < R2 < R0, and that Dk
xu obeys

a(Dk
xu, v) = (Dk

xf, v)L2(B+
R2

(z0),w), ∀v ∈ H1
0 (B+

R2
(z0),w),

and, for C = C(A, k,R0),

‖Dk
xu‖H1(B+

R2
(z0),w) ≤ C

 k∑
j=0

‖Dj
xf‖L2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

 .
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The conclusion Dk
xu ∈ Cαs (B̄+

R1
(z0)) and estimate, with C = C(A, p,R0), and α = α(A, p,R0) ∈

(0, 1), and R1 = R1(R2) < R2 (recall that R2 = R2(R0)),

‖Dk
xu‖Cαs (B̄+

R1
(z0)) ≤ C

(
‖Dk

xf‖Lp(B+
R2

(z0),yβ−1) + ‖Dk
xu‖L2(B+

R2
(z0),yβ−1)

)
,

follow by applying Theorem 2.12 to the variational equation for Dk
xu on B+

R2
(z0). As in the proof

of Proposition 5.1, we have

‖Dk
xu‖L2(B+

R2
(z0),yβ−1) ≤ Ce

γ
2
|x0|‖Dk

xu‖L2(B+
R2

(z0),w)

≤ Ce
γ
2
|x0|‖Dk

xu‖H1(B+
R2

(z0),w),

where C = C(A,R2). We may choose R2 = R0/2 and observe that, by combining the preceding

inequalities, we obtain (5.11), with C = C(A, k, p,R0), noting that the factor, e
γ
2
|x0|, cancels just

as in the proof of Proposition 5.1. �

The extension of Propositions 5.5 and 5.2 to the case of derivatives of the form Dk−m
x Dm

y u
when 1 ≤ m ≤ k is best illustrated by an example when k = 2 and m = 0, 1, 2. The case
k = 2,m = 0 is given by Proposition 5.5, so

‖uxx‖Cαs (B̄+
R1

(z0)) ≤ C

 2∑
j=0

‖Dj
xf‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

 .

For k = 2,m = 1, the pattern of proof of Proposition 5.2 shows that a Cαs estimate of uxy
requires an Lp-bound on fxy, uxx, and uxxx, thus an additional L∞-bound on uxxx, and hence an
additional Lp bound on fxxx, to give

‖uxy‖Cαs (B̄+
R1

(z0)) ≤ C

(
3∑
i=0

‖Di
xf‖Lp(B+

R0
(z0),yβ−1) + ‖fxy‖Lp(B+

R0
(z0),yβ−1)

+ ‖u‖L2(B+
R0

(z0),yβ−1)

)
,

and thus the following will suffice,

‖uxy‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖W 3,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
.

For k = 2,m = 2, the pattern of proof of Proposition 5.2 shows that a Cαs estimate of uyy requires
an Lp-bound on fyy, uxy, and uxxy, thus L∞-bounds on uxy and uxxy, hence additional Lp bounds
on fxxy, fxxxx, to give

‖uyy‖Cαs (B̄+
R1

(z0)) ≤ C

 4∑
j=0

‖Dj
xf‖Lp(B+

R0
(z0),yβ−1) +

2∑
i=1

‖Di
xfy‖Lp(B+

R0
(z0),yβ−1)

+ ‖fyy‖Lp(B+
R0

(z0),yβ−1) + ‖u‖L2(B+
R0

(z0),yβ−1)

)
,

and thus the following will suffice,

‖uyy‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖W 4,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
.
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The preceding examples motivate the statement of the following combined extension of Proposi-
tions 5.2 and 5.5.

Proposition 5.6 (Interior Cαs Hölder continuity of higher-order derivatives of a solution to the
variational equation). Let R0 be a positive constant, let m, k be integers with k ≥ 1 and 0 ≤ m ≤ k,
and let p > max{4, 2 + m + β}. Then there are positive constants, R1 = R1(m,R0) < R0, and
C = C(A, k,m, p,R0), and α = α(A,m, p,R0) ∈ (0, 1) such that the following holds. Let O j H
be a domain. If f ∈ L2(O,w), and u ∈ H1(O,w) satisfies the variational equation (2.11), and
z0 ∈ ∂0O is such that

BR0(z0) ∩H ⊂ O,

and

f ∈W k+m,p(B+
R0

(z0), yβ−1),

then

Dk−m
x Dm

y u ∈ Cαs (B̄+
R1

(z0)),

and

‖Dk−m
x Dm

y u‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖Wk+m,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
. (5.12)

Proof. For arbitrary ` ≥ 1 and f ∈W `,p(B+
R0

(z0), yβ−1), Proposition 5.5 already implies that

‖D`
xu‖Cαs (B̄+

R3
(z0)) ≤ C

(
‖f‖W `,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

for some R2 = R2(R0), and hence that (5.12) holds when m = 0, so we may assume without loss
of generality that m ≥ 1 in our proof of Proposition 5.6. Therefore, to establish (5.12), it suffices
to consider the inductive step (k,m − 1) =⇒ (k,m) (one extra derivative with respect to y),
assuming

‖D`−n
x Dn

yu‖Cαs (B̄+
R2

(z0)) ≤ C
(
‖f‖W `+n,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

for all ` ≥ 1, all n such that 0 ≤ n ≤ m− 1, and 1 ≤ m ≤ k,
(5.13)

where R2 = R2(m− 1, R0) (we point out the origin of the dependence on m further along in the
proof). The proof of this inductive step follows the pattern of proof of Proposition 5.2.

