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ABSTRACT

In this article, we discuss the composite likelihood estimation of sparse Gaussian graph-

ical models. When there are symmetry constraints on the concentration matrix or partial

correlation matrix, the likelihood estimation can be computational intensive. The com-

posite likelihood offers an alternative formulation of the objective function and yields con-

sistent estimators. When a sparse model is considered, the penalized composite likelihood

estimation can yield estimates satisfying both the symmetry and sparsity constraints and

possess ORACLE property. Application of the proposed method is demonstrated through

simulation studies and a network analysis of a biological data set.

Key words : Variable selection; model selection; penalized estimation; Gaussian graphical

model; concentration matrix; partial correlation matrix

1. INTRODUCTION

A multivariate Gaussian graphical model is also known as covariance selection model.

The conditional independence relationships between the random variables are equiva-

lent to specified zeros among the inverse covariance matrix. More exactly, let X =

(X(1), ..., X(p)) be a p-dimensional random vector following a multivariate normal distri-

bution Np(µ,Σ), with µ denoting the unknown mean and Σ denoting the nonsingular

covariance matrix. Denote the inverse covariance matrix as Σ−1 = C = (Cij)1≤i,j≤p. Zero

entries Cij in the inverse covariance matrix indicate conditional independence between

the random variables X(i) and X(j) given all other variables (Dempster (1972), Whittaker

(1990), Lauritzen (1996)). The Gaussian random vector X can be represented by an

undirected graph G = (V,E), where V contains p vertices corresponding to the p coordi-

nates and the edges E = (eij)1≤i<j≤p represent the conditional dependency relationships

between variables X(i) and X(j). It is of interest to identify the correct set of edges, and

estimate the parameters in the inverse covariance matrix simultaneously.
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To address this problem, many methods have been developed. In general, there are no

zero entries in the maximum likelihood estimate, which results in a full graphical structure.

Dempster (1972) and Edwards (2000) proposed to use penalized likelihood with the L0-

type penalty pλ(|cij|)i 6=j = λI(|cij| 6= 0), where I(.) is the indicator function. Since the L0

penalty is discontinuous, the resulting penalized likelihood estimator is unstable. Another

approach is stepwise forward selection or backward elimination of the edges. However, this

ignores the stochastic errors inherited in the multiple stages of the procedure (Edwards

(2000)) and the statistical properties of the method are hard to comprehend. Meinshausen

and Bühlmann (2006) proposed a computationally attractive method for covariance se-

lection; it performs the neighborhood selection for each node and combines the results to

learn the overall graphical structure. Yuan and Lin (2007) proposed penalized likelihood

methods for estimating the concentration matrix with the L1 penalty (LASSO) (Tibshi-

rani (1996)). Banerjee, Ghaoui, and D’aspremont (2007) proposed a block-wise updating

algorithm for the estimation of the inverse covariance matrix. Further in this line, Fried-

man, Hastie, and Tibshirani (2008) proposed the graphical LASSO algorithm to estimate

the sparse inverse covariance matrix using the LASSO penalty through a coordinate-wise

updating scheme. Fan, Feng, and Wu (2009) proposed to estimate the inverse covariance

matrix using the adaptive LASSO and the Smoothly Clipped Absolute Deviation (SCAD)

penalty to attenuate the bias problem. Friedman, Hastie and Tibshirani (2012) proposed

to use composite likelihood based on conditional likelihood to estimate sparse graphical

models.

In real applications, there often exists symmetry constraints on the underlying Gaus-

sian graphical model. For example, genes belong to the same functional or structure

group may behave in a similar manner and thus share similar network properties. In

the analysis of high-dimensional data, clustering algorithm is often performed to reduce

the dimensionality of the data. Variates in the same cluster exhibit similar patterns.

3



This may result in restrictions on the graphical gaussian models: equality among sep-

cified elements of the concentration matrix or equality emong specific partial variances

and correlations. Adding symmetry to the graphical model reduces the number of pa-

rameters. When both sparsity and symmetry exisits, the likelihood estimation becomes

computationally challenging.