By our hypotheses on f , Theorem 1.2 implies that

u ∈H k+2+m(B+
R2

(z0),w) ⊂H k+3(B+
R2

(z0),w)

(since we assume m ≥ 1 for the inductive step), for any R2 in the range 0 < R2 < R0 to be
determined, and that

‖u‖H k+3(B+
R2

(z0),w) ≤ C
(
‖f‖Wk+1,2(B+

R0
(z0),w) + ‖u‖L2(B+

R0
(z0),w)

)
. (5.14)

We have Dk−m
x Dm

y u ∈ H1(B+
R2

(z0),wm) by Definition 4.3 of H k+3(B+
R2

(z0),w), since u ∈
H k+3(B+

R2
(z0),w) implies

Dk+1−m
x Dm

y u, Dk−m
x Dm

y u ∈

{
L2(B+

R2
(z0),wm−1), 2 ≤ m ≤ k,

L2(B+
R2

(z0),w), m = 1,

Dk−m
x Dm+1

y u ∈ L2(B+
R2

(z0),wm), 1 ≤ m ≤ k,
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and we have Dk
xu ∈ H1(B+

R2
(z0),w) by Proposition 4.10. Proposition 4.15 then ensures that

Dk−m
x Dm

y u obeys the variational equation on B+
R2

(z0),

am(Dk−m
x Dm

y u, v) = (Dk−m
x Dm

y f, v)L2(B+
R2

(z0),wm)

−m(BDk−m
x Dm−1

y u, v)L2(B+
R2

(z0),wm),

for all v ∈ H1
0 (B+

R2
(z0),wm). By hypothesis, Dk−m

x Dm
y f ∈ Lp(B+

R2
(z0), yβ+m−1) and provided we

also know BDk−m
x Dm−1

y ∈ Lp(B+
R2

(z0), yβ+m−1), that is,

Dk+1−m
x Dm−1

y u ∈ Lp(B+
R2

(z0), yβ+m−1),

Dk+2−m
x Dm−1

y u ∈ Lp(B+
R2

(z0), yβ+m−1), 1 ≤ m ≤ k,
(5.15)

we can apply Theorem 2.12 to the variational equation forDk−m
x Dm

y u and conclude thatDk−m
x Dm

y u ∈
Cαs (B̄+

R1
(z0)) for some22 R1 = R1(R2) obeying R1 < R2, and

‖Dk−m
x Dm

y u‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖Dk−m

x Dm
y f‖Lp(B+

R2
(z0),yβ+m−1)

+

2∑
j=1

‖Dk+j−m
x Dm−1

y u‖Lp(B+
R2

(z0),yβ+m−1)

+ ‖Dk−m
x Dm

y u‖L2(B+
R2

(z0),yβ+m−1)

)
, 1 ≤ m ≤ k.

(5.16)

It is important to note that the Hölder exponent, α, in (5.16) depends on the coefficients defining
the bilinear map, am, that is, on the coefficients of Am and thus on the coefficients of A and on
m, the number of derivatives with respect to y, and this is why we write α = α(A,m, p,R0) in
the statement of Proposition 5.6. The integrability conditions (5.15) are implied by

Dk+1−m
x Dm−1

y u ∈ L∞(B+
R2

(z0)),

Dk+2−m
x Dm−1

y u ∈ L∞(B+
R2

(z0)), 1 ≤ m ≤ k.
(5.17)

Note that Dk+1−m
x Dm−1

y u = D
k−(m−1)
x Dm−1

y u and Dk+2−m
x Dm−1

y u = D
k+1−(m−1)
x Dm−1

y u and
the properties (5.17) hold by the inductive hypothesis (5.13). Therefore, the inductive hypothesis
(5.13) gives

‖Dk+1−m
x Dm−1

y u‖L∞(B+
R2

(z0))

≤ C
(
‖f‖Wk+m−1,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

(5.18)

‖Dk+2−m
x Dm−1

y u‖L∞(B+
R2

(z0))

≤ C
(
‖f‖Wk+m,p(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

(5.19)

for 1 ≤ m ≤ k. Hence, the integrability conditions for the derivatives of u in (5.15) are satisfied
and the estimate (5.16) holds.

22The dependence on m appears in this step.
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Applying the Definition 4.3 of H k+3(B+
R2

(z0),w) and the L∞ estimates (5.18) and (5.19) for

the derivatives of u, the inequality (5.16) yields

‖Dk−m
x Dm

y u‖Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖Wk+m,p(B+

R0
(z0),yβ−1) + ‖u‖H k+3(B+

R2
(z0),w)

)
. (5.20)

Combining inequalities (5.14) and (5.20) completes the proof. �

Theorem 1.6 now follows easily, extending Theorem 5.4 from the case k = 1 to any k ≥ 1.

Proof of Theorem 1.6. When k = 0 or 1, then the conclusion follows from Theorems 2.12 or 5.4,
respectively, so we may assume that k ≥ 2 and, by induction, that the conclusion holds for k− 1
in place of k. Since

‖u‖
Ck,αs (B̄+

R1
(z0))

= ‖Dku‖Cαs (B̄+
R1

(z0)) + ‖u‖
Ck−1,α
s (B̄+

R1
(z0))

, (5.21)

by Definition 2.14, it suffices to show that Dk−m
x Dm

y u ∈ Cαs (B̄+
R1

(z0)), for 0 ≤ m ≤ k, but this
inclusion and estimate are given by Proposition 5.6. �

We may combine Theorem 1.6 with standard results from [18] for linear, second-order, elliptic
differential equations to give a weak version of Theorem 1.8 which will, nonetheless, provide a
useful stepping stone to the proof of Theorem 1.8 itself. Although their statements appear sim-
ilar, Proposition 5.7 is nevertheless strictly weaker than Theorem 1.8, despite the more relaxed
hypothesis on f because, in the former case, α = α(A, d1, k, p) depends on the choice of precom-
pact subdomain, O ′′ b O, through the constant d1 whereas in the latter case, α = α(A, k, p) is
independent of the choice of precompact subdomain, O ′′ b O.

Proposition 5.7 (Interior Ck,αs regularity on subdomains). Let k ≥ 0 be an integer, let d1 < Λ
be positive constants, and let p > max{4, 2 + k + β}. Then there are positive constants α =
α(A, d1, k, p) ∈ (0, 1) and C = C(A, k, d1,Λ, p) such that the following holds. If f ∈ L2(O,w) and

u ∈ H1(O,w) is a solution to the variational equation (2.11), and f ∈W 2k,p
loc (O,w), and O ′′ ⊂ O

is a subdomain such that O ′′ b O with O ′′ ⊂ (−Λ,Λ)× (0,Λ) and dist(∂1O ′′, ∂1O) ≥ d1, then

u ∈ Ck,αs (O ′′) ∩ Cαs (Ō ′′).

Moreover, u solves (1.1) on O ′′ and if O ′ ⊂ O ′′ is a subdomain with O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥
d1, then

‖u‖
Ck,αs (Ō′)

≤ C
(
‖f‖W 2k,p(O′′,w) + ‖u‖L2(O′′,w)

)
. (5.22)

Proof. Choose R0 = d1/2 and let R1 = R1(k,R0) < R0 be defined by Theorem 1.6. Since
O ′′ ⊂ (−Λ,Λ)× (0,Λ) and the rectangle is covered by balls, BR1(zl) ⊂ R2, with a finite sequence
of centers {zl} ⊂ [−Λ,Λ]× [0,Λ] on rectangular grid with square cells of width R1. We may now
choose finite subsequences of points, {z0,i} ⊂ {zl} ∩ ∂0O and {z1,j} ⊂ {zl} ∩ O, such that

Ō ′′ ⊂
⋃
i,j

B+
R1

(z0,i) ∪BR1(z1,j),

where H ∩ BR0(z0,i) ⊂ O for all i and BR0(z1,j) b O for all j. Let α = α(A, k, p,R0) =
α(A, d1, k, p) ∈ (0, 1) be the constant defined by Theorem 1.6.

According to [18, Theorem 9.19], for each r > 0 and ball Br b O of radius r and integer k ≥ 0,

we have u ∈ W k+2,p(Br), since f ∈ W 2k,p
loc (O) by hypothesis and, in particular, f ∈ W k,p

loc (O).
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By the Sobolev embedding [1, Theorem 5.4 (C′)], since p > 2, there is a continuous embedding,
W k+2,p(Br) ↪→ Ck+1(B̄r). Thus, u ∈ Ck,α(O) because, a fortiori,

u ∈ Ck+1(B̄r), ∀Br b O. (5.23)

Moreover, letting Br/2 ⊂ B3r/4 ⊂ Br denote concentric balls,

‖u‖Ck+1(B̄r/2) ≤ C
(
‖f‖Wk,p(Br) + ‖u‖L2(Br)

)
, (5.24)

where C = C(A, k, p, r), since23

‖u‖Ck+1(B̄r/2) ≤ C‖u‖Wk+2,p(Br/2) (by p > 2 and [1, Theorem 5.4 (C′)])

≤ C
(
‖f‖Wk,p(B3r/4) + ‖u‖Lp(B3r/4)

)
(by [18, Theorems 9.11 & 9.19])

≤ C
(
‖f‖Wk,p(B3r/4) + ‖u‖W 1,2(B3r/4)

)
(by p > 2 and [1, Theorem 5.4 (B)])

≤ C
(
‖f‖Wk,p(Br) + ‖u‖L2(Br)

)
(by p > 2 and [18, Exercise 8.2]).

The conclusion u ∈ Ck,αs (O ′′) ∩ C(Ō ′′) now follows from Theorem 1.6.
For the estimate (5.22) of u over O ′ b O ′′, observe that, since dist(∂1O ′, ∂1O ′′) ≥ d1, the

closure Ō ′ is covered by finitely many half-balls, B+
R0

(z0,i) with H ∩ BR0(z0,i) b O ′′, and balls,

BR0(z1,j) b O ′′, where the total number of balls and half-balls of radiusR0 = R0(d1) is determined
by d1 and Λ. We obtain (5.22) by applying (1.7) to each half-ball B+

R0
(z0,i) ⊂ O and applying

(5.24) to each ball BR0(z1,j) b O, noting that, by definition (2.5) of w,

‖f‖Wk,p(Br) ≤ e
γ
√

1+Λ2‖f‖Wk,p(Br,w), (5.25)

for each ball Br b O ′′, together with ‖f‖Wk,p(Br,w) ≤ ‖f‖W 2k,p(O′′,w). This completes the proof.
�

5.3. Proofs of Corollary 1.7, Theorem 1.8, Corollary 1.9, Theorem 1.11, and Corol-
laries 1.15 and 1.16. We first have the easy

Proof of Corollary 1.7. For any z0 ∈ O, there is a constant R0 > 0 and a ball BR0(z0) such that
BR0(z0) ⊂ O and [18, Theorem 6.17] implies that u ∈ C∞(BR0/2(z0)). If z0 ∈ ∂0O, there is a
constant R0 > 0 such that H ∩ BR0(z0) ⊂ O and Theorem 1.6 implies that there is a positive

constant R1 = R1(k,R0) < R0 such that u ∈ Ck,αs (B+
R1

(z0)) for any integer k ≥ 1. Hence, by

combining these observations, u ∈ C∞(O). �

In order to prove Theorem 1.8 and obtain u ∈ Ck,αs (O) with an a priori interior estimate (1.8)
on each pair of subdomains O ′ ⊂ O ′′ ⊂ O with O ′ b O ′′ and O ′′ ⊂ (−Λ,Λ) × (0,Λ), we shall
need to examine u near the “corner points”, z0 ∈ ∂0O ∩ ∂1O, as well as u near “interior” points,
z0 ∈ ∂0O, and u near points z0 ∈ O away from ∂0O (where classical results from [18] apply).
Otherwise, as noted prior to the statement of Proposition 5.7, we would not obtain a Hölder
exponent, α ∈ (0, 1), which is independent of O ′ and O ′′.

Proof of Theorem 1.8. Choose R0 = 1 and let R1 = R1(k) < 1 and α = α(A, k, p) ∈ (0, 1) be the

constants defined by Theorem 1.6. Since f ∈ W k,p
loc (O) because, a fortiori, f ∈ W 2k+2,p

loc (O) by

hypothesis, we know from the proof of Proposition 5.7 that u ∈ Ck+1(O) ⊂ Ck,α(O) because of
(5.23) and that the estimate (5.24) holds for any ball Br b O.