Hojsgaard and Lauritzen (2009) introduced new types of Guassian models with sym-

metry constraints. When the restriction is imposed on the inverse convariance matrix,

the model is referred as RCON model. When the restriction is imposed on the partial

correlation matrix, the model is referred as RCOR model. Likelihood estimation on both

models can be obtained through Newton iteration or partial maximization. However, the

algorithm involves the inversion of concentration matrix in the interation steps, which can

be computationally costly in the analysis of large matrices. When sparsity constrainst is

imposed on the RCON and RCOR model, the likelihood is added extra penalty terms on

the sizes of the edges. Solving the penalized likelihood with both sparsity and symmetry

constraint is a challenge. In this article, we investigate the alternative way of formu-

lating the likelihood. We propose to use composite likelihood as our objective function

and maximize the penalized composite likelihood to obtain the sparse RCON and RCOR

model. The algorithm is designed based on co-ordinate descent and soft thresholding

rules. The algorithm is computationally convenient and it avoids any operations of large

matrix inverison.

The rest of the article is organized as follows. In Section 2.1 we formulate the penalized

likelihood function for the RCON and RCOR modle matrix. In Sections 2.2 and 2.3,

we present the coordinate descent algorithm and soft thresholding rule. In Section 3, we

investigate the asymptotic behavior of the estimate and establish the ORACLE property of

the estimate. In Section 4, simulation studies are presented to demonstrate the empirical

performance of the estimate in terms of estimation and model selection. In Section 5, we
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applied our method to a clustered microarray data set to estimate the networks between

the clustered genes and also compare the networks under different treatment settings.

2. METHOD

2.1 COMPOSITE LIKELIHOOD

The estimation of Gaussian graphical model has been mainly based on likelihood method.

An alternative method of estimation based on composite likelihood has drawn much at-

tention in recent years. It has been demonstrated to possess good theoretical properties,

such as consistency for the parameter estimation, and can be utilized to establish hypoth-

esis testing procedures. Let x = (x1, . . . , xn)T be the vector of n variables observed from

a single observation. Let {f(x;φ), x ∈ X , φ ∈ Ψ} be a class of parametric models, with

X ⊆ Rn, Ψ ⊆ Rq, n ≥ 1, and q ≥ 1. For a subset of {1, . . . , n}, say a, xa denotes a

subvector of x with components indexed by the elements in set a; for instance, given a

set a = {1, 2}, xa = (x1, x2)
T . Let φ = (θ, η), where θ ∈ Θ ⊆ Rp, p ≤ q, is the parameter

of interest, and η is the nuisance parameter. According to Lindsay (1988), the CL of a

single vector-valued observation is Lc(θ;x) =
∏

a∈A La(θ;xa)
wa , where A is a collection of

index subsets called the composite sets, La(θ;xa) = fa(xa; θa), and {wa, a ∈ A} is a set of

positive weights. Here fa denotes all the different marginal densities and θa indicates the

parameters that are identifiable in the marginal density fa.

As the composite score function is a linear combination of several valid likelihood score

functions, it is unbiased under the usual regularity conditions. Therefore, even though

the composite likelihood is not a real likelihood, the maximum composite likelihood es-

timate is still consistent for the true parameter. The asymptotic covariance matrix of

the maximum composite likelihood estimator takes the form of the inverse of the Go-

dambe information:H(θ)TJ(θ)−1H(θ), where H(θ) = E{−
∑

a∈A ∂
2 log f(xa; θ)/∂θ∂θ

T}

and J(θ) = var{
∑

a∈A ∂ log f(xa; θ)/∂θ} are the sensitivity matrix and the variability ma-
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trix, respectively. Readers are referred to Cox and Reid (2004) and Varin (2008) for a

more detailed discussion on the asymptotic behavior of the maximum composite likelihood

estimator.

2.1 COMPOSITE LIKELIHOOD ESTIMATION OF RCON MODEL

Let data X consist of n replications of a multivariate random vector of size p: X =

(X1, X2, . . . , Xn)T , with Xi = (Xi1, Xi2, . . . , Xip)
T following a Np(µ,Σ) distribution. For

simplicity of exposition, we assume throughout that µ = 0. We let θ = Σ−1 denote the

inverse covariance, also known as the concentration matrix with elements (θij), 1 ≤ i, j,≤

p. The partial correlation between Xij and Xik given all other variables is then

ρjk = −θjk/
√
θjjθkk.