23The estimate (5.24) also follows from [18, Corollary 6.3 & Theorem 6.17].
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To complete the proof that u ∈ Ck,αs (O), it remains to check that for every point z0 ∈ ∂0O,

there is an open ball Br(z0), for some r > 0, such that H ∩ Br(z0) b O and u ∈ Ck,αs (B̄+
r/2(z0)),

with α ∈ (0, 1) as fixed at the beginning of the proof. According to Theorem 1.6, for each point

z0 ∈ ∂0O such that H ∩BR0(z0) ⊂ O, we have u ∈ Ck,αs (B̄+
R1

(z0)).

It remains to consider points z0 ∈ ∂0O such that H ∩ BR0(z0) 6⊂ O; in fact, our analysis of
this case is valid regardless of whether H ∩ BR0(z0) ⊂ O or H ∩ BR0(z0) 6⊂ O. Choose r > 0
small enough that r ≤ R1 and H ∩ Br(z0) b O. Let ζ ∈ C∞0 (H̄) be a cutoff function such that

0 ≤ ζ ≤ 1 on H and ζ = 1 on B+
r/2(z0) and supp ζ ⊂ B+

r (z0). To prove u ∈ Ck,αs (B̄+
r/2(z0)), it

suffices to show that

D`−m
x Dm

y u ∈ Cαs (B̄+
r/2(z0)), 0 ≤ ` ≤ k, 0 ≤ m ≤ `, (5.26)

and since the argument will be similar for any 0 ≤ ` ≤ k, it is enough to consider ` = k.

We have f ∈ W k,p
loc (O) since, a fortiori, f ∈ W 2k+2,p

loc (O) by hypothesis, and therefore u ∈
H k+2(B+

r (z0),w), by Theorem 1.2, and soDk−m
x Dm

y u ∈ H1(B+
r (z0),wm) andDk

xu ∈ H1(B+
r (z0),w),

by Definition 4.3 of H k+2(B+
r (z0),w). Thus, Proposition 4.15 implies that Dk−m

x Dm
y u obeys the

variational equation on B+
r (z0),

am(Dk−m
x Dm

y u, v) = (fk,m,u, v)L2(B+
r (z0),wm), ∀v ∈ H1

0 (B+
r (z0),wm),

where

fk,m,u := Dk−m
x Dm

y f −mBDk−m
x Dm−1

y u.

Consequently, since supp ζ ⊂ O, Lemma 3.5 implies that ζDk−m
x Dm

y u obeys the variational
equation on H,

am(ζDk−m
x Dm

y u, v) = (ζfk,m,u + [A, ζ]Dk−m
x Dm

y u, v)L2(H,wm), ∀v ∈ H1
0 (H,wm).

Moreover, ζDk−m
x Dm

y u ∈ H1(H,w) and, provided

ζfk,m,u + [A, ζ]Dk−m
x Dm

y u ∈ Lp(B+
r (z0), yβ−1), (5.27)

noting that supp ζ ⊂ B+
r (z0) and r ≤ R0 (in fact, r ≤ R1 < R0), Theorem 1.6 will apply to give

ζDk−m
x Dm

y u ∈ Cαs (B̄+
r (z0)),

where α was fixed at the beginning of the proof, and a positive constant, C = C(A, k, p), noting
that R0 = 1 and supp ζ ⊂ B+

r (z0), such that

‖ζDk−m
x Dm

y u‖Cαs (B̄+
r (z0))

≤ C
(
‖ζfk,m,u‖Lp(B+

r (z0),yβ−1) + ‖[A, ζ]Dk−m
x Dm

y u‖Lp(B+
r (z0),yβ−1)

+ ‖ζDk−m
x Dm

y u‖L2(B+
r (z0),yβ−1)

)
.

(5.28)

We observe that

‖ζfk,m,u‖Lp(B+
r (z0),yβ−1)

≤ ‖Dk−m
x Dm

y f‖Lp(B+
r (z0),yβ−1) +

m

2
‖Dk+1−m

x Dm−1
y u‖Lp(B+

r (z0),yβ−1)

+
m

2
‖Dk+2−m

x Dm−1
y u‖Lp(B+

r (z0),yβ−1)

≤ C
(
‖Dk−m

x Dm
y f‖Lp(B+

r (z0),yβ−1) +m‖Dk+1−m
x Dm−1

y u‖L∞(B+
r (z0)) +m‖Dk+2−m

x Dm−1
y u‖L∞(B+

r (z0))

)
,
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for C = C(r, p), while Lemma 3.6 implies that

‖[A, ζ]Dk−m
x Dm

y u‖Lp(B+
r (z0),yβ−1)

≤ C
(
‖yDk+1−m

x Dm
y u‖Lp(B+

r (z0),yβ−1) + ‖yDk−m
x Dm+1

y u‖Lp(B+
r (z0),yβ−1)

+ ‖(1 + y)Dk−m
x Dm

y u‖Lp(B+
r (z0),yβ−1)

)
≤ C

(
‖Dk+1−m

x Dm
y u‖L∞(B+

r (z0)) + ‖Dk−m
x Dm+1

y u‖L∞(B+
r (z0)) + ‖Dk−m

x Dm
y u‖L∞(B+

r (z0))

)
,

where C = C(A, r) and ζ is chosen such that ‖ζ‖C2(B̄+
r (z0)) ≤Mr−2, where M > 0 is a universal

constant. But f ∈ W 2k+2,p
loc (O) by hypothesis and from Proposition 5.7 (applied with k replaced

by k + 1 and p > max{4, 2 + (k + 1) + β} = max{4, 3 + k + β}), we know that

Dk+1−m
x Dm−1

y u, Dk+2−m
x Dm−1

y u ∈ C(B̄+
r (z0)), 1 ≤ m ≤ k,

Dk+1−m
x Dm

y u, Dk−m
x Dm+1

y u, Dk−m
x Dm

y u ∈ C(B̄+
r (z0)), 0 ≤ m ≤ k,

since B+
r (z0) b O and u ∈ Ck+1(B̄+

r (z0)). The preceding inequalities and boundedness conditions
ensure that the integrability condition (5.27) holds.

In particular, ζDk−m
x Dm

y u ∈ Cαs (B̄+
R1

(z0)) and, because ζ = 1 onB+
r/2(z0), we obtainDk−m

x Dm
y u ∈

Cαs (B̄+
r/2(z0)), as desired. This completes the proof of (5.26) (when ` = k) and hence that

u ∈ Ck,αs (O).
Finally, we prove the a priori estimate (1.8). Since O ′ b O ′′ and dist(∂1O ′, ∂1O ′′) ≥ d1 and

O ′′ ⊂ (−Λ,Λ)×(0,Λ) by hypothesis, there are a finite number of balls of radius r := min{d1/4, R1}
(the number of balls is determined by r = r(d1, R1) = r(d1, k) and Λ) such that

O ′ ⊂
⋃
i,j

B+
r/2(z0,i) ∪Br/2(z1,j), (5.29)

with
H ∩B4r(z0,i) ⊂ O ′′ and B4r(z1,j) ⊂ O ′′.

For each i, we let ζi ∈ C∞0 (H̄) be a cutoff function such that 0 ≤ ζi ≤ 1 on H, and ζi = 1 on
B+
r/2(z0,i), and supp ζi ⊂ B+

r (z0,i), and ‖ζi‖C2(B̄+
r (z0,i))

≤ Mr−2. The preceding Lp estimate for

ζfk,m,u yields

‖ζifk,m,u‖Lp(B+
r (z0,i))

≤ C
(
‖f‖Wk,p(B+

r (z0,i)),yβ−1) + ‖u‖Ck+1
s (B̄+

r (z0,i))

)
, 0 ≤ m ≤ k,

with C = C(k, p, r). Thus, Proposition 5.7 (noting that B+
r (z0) b B+

2r(z0) and B+
2r(z0) b O ′′

with dist(∂1B
+
2r(z0), ∂1O ′′) ≥ 2r since B+

4r(z0) ⊂ O ′′) and the definition of w = yβ−1e−µy−γ
√

1+x2

in (2.5) gives

‖ζifk,m,u‖Lp(B+
r (z0,i))

≤ C
(
‖f‖W 2k+2,p(B+

2r(z0,i)),w) + ‖u‖L2(B+
2r(z0,i)),w)

)
, 0 ≤ m ≤ k, (5.30)

with C = C(A, d1, k, p, r) = C(A, d1, k, p). Similarly, the preceding Lp estimate for [A, ζ]Dk−m
x Dm

y u
yields

‖[A, ζi]Dk−m
x Dm

y u‖Lp(B+
r (z0,i))

≤ C
(
‖f‖Wk,p(B+

r (z0,i),yβ−1) + ‖u‖Ck+1
s (B̄+

r (z0,i))

)
, 0 ≤ m ≤ k,

with C = C(A, p, r). Thus, Proposition 5.7 now gives, for 0 ≤ m ≤ k,

‖[A, ζi]Dk−m
x Dm

y u‖Lp(B+
r (z0,i))

≤ C
(
‖f‖W 2k+2,p(B+

2r(z0,i)),w) + ‖u‖L2(B+
2r(z0,i)),w)

)
, (5.31)
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with C = C(A, d1, k, p). By combining (5.28), (5.30), and (5.31), and recalling that ζi = 1 on
B+
r/2(z0,i) and supp ζi ⊂ B+

r (z0,i), we obtain, for 0 ≤ m ≤ k,

‖Dk−m
x Dm

y u‖Cαs (B+
r/2

(z0,i))
≤ C

(
‖f‖W 2k+2,p(B+

2r(z0,i),w) + ‖u‖L2(B+
2r(z0,i),w)

)
,

with C = C(A, d1, k, p). Therefore, by the same argument, for any 0 ≤ m ≤ ` ≤ k, we have

‖D`−m
x Dm

y u‖Cαs (B+
r/2

(z0,i))
≤ C

(
‖f‖W 2k+2,p(B+

2r(z0,i),w) + ‖u‖L2(B+
2r(z0,i),w)

)
, (5.32)

with C = C(A, d1, k, p).
On the other hand, by applying (5.24) to the balls Br(z1,j), we obtain

‖u‖Ck+1(B̄r/2(z1,j))
≤ C

(
‖f‖W 2k,p(Br(z1,j)) + ‖u‖L2(Br(z1,j))

)
, (5.33)

with C = C(A, k, p, r) = C(A, d1, k, p). The desired a priori estimate (1.8) now follows by com-
bining the a priori estimates (5.32) and (5.33), noting that Ck+1(B̄+

r/2(z1,j)) ↪→ Ck,α(B̄+
r/2(z1,j))

and using (5.25) to give

‖f‖W 2k,p(Br(z1,j)) ≤ e
γ
√

1+Λ2‖f‖W 2k,p(Br(z1,j),w).

and ‖f‖W 2k,p(Br(z1,j),w) ≤ ‖f‖W 2k,p(O′′,w). This completes the proof. �

Next, we have the

Proof of Corollary 1.9. As in the proof of Theorem 1.3, it suffices to choose a cover (5.29) of O ′

by open balls Br/2(z1,j) or half-balls B+
r/2(z0,j) contained in O ′′ which is uniformly locally finite.

Again using the definition of w = yβ−1e−µy−γ
√

1+x2
in (2.5) to replace the integral weights w in

(5.32) and 1 in (5.33), respectively, by yβ−1 on the right-hand side and arguing just as in the

proof of Proposition 5.1 to eliminate factors such as e
γ
2
|x0,i| or e

γ
2
|x1,j |, we see that

‖u‖
Ck,αs (B̄+

r/2
(z0,i))

≤ C
(
‖f‖W 2k+2,p(B+

2r(z0,i),y
β−1) + ‖u‖L2(B+

2r(z0,i),y
β−1)

)
(by (5.32)),

‖u‖Ck+1(B̄r/2(z1,j))
≤ C

(
‖f‖W 2k,p(Br(z1,j),yβ−1) + ‖u‖L2(Br(z1,j),yβ−1)

)
(by (5.33)),

with C = C(A, d1, k, p). Therefore, using Ck+1(B̄r/2(z1,j)) ↪→ Ck,αs (B̄r/2(z1,j)), we obtain

sup
i
‖u‖

Ck,αs (B̄+
r/2

(z0,i)
+ sup

j
‖u‖

Ck,αs (B̄r/2(z1,j)
≤ C

(
‖f‖W 2k+2,p(O′′,yβ−1) + ‖u‖L2(O′′,yβ−1)