It can be shown than θjk = 0 if and only if Xij and Xik are conditionally independent

given all other variables.

There are different symmetry restrictions on cencentrations first introduced by Hojs-

gaard and Lauritzen (2009). An RCON(V , E) model with vertex coloring V and edge

coloring E is obtained by restricting the elements of the concentration matrix θ as follows:

1) Diagonal elements of the concentration matrix θ corresponding to vertices in the same

vertex colour class must be identical. 2) Off diagonal entries of θ corresponding to edges

in the same edge colour class must be identical. Let V = {V1, . . . , Vk}, where V1, . . . , Vk is

a partition of {1, . . . , p} vertex class. Let E = {E1, . . . , El}, where E1, . . . , El is a partition

of {(i, j), 1 ≤ i < j ≤ p} edge class. This implies given an edge color class, for all edges

(i, j) ∈ Es, θij are all equal and hence denoted as θEs . This also implies given a vertex

color class, for all vertices (i) ∈ Vm, θii are all equal and hence denoted as θVm , σ
ii are all

equal and hence denoted as σVm ,

Following the approach of Friedman, Hastie and Tibshirani (2012), we formulate com-

posite conditional likelihood to estimate sparse graphical model under symmetry con-
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straints. The conditional distribution of xij|x−ij = N(
∑

k 6=j xikβkj, σ
jj), where x−ij =

(xi1, xi2, . . . , xi,j−1, xj+1, . . . , xip), βkj = −θkj/θjj, and σjj = 1/θjj. The negative compos-

ite log-likelihood can be formulated as

`c(θ) =
1

2

p∑
j=1

(N log σjj +
1

σjj
||Xj −XBj||22),

where Bj is a p−vector with elements βij, except a zero at the jth position, and B =

(B1, B2, . . . , Bp). We propose to estimate the sparse RCON model by minimizing the

following penalized composite loglikelihood Q(θ):

min
θEs ,1≤s≤l,θVm ,1≤m≤k

`c(θ) + nλ
∑
s

|θEs|.

We employ coordinate-descent algorithm by solving the penalized minimization one

coordinate at a time. It can be shown that the negative expected Hessian matrix of

`c(θ) is positive definite because it is the sum of expected negative Hessian matrices of all

conditional likelihoods:

E(
−∂2`c(θ)
∂θ2

) =
n∑
i=1

p∑
j=1

E(
∂2l(xij|x−ij)

∂θ2
)

=
n∑
i=1

p∑
j=1

E(E(
∂2l(xij|x−ij)

∂θ2
|x−ij)) =

n∑
i=1

p∑
j=1

E(var(
∂l(xij|x−ij)

∂θ
|x−ij)).

(1)

Each var(
∂l(xj |x−j)

∂θ
|x−j) is positive definite and integrals preserve positive definiteness,

therefore E(∂
2`c(θ)
∂θ2

) is positive definite. Thus, when n is sufficiently larege, the objective

function Q(θ) is locally convex at θ0. If the interation steps of the algorithm hits this

neighborhood, the algorithm will converge to θ0.

The co-ordinate descent algorithm proceeds by updating each parameter of the objec-

tive function one at a time. The first derivative of the objective function with respect to

the edge class parameter is as follows. The technical derivation is in the Appendix.

∂Q(θ)

∂θEs

=(

p∑
j=1

∑
i;(i,j)∈Es

∑
l;(l,j)∈Es

σjjXT
i Xl)θEs+( p∑

j=1

XT
j (

∑
i;(i,j)∈Es

Xi) + σjj
∑

i;(i,j)∈Es

∑
l;(l,j)∈Ec

s

XT
i Xlθlj

)
+ nsgn(θEs),

(2)
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where Ec
s = {(i, j)|i 6= j and (i, j) /∈ Es}. Therefore the update for θEs is

θ̂Es =
S(−(

∑p
j=1X

T
j (
∑

i;(i,j)∈Es
Xi) + σjj

∑
i;(i,j)∈Es

∑
l;(l,j)∈Ec

s
XT
i Xlθlj)/n, λ)

(
∑p

j=1

∑
i;(i,j)∈Es

∑
l;(l,j)∈Es

σjjXT
i Xl)/n

,

where S(z, λ) = sign(z)(|z| − λ)+ is the soft-thresholding operator. Let C = 1
n
XTX

denote the sample covariance matrix. Given the color edge group Es, we construct the

edge adjancency matrix TEs , with TEs
ij = 1, if (i, j) ∈ Es, and TEs

ij = 0 otherwise. We can

simplify the updating expression as follows:

θ̂Es =
S(−tr(TEsC) + tr(TEs(TE

c
s �B)C), λ)

tr(TEs(TEsσ)C)
,

where � denotes the componentwise product, and σ denotes a p× p matrix of diag(σjj).

For notational convenience, let θ̃ denote a p× p matrix with diagonal elements equal

to zero and off-diagonal elements equal to that of θ. The first derivative of Q(θ) with

respect to the vertex class is as follows:

∂Q(θ)

∂σVm

=
n

2

∑
j∈Vm

(
1

σjj
− Cjj

(σjj)2
+ qj),

(3)

where qj =
∑p

l=1

∑p
l′=1Cll′ θ̃lj θ̃l′j. Therefore the solution of

σ̂Vm =
−|Vm|+

√
|Vm|2 + 4(

∑
j∈Vm qj)(

∑
j∈Vm Cjj)

2
∑

j∈Vm qj
,

where |Vm| denotes the cardinality of Vm. Let diagonal matrix T Vm denote the generator

for the vertex color class, with T Vmjj = 1 for j ∈ Vm, and T Vmjj = 0 otherwise. To simplify

the notation, we have
∑

j∈Vm Cjj = tr(T VmC), and
∑

j∈Vm qj = tr(T Vm θ̃Cθ̃). Because C is

positive definite,
∑

j∈Vm qj > 0. Therefore, the quadratic equation has one unique positive

root. Alternating the updating scheme throughout all the θEs , and θVm until convergence,

we obtain the penalized sparse estimate of the concentration matrix under RCON model.

2.2 ESTIMATION OF RCOR MODEL
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An RCOR (V , E) model with vertex colouring V and edge coloring E is obtained by

restricting the elements of θ as follows: (a) All diagonal elements of θ (inverse partial

variances) corresponding to vertices in the same vertex colour class must be identical.

(b) All partial correlations corresponding to edges in the same edge colour class must be

identical. Given an edge color class, for all edges (i, j) ∈ Es, ρij are all equal and hence

denoted as ρEs . This also implies given a vertex color class, for all vertices (i) ∈ Vm, θii

are all equal and hence denoted as θVm , and σii are all equal and hence denoted as σVm ,

We formulate the composite likelihood in terms of ρEs and σVm .

For notational convenience, define a p × p matrix ρ̃ with ρ̃ij = ρij for i 6= j and

ρ̃ij = 0 for i = j. Let ρ̃j denote the jth column of the matrix ρ̃. Define a p-element vector

σD = (σ11, . . . , σpp)T . The composite likelihood is formulated as

`c(ρ, σ) =
1

2

p∑
j=1

{n log σjj +
1

σjj
||Xj −X(ρ̃j � σ

− 1
2

D )(σjj)
1
2 ||22}.

We propose to estimate the sparse RCOR model by minimizing the following penalized

composite loglikelihood Q(ρ, σ):

min
θEs ,1≤s≤l,θVm ,1≤m≤k

`c(ρ, σ) + nλ
∑
s

|ρEs|.

The partial derivative of Q(ρ, σ) with respect to the partial correlation is as follows:

∂Q(ρ, σ)

∂ρEs

=nρEstr

(
(σ−1/2TEs)TC(σ−1/2TEs)

)
+ ntr

(
(σ−1/2ρ̃� TEc

s)TC(σ−1/2TEs)

)
− tr

(
(Xσ−1/2)TX(σ−1/2TEs)

)
+ nsgn(θEs).