)
,

with C = C(A, d1, k, p). Since

‖u‖Ck(Ō′) ≤ sup
i
‖u‖Ck(B̄+

R1
(z0,i))

+ sup
j
‖u‖Ck(B̄R1

(z1,j))
,

and, denoting
[Dku]Cαs (Ū) := max

0≤m≤k
[Dk−m

x Dm
y u]Cαs (Ū),

for any U ⊂ H, we see that

‖u‖
Ck,αs (Ō′)

≡ ‖u‖Ck(Ō′) + [Dku]Cαs (Ō′) (Definition 2.14)

≤ C(r)‖u‖Ck(Ō′) + sup
i

[Dku]Cαs (B̄+
r/2

(z0,i))
+ sup

j
[Dku]Cαs (B̄r/2(z1,j))

.

Combining the preceding estimates and recalling that r ≡ min{d1/4, R1} in (5.29), so r = r(d1, k),
yields the desired a priori bound (1.9) for ‖u‖

Ck,αs (Ō′)
. �
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Lastly, we turn to the

Proof of Theorem 1.11. By hypothesis, we have f ∈ C(Ō) and (1 + y)g ∈ W 2,∞(O), since g ∈
C(Ō) with (1 + y)g ∈ C2(Ō). Therefore, Theorem 1.5 (with k = 0) implies that there exists
a unique solution u ∈ H1(O,w) to the variational equation (2.11), with boundary condition
u− g ∈ H1

0 (O,w).
By [18, Corollary 8.28], we must have u ∈ C(O ∪ ∂1O), since u = g on ∂O in the sense of

H1(O,w) and g ∈ C(∂1O), so u = g on ∂1O, that is, u obeys the boundary condition (1.2).
Because f ∈ C(Ō) by hypothesis, the maximum principle [11, Theorem 8.15] implies that u is
bounded, that is, u ∈ L∞(O).

By hypothesis, we also have f ∈ C2k+6,α
s (O). For any 1 ≤ p ≤ ∞, there is a continuous

embedding C2k+6,α
s (Ū) ↪→W 2k+6,p(U,w) for any U b H̄, by Definition 2.14 of C`,αs (Ū) for ` ≥ 0,

and hence f ∈ W 2k+6,p
loc (O,w) = W

2(k+2)+2,p
loc (O,w). Choose p = max{4, 3 + (k + 2) + β} + 1 =

6 + k + β and observe that Theorem 1.8 implies that u ∈ Ck+2,α
s (O). From the Definition 2.15

of Ck,2+α
s (Ū), it follows that there is a continuous embedding Ck+2,α

s (Ū) ↪→ Ck,2+α
s (Ū), for any

U b H̄. Hence, u ∈ Ck,2+α
s (O).

Since the equation (1.1) and the desired Schauder a priori estimate (1.10) are invariant under
translations with respect to x and diam(O ′′) ≤ Λ by hypothesis, we may assume without loss of
generality that O ′′ ⊂ (−Λ,Λ) × (0,Λ). Therefore, the desired Schauder estimate (1.10) follows
from Theorem 1.8 and the a priori estimate (1.8) and the fact that

‖u‖
Ck,2+α
s (Ō′)

≤ C‖u‖
Ck+2,α
s (Ō′)

,

where C = C(Λ). �

Proof of Corollary 1.15. Theorem 2.11 implies that u ∈ Cαs (B̄+
R1

(z0)), for each corner point z0 ∈
∂0O ∩ ∂1O. Thus, u ∈ Cαs,loc(Ō) and, because u is bounded, we obtain u ∈ C(Ō). Moreover,

because u is uniformly Cαs (B̄+)-Hölder continuous for all balls B ⊂ R2, where α = α(A, k,K) ∈
(0, 1) is the smallest Hölder exponent in Theorems 1.8 and 2.11 and in [18, Theorem 8.29], we
have u ∈ Cαloc,s(Ō). �

Proof of Corollary 1.16. The desired Schauder estimate (1.11) follows by replacing the role of the
a priori estimate (1.8) with that of the a priori estimate (1.9) in the proof of Theorem 1.11. �

Appendix A. Appendix

For the convenience of the reader, we collect here some useful facts from some our earlier
articles for easier reference, together with some technical proofs of results used in the body of this
article. In §A.1, we describe approximation results for the weighted Sobolev spaces appearing in
this article and which are used, for example, to prove integration-by-parts formulae, as illustrated
in §A.2. The relationship between “cycloidal” and Euclidean balls and half-balls is discussed in
§A.3. Section A.4 describes how to translate [12, Theorems 1.7 & 1.11] into forms more suitable
for application in this article, namely Theorems 2.5, 2.10, and 2.12, though we include Theorems
2.6, 2.11, and 2.13 as well, even though not needed for the present article. Finally, in §A.5, we
explain the need for some of the technical hypotheses in Proposition 4.15.

A.1. Approximation by smooth functions. We begin with the



HIGHER-ORDER REGULARITY FOR SOLUTIONS TO VARIATIONAL EQUATIONS 59

Definition A.1 (C1-orthogonal curves in the upper half-space). We say that a curve T ⊂ H is
uniformly C1-orthogonal to ∂H if T is a relatively open C1-curve and there is a positive constant,
δ, such that for each point z0 = (x0, 0) ∈ T̄ ∩ ∂H we have

T̄ ∩Bδ(z0) ⊂ {(x0, y) ∈ R2 : y ≥ 0}.

The next approximation result24 follows from [3, Corollary A.12].

Theorem A.2 (Density of smooth functions). Let O ⊂ H be a domain such that ∂1O is uniformly
C1-orthogonal to ∂H. Then C∞0 (Ō) is a dense subset of Hk(O,w), and H k(O,w), and W k(O,w)
for all integers k ≥ 0.