(4)

The thresholded estimate of the partial correlation takes the following form:

ρ̃Es =
S(tr(TEs(σ−

1
2Cσ−

1
2 ))− tr(TEs(TE

c
s � ρ̃)(σ−

1
2Cσ−

1
2 )), λ)

tr(TEs .TEs(σ−
1
2Cσ−

1
2 ))

.
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The partial derivatives with respect to σVm is as follows:

∂`(ρ, σ)

∂σVm

=
n

2
{|Vm|
σVm

−
∑

j∈Vm x
T
j xj

nσ2
Vm

+

∑
i∈Vm

∑
j∈Vm 2xTi xj ρ̃ij

nσ2
Vm

+
2

n
σ
− 3

2
Vm

∑
(i,j);i∈Vm,j /∈Vm

xTi xj ρ̃ij/
√
σjj

− 1

nσ2
Vm

p∑
j=1

∑
i∈Vm

∑
i′∈Vm

xTi xi′ ρ̃ij ρ̃i′j −
1

nσ
3
2
Vm

p∑
j=1

∑
i∈Vm

∑
i′ /∈Vm

xTi xi′ ρ̃ij ρ̃i′j/
√
σi′i′}.

(5)

Re-express the above expression in terms of y =
√
σVm . We solve the equation

|Vm|y2 − by − a = 0,

with

a =
∑
j∈Vm

xTj xj/n−
∑
i∈Vm

∑
j∈Vm

2xTj xiρ̃ij/n+

p∑
j=1

∑
i∈Vm

∑
i′∈Vm

xTi xi′ ρ̃ij ρ̃i′j/n

= tr(T VmC)− 2tr(T VmCT Vm ρ̃)) + tr(ρ̃T VmCT Vm ρ̃)

(6)

and

b = −
∑
i∈Vm

∑
j /∈Vm

2xTj xiρ̃ij/(n
√
σjj) +

p∑
j=1

∑
i∈Vm

∑
i′ /∈Vm

xTi xi′ ρ̃ij ρ̃i′j/(n
√
σi′i′)

= −2tr(T VmCσ−1/2T V
c
m ρ̃) + tr(ρ̃T v

c
mσ−1/2CT Vm ρ̃).

(7)

The solution would be

y =
b+

√
b2 + 4a|Vm|
2|Vm|

.

The positive solution is unique because

a =tr

(
C(T Vm − ρ̃T Vm)T (T Vm − ρ̃T Vm)

)
> 0. (8)

2.3 ASYMPTOTIC PROPERTIES

In this section, we discuss the asymptotic properties of the penalized composite like-

lihood estimates for sparse symmetric Gaussian graphical models. In terms of the choice

of penalty function, there are many penalty functions available. As the LASSO penalty,
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pλ(|θl|) = λ|θl|, increases linearly with the size of its argument, it leads to biases for the

estimates of nonzero coefficients. To attenuate such estimation biases, Fan and Li (2001)

proposed the SCAD penalty. The penalty function satisfies pλ(0) = 0, and its first-order

derivative is

p′λ(θ) = λ{I(θ ≤ λ) +
(aλ− θ)+
(a− 1)λ

I(θ > λ)}, for θ ≥ 0,

where a is some constant, usually set to 3.7 (Fan and Li, 2001), and (t)+ = tI(t > 0)

is the hinge loss function. The SCAD penalty function does not penalize as heavily as

the L1 penalty function on parameters with large values. It has been shown that with

probabability tending to one, the likelihood estimation with the SCAD penalty not only

selects the correct set of significant covariates, but also produces parameter estimators

as efficient as if we know the true underlying sub-model (Fan & Li, 2001). Namely, the

estimators have the so-called ORACLE property. However, it has not been investigated if

the oracle property is also enjoyed by composite likelihood estimation of GGM with the

SCAD penalty. The following discussion is focused on the RCON model but it can be

easily extended to RCOR model.

For notational convenience, let z = {Es : θEs 6= 0} ∪ V denote all the nonzero edge

classes and all vertex classes and zc = {Es : θEs = 0} denote all the zero edge classes.

The parameter vector can be expressed as θ = (θE1 , . . . , θEl
, θV1 , . . . , θVk). Let θ0 denote

the true null value.