Proof. When k = 0, 1, 2, the conclusion for Hk(O,w) = H k(O,w) is given by [3, Corollary A.12],
which asserts that C∞0 (Ō) is a dense subset of Hk(O,w). The proof of [3, Corollary A.12] extends
easily to include the remaining cases. �

A.2. Integration by parts. We recall the special case of [3, Lemma 2.23]; no hypothesis on
∂1O is required here because we assume v ∈ H1

0 (O,w) rather than allow any v ∈ H1(O,w).

Lemma A.3 (Integration by parts for the Heston operator). Let O j H be a domain. If
u ∈ H2(O,w) and v ∈ H1

0 (O,w), then Au ∈ L2(O,w) and

(Au, v)L2(O,w) = a(u, v). (A.1)

Proof. When ũ ∈ C∞0 (Ō) and ṽ ∈ C∞0 (O), we obtain

(Aũ, ṽ)L2(O,w) = a(ũ, ṽ)

by direct calculation, as in the proof of [3, Lemma 2.23]. Because supp ṽ ⊂ O is compact, we may
choose a subdomain O ′ b O such that ∂1O ′ is uniformly C1-orthogonal to ∂H and supp ṽ ⊂ O ′.
If u ∈ H2(O,w), Theorem A.2 implies that there is a sequence {un}n∈N ⊂ C∞0 (Ō ′) such that
un → u strongly in H2(O,w) as n→∞ and thus

(Au, ṽ)L2(O,w) = (Au, ṽ)L2(O′,w) = lim
n→∞

(Aun, ṽ)L2(O′,w) = lim
n→∞

a(un, ṽ) = a(u, ṽ),

because A : H2(O,w)→ L2(O,w) is a continuous linear operator and a : H1(O,w)×H1(O,w)→
R is a continuous bilinear map. . Since v ∈ H1

0 (O,w), there is a sequence {vn}n∈N ⊂ C∞0 (O)
such that vn → v strongly in H1(O,w) as n→∞ and thus

(Au, v)L2(O,w) = lim
n→∞

(Au, vn)L2(O,w) = lim
n→∞

a(u, vn) = a(u, v).

This completes the proof. �

A.3. Relationship between cycloidal and Euclidean balls. The relationships (2.19) be-
tween the cycloidal and Euclidean distance functions and (2.20) between the cycloidal and Eu-
clidean balls are easily generalized from the case y0 = 0 to y0 ≥ 0. Denoting S = s(z, z0) and
D = |z − z0|, and using y ≤ y0 +D, then

D = S
√
y + y0 +D ≤ S

√
2y0 + 2D,

and one finds that ∣∣D − S2
∣∣ ≤ S√2y0 + S2 ≤ S

(√
2y0 + S

)
,

24While the conclusion holds for weaker hypotheses on ∂1O, the result suffices for applications in this article
and counterexamples show that some conditions on the regularity of ∂1O and the geometry of its intersection with
∂H are required.
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and hence

D ≤ 2S2 +
√

2y0S.

Therefore,

|z − z0| ≤ 2s(z, z0)2 + s(z, z0)
√

2y0, (A.2)

and so

Br(z0) ⊂ H ∩B2r2+r
√

2y0
(z0), ∀z0 ∈ H̄, r > 0, (A.3)

as desired.

A.4. Proofs of Theorems 2.5, 2.6, 2.10, 2.11, 2.12, and 2.13. The original statement
of [12, Theorem 1.7] combines Theorem 2.5 (supremum estimate away from corner points) and
Theorem 2.6 (supremum estimate near corner points). Similarly, the original statement of [12,
Theorem 1.11] combines Theorem 2.10 (Hölder regularity and a priori estimate away from corner
points) and Theorem 2.11 (Hölder regularity and a priori estimate near corner points). The
theorem statements in [12] use balls defined by the cycloidal distance function, do not make the
dependencies of the constants as explicit as we do here and, in the case of [12, Theorem 1.11],
state estimates in terms of L∞ rather than L2 norms of u. In this appendix, we describe how
to translate [12, Theorems 1.7 & 1.11] into the forms used in this article, noting that in [12] the
dimension of the upper half-space is denoted by n = 2.

Proof of Theorem 2.5. A close inspection of the proof of [12, Theorem 1.7] reveals that the supre-
mum estimate holds for any positive constant R̄ with the property that B+

R̄
(z0) ⊂ O. In partic-

ular, we may choose R̄ :=
√
R0/2, where R0 > 0 is the constant in the hypothesis of Theorem

2.5 such that f ∈ Lp(B+
R0

(z0), yβ−1). Since R0 = 2R̄2, we see by (2.20) that B+
R̄

(z0) ⊂ B+
R0

(z0),

and so the hypothesis25 on f in [12, Theorem 1.7] (with s = p) is satisfied when

f ∈ Lp(B+
R̄

(z0), yβ−1), (A.4)

since f ∈ Lp(B+
R0

(z0), yβ−1) and Lp(B+
R0

(z0), yβ−1) ⊂ Lp(B+
R̄

(z0), yβ−1).

For any R > 0, we have by (2.18) that B+
R(z0) ⊂ B+√

R
(z0) and therefore we obtain, for all

R > 0 obeying 2
√
R ≤ R̄ or, equivalently, 8R ≤ R0,

‖u‖L∞(B+
R(z0)) ≤ ‖u‖L∞(B+√

R
(z0)) (by (2.18))

≤ C
(
‖u‖L2(B+

2
√
R

(z0),yβ−1) + ‖f‖Lp(B+

2
√
R

(z0),yβ−1)

)
(by [12, Equation (1.21)])

≤ C
(
‖u‖L2(B+

8R(z0),yβ−1) + ‖f‖Lp(B+
8R(z0),yβ−1)

)
,

and thus,

‖u‖L∞(B+
R(z0)) ≤ C

(
‖u‖L2(B+

8R(z0),yβ−1) + ‖f‖Lp(B+
8R(z0),yβ−1)

)
, (A.5)

where the last inequality follows from the fact that B+

2
√
R

(z0) ⊂ B+
8R(z0) by (2.20) and C =

C(A, p,R). We obtain the desired inequality (2.14) by choosing R1 := R0/8 and setting R = R1

in (A.5). �

25In [12], the ball B+
r (z0) was denoted by Br(z0) for r > 0.
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Proof of Theorem 2.10. As in the proof of Theorem 2.5, we choose R̄0 :=
√
R0/2, which implies

by (2.20) that B+
R̄0

(z0) ⊂ B+
R0

(z0) since R0 = 2R̄2
0, and so the hypothesis 25 on f in [12, Equation

(1.26)] (with s = p) is satisfied when f obeys (A.4).
A closer examination of the proof of [12, Theorem 1.11] shows us that there are positive

constants C = C(A, p, R̄0), and α = α(A, p,R0) ∈ (0, 1), and R̄1 = R̄1(R̄0) such that

[u]Cαs (B̄+
R̄1

(z0)) ≤ C
(
‖f‖Lp(B+

R̄0
(z0),yβ−1) + ‖u‖L∞(B+

R̄0
(z0))

)
.