Theorem 1. Given the SCAD penalty function pλ(θ), if λn → 0, and
√
nλn → ∞ as

n→∞, then there exist a local maximizer θ̂ to Q(θ) and ||θ̂−θ0|| = Op(n
1
2 ). Furthermore,

we have

lim
n→∞

P (θ̂zc = 0) = 1.

Proof. Consider a ball ||θ − θ0|| ≤Mn−
1
2 for some finite M. Applying Taylor Expansion,
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we obtain:

∂Q(θ)/∂θj = ∂`c(θ)/∂θj − np′λn(|θj|)sign(θj)

= ∂`c(θ0)/∂θj +
∑

j′∈(E∪V)

(θj′ − θj′0)∂2`c(θ∗)/∂θjθj′ − np′λn(|θj|)sign(θj),
(9)

for j ∈ (E ∪ V) and some θ∗ between θ and θ0. As E(∂`c(θ0)/∂θj) = 0, ∂`c(θ0)/∂θj =

Op(n
1
2 ). As |θ∗ − θ| ≤ Mn−

1
2 and ∂2`c(θ

∗)/∂θjθj′ = Op(n) componentwise. First we

consider j ∈ zc. Because lim infn→∞lim infβ→0+p
′
λn

(β)/λn > 0, and λn → 0, and
√
nλn →

∞ as n → ∞, the third term dominates the the first two terms. Thus the sign of

∂Q(θ)/∂θj is completely determined by the sign of βj. This entails that inside this Mn−1/2

neighborhood of β0, ∂Q(θ)/∂θj > 0, when θj < 0 and ∂Q(θ)/∂θj < 0, when θj > 0.

Therefore for any local maximizer θ̂ inside this ball, then θ̂j = 0 with probability tending

to one. As pλn(0) = 0, we obtain

Q(θ)−Q(θ0) = `c(θ)− `c(θ0)− n
∑

j∈(E∪V)

(
pλn(|θj|)− pλn(|θj0|)

)
≤ (θ − θ0)T

∂`c(θ0)

∂θ
+ (θ − θ0)T

∂2`c(θ
∗)

∂θ2
(θ − θ0)

− n
∑
j∈z

(
p′λn(|θj0|)sign(θj0)(θj − θj0) + p

′′

λn(|θj0|)(θj − θj0)2(1 + o(1))

)
.

(10)

For n large enough and θj0 6= 0, p′λ(|θj0|) = 0 and p′′λ(|θj0|) = 0. Furthermore, ∂2`c(θ
∗)/∂θ2

converges to H(θ) in probability, which is negative definite. Thus, we have Q(θ) ≤ Q(θ0)

with probability tending to one for θ on the unit ball. This implies there exists a local

maximizer of θ̂ such that |θ̂ − θ0| = Op(n
−1/2).

Next, we establish the asymptotic distribution of the estimator θ̂. Let θz denote the

sub-vector of nonzero parameters in θ. Define a matrix Σ1 = diag{p′′|λn|(θj0); j ∈ z}, and

a vector b1 = (p′λn(θj)sign(θj0); j ∈ z). Let Hzz denote the sub-matrix of H(θ) and Vzz

denote the sub-matrix of V (θ) corresponding to the subset of z.
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Theorem 2. Given the SCAD penalty function pλ(θ), if λn → 0 and
√
nλn →∞, as n→

∞, then the sub-vector of the root-n consistent estimator θ̂z has the following asymptotic

distribution:

√
n(Hzz + Σ1){θ̂z − θz0 + (Hzz + Σ1)

−1b1} → N{0, Vzz}, asn→∞.

Proof. Based on Taylor expansion presented in Proof to Theorem 1, we have

0 =
∂Q(θ̂)

∂θz
=
∂`c(θ0)

∂θz
+
∂2`c(θ

∗)

∂θz∂θTz
(θ̂z − θz0)− nb1 − n(Σ1 + o(1))(θ̂z − θz0). (11)

As θ̂ → θ0 in probability, 1
n
−∂2`c(θ∗)
∂θz∂θTz

→ Hzz in probability. The limiting distribution of

1√
n
∂`c(θ0)
∂θz

is N{0, Vzz}. According to Slutsky’s theorem, we have
√
n(Hzz + Σ1){θ̂z − θz0 +

(Hzz + Σ1)
−1b1} → N{0, Vzz)}.

Next we discuss the estimation of the Hessian matrix Hzz and the variability matrix

Vzz. As the second differentiation is easy to calculate, we obtain Ĥzz = ∂2`c(θ)/∂θz∂θ
T
z |θ̂.

The variability matrix based on sample covariance matrix of the composite score vectors

is computationally harder as we need to compute the composite score vector for each

observation, where the number of observations can be large. Alternatively, we perform

bootstrap to obtain the

V̂zz =
1

n(m− 1)

m∑
l=1

(S(m)(θ̂)− S)T (S(m)(θ̂)− S),

where S(θ) = ∂`c(θ)/∂θz, S
(m)(θ̂) denotes the score vector evaluated with the composite

estimator obtained from the original sample and the data from the mth bootstrap sample

and S =
∑m

l=1 S
(m)(θ̂)/m. In pratice, we only need a moderate number of bootstrap

samples to obtain V̂zz.

3. NUMERICAL ANALYSIS

We analyze the “math” data set from Mardia et al. (1979), which consists of 88

students in 5 different mathematics subjects: Mechanics (me), Vectors (ve), Algebra (al),
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Analysis (an) and Statistics (st). The model with symmetry proposed by Hojsgaard and

Lauritzen (2008) has vertex color classes {al}, {me, st}, {ve, an} and edge color classes

{(al,an)}, {(an,st)}, {(me,ve), (me,al)}, and {(ve,al), (al,st)}. We perform composite

likelihood estimation on this symmetric model with no penalty imposed on the parameters.

In Table 1, the composite likelihood estimates and their standard deviations calculated

through bootstraps are compared with those obtained by maximum likelihood estimator

and a naive estimator. The naive estimator estimates the edge class parameters and

vertex class parameters by simply averaging all the values belonging to the same class in

the inverse sample covariance matrix. All three methods yield results that are very close

to each other.

Next we examine the performance of the unpenalized composite likelihood estimator

on large matrices. First we consider the RCON model. We simulate under different sce-

narios with n varying from 250 to 1000 and p varying from 40, 60 to 100. We include 30

different edge classes and 20 different vertex classes. We simulate a sparse matrix with

θE = (025, 0.2591, 0.1628,−0.1934, 0.0980, 0.0518), and θV = (1.3180, 1.8676, 1.788004,

1.7626, 1.6550, 1.1538, 1.3975, 1.7877, 1.7090, 1.6931, 1.46313, 1.5131, 1.7084, 1.7344, 1.1441,

1.8059, 1.7446, 1.8522, 1.3146, 1.1001), where 0p denotes a zero vector of length p. The

number of nonzero edges ranges from about 250 to 1640. In Table 2, we compare the sum

of squared errors of the composite likelihood estimates with the naive estimates from 100

simulated data sets. The proposed composite likelihood estimates consistenly enjoy much

smaller sum of squared errors across all settings.

We also investigate the empirical performance of the proposed composite likelihood

estimator under the RCOR model. We simulate under different scenarios with n varying

from 250 to 1000 and p varying from 40, 60 to 100. We include 30 different edge classes and

20 different vertex classes. We simulate a sparse matrix with ρE = (026, 0.1628, −0.1534,

0.0980, 0.0518) and θV = (3.0740, 3.6966, 3.7772, 3.5475, 3.2841, 3.4699, 3.7235, 3.5987,
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3.3313, 3.8183, 3.9236, 3.9008, 3.9011, 3.0470, 3.0139, 3.2072, 3.8438, 3.4823, 3.9373, 3.0125.)

In table 3, we provide the errors ||ρ̂E − ρE ||2 and ||
√
σ̂V −

√
σ̂V ||2 for the composite like-

lihood estimates and the naive estimates from 100 simulated data sets. With regard to

the estimated partial correlations, the composite likelihood estimates yield consistently

smaller errors compared to the naive estimates. With regard to the conditional standard

deviations, the composite likelihood estimates yield slightly larger errors under sample

size n = 250, and n = 500. With sample size n = 1000, the composite likelihood estimates

have smaller errors than the naive estimates. For example, with p = 100 and the number

of true edges close to 1300, the naive estimate for the conditional standard deviation has

error 1.8116, while the composite likelihood estimate has error 0.2923.