If we choose R1 := R̄2
1, then (2.18) yields B+

R1
(z0) ⊂ B+

R̄1
(z0), and thus

[u]Cαs (B̄+
R1

(z0)) ≤ [u]Cαs (B+
R̄1

(z0))

≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L∞(B+

R0
(z0))

)
,

≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L∞(B+

R0
(z0))

)
,

where we used the inclusion B+
R̄0

(z0) ⊂ B+
R0

(z0) to obtain the final inequality. This concludes

the proof of Theorem 2.10. �

Proof of Theorem 2.12. Let R2 = R2(R0) < R0 be the constant produced by Theorem 2.5, given
R0 > 0, so (2.14) gives

‖u‖L∞(B+
R2

(z0)) ≤ C
(
‖f‖Lp(B+

R0
(z0),yβ−1) + ‖u‖L2(B+

R0
(z0),yβ−1)

)
,

and let R1 = R1(R2) < R2 (and recall that R2 = R2(R0)) be the constant produced by Theorem
2.10, given R2 > 0, so (2.23) gives

[u]Cαs (B̄+
R1

(z0)) ≤ C
(
‖f‖Lp(B+

R2
(z0),yβ−1) + ‖u‖L∞(B+

R2
(z0))

)
.

Finally, noting that ‖u‖Cαs (B̄+
R1

(z0)) = ‖u‖C(B̄+
R1

(z0)) +[u]Cαs (B̄+
R1

(z0)), we obtain the desired inequal-

ity (2.24) by combining the preceding two estimates. �

Proofs of Theorems 2.6, 2.11, and 2.13. The proofs of Theorems 2.6, 2.11, and 2.13 follow exactly
in the same way as the proofs of Theorems 2.5, 2.10, and 2.12, with the only observation that all
constants now also depend on the cone, K. �

A.5. Need for the auxiliary regularity condition in Proposition 4.15. We explain the
role of the hypothesis, Dk

xu ∈ H1(O,w), in the statement of Proposition 4.15.
First, we explain the role of the auxiliary regularity condition when m = 0 in (4.23). If k =

1,m = 0 and u ∈ H2(O,w), then we recall from (3.9) that while this ensures (1+y)1/2ux belongs

to L2(O,w), it does not imply that y1/2uxx, y
1/2uxy belong to L2(O,w), and so u ∈ H2(O,w)

does not imply ux ∈ H1(O,w). However, when k = 1,m = 1, we have seen that u ∈ H2(O,w)
does imply uy ∈ H1(O,w1).
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If u ∈H k+1(O,w) and k ≥ 2, then we recall from Definition 4.3 that

yDk+1−m
x Dm

y u ∈

{
L2(O,wm−2), 3 ≤ m ≤ k,
L2(O,w), m = 1, 2,

yDk−m
x Dm+1

y u ∈

{
L2(O,wm−1), 2 ≤ m ≤ k,
L2(O,w), m = 1,

that is,

y1/2Dk+1−m
x Dm

y u ∈

{
L2(O,wm−1), 3 ≤ m ≤ k,
L2(O,w1), m = 1, 2,

y1/2Dk−m
x Dm+1

y u ∈

{
L2(O,wm), 2 ≤ m ≤ k,
L2(O,w1), m = 1.

Note that L2(O,wm−1) ⊂ L2(O,wm) for all m ≥ 1. Moreover, u ∈ H k+1(O,w) with k ≥ 2
implies (1+y)Dk−m

x Dm
y u ∈ L2(O,wm−2) ⊂ L2(O,wm) when 3 ≤ m ≤ k and (1+y)Dk−m

x Dm
y u ∈

L2(O,w) ⊂ L2(O,wm) when m = 0, 1, 2. Thus, for k ≥ 2,

u ∈H k+1(O,w) =⇒ Dk−m
x Dm

y u ∈ H1(O,wm), k ≥ 2, 1 ≤ m ≤ k.

However, when k ≥ 2 and m = 0, the auxiliary condition Dk
xu ∈ H1(O,w) required for the left-

hand side of (4.23) to be well-defined is not implied by the hypothesis u ∈ H k+1(O,w), since

the latter condition implies yDk+1
x u, yDk

xDyu ∈ L2(O,w) but not y1/2Dk+1
x u, y1/2Dk

xDyu ∈
L2(O,w).

Second, we explain the role of the auxiliary regularity condition when m = 1 in (4.23). If
u ∈H k+1(O,w) and k ≥ 2, then we recall from Definition 4.3 that

yDk+2−m
x Dm−1

y u ∈

{
L2(O,wm−3), m ≥ 4,

L2(O,w), m = 1, 2, 3,

that is,

Dk+2−m
x Dm−1

y u ∈

{
L2(O,wm−1), m ≥ 4,

L2(O,w2), m = 1, 2, 3.

Hence, when k ≥ 2 and m = 1, the auxiliary condition Dk+1
x u ∈ L2(O,w1) required for the right-

hand side of (4.23) to be well-defined is not implied by the hypothesis u ∈ H k+1(O,w). How-

ever, the condition Dk
xu ∈ H1(O,w) ensures, by definition (2.2) of H1(O,w), that y1/2Dk+1

x u ∈
L2(O,w) or, equivalently, Dk+1

x u ∈ L2(O,w1).
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