We further examine the empirical performance of the penalized composite likelihood

estimator. We simulate the RCON model using the same settings as of Table 1. We

consider different scenarios with n = 250 or n = 500, and p = 40 or p = 60. We use the

penalized composite likelihood estimator to estimate the sparse matrix. The tuning pa-

rameter is selected by composite BIC, which is similar to BIC with the first term replaced

by the composite likelihood evaluated at the penalized composite likelihood estimates.

For each setting, 100 simulated data sets are generated and for each data we calculate the

number of false negatives and false positives. In Table 4, it is shown that the proposed

method has satisfactory model selection property with very low false negative and false

positive results. For example, with n = 500 and p = 60, each simulated data set has

an average number of 1474 zero edges and 325 nonzero edges. The proposed method

identifies an average of zero false negative result and 0.58 false positive result. The size

of the tuning parameters is also listed in Table 4.

5. APPLICATTION

We apply the proposed method on a real biological data set. The experiment was con-
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ducted to examine how GM-CSF modulates global changes in neutrophil gene expressions

(Kobayashi et al, 2005). Time course summary PMNs were isolated from venous blood

of healthy individuals. Human PMNs (107) were cultured with and without 100 ng/ml

GM-CSF for up to 24 h. The Experiment was performed in triplicate, using PMNs from

three healthy individuals for each treatment. There are in total 12625 genes monitored,

each gene is measured for 9 replications at time 0, and measured for 6 times at time 3, 6,

12, 18, 24h. At each of these 5 points, 3 measurements were obtained for treatment group

and 3 measurements were obtained for control group. We first proceed with standard

gene expression analysis. For each gene, we perform an ANOVA test on the treatment

effect while aknowledging the time effet. We rank the F statistic for each gene and select

the top 200 genes who have the most significant changes in expression between treatment

and control group. Our goal is to study the networks of these 200 genes and also compare

the network of the 200 genes between the treatment and control. We perform clustering

analysis on the selected 200 genes, where the genes clustered together can be viewed as a

group of genes who share similar expression profiles. This imposes symmetry constraints

to the graphical modelling. We cluster these top 200 genes into 10 clusters based on

K-means method. Therefore, there are in total of 55 edge classes and 10 vertex classes to

be estimated based on a 200 by 200 data matrices. We perform penalized estimation and

compare the result of the estimated edges between the treatment versus control. The es-

timated between-cluster edges are provided in Figure 1. It is observed that although most

between-cluster interactions are small, there are a few edges with large values indicating

strong interactions. It is also observed that the edge values obtained from the treatment

group and the control group are mostly comparable and only a few edges exhibit big

differences. For instance, edges between cluster 1 and 5 and between cluster 4 and 6 have

big differences in treatment group versus control group. These findings are worth further

biological investigation to unveil the physical mechanism underlying the networks.
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6. CONCLUSION

When there are both sparsity and symmetry constrainsts on the graphical model, the

penalized composite likelihood formulation based on conditional distributions offers an

alternative way to perform the estimation and model selection. The estimation avoids the

inversion of large matrices. It is shown that the proposed penalized composite likelihood

estimator will threshold the estimate for zero parameters to zero with probability tending

to one and the asymptotic distribution of the estimates for non-zero parameters follow

the multivariate normal distribution as if we know the true submodel containing only

non-zero parameters.
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APPENDIX

• The detailed derivation of the first derivatives with respect to θEs under RCON

model is as follows:

∂Q(θ)

∂θEs

=

p∑
j=1

1

2σjj
∂||Xj +Xθ̃jσ

jj||22
∂θEs

+ nsgn(θEs)

=

p∑
j=1

1

σjj
(Xj +Xθ̃jσ

jj)T
∂(Xj +Xθ̃jσ

jj)

∂θEs

+ nsgn(θEs)

=

p∑
j=1

(Xj +Xθ̃jσ
jj)T (

∑
i;(i,j)∈Es

Xi) + nsgn(θEs)

=

p∑
j=1

(XT
j (

∑
i;(i,j)∈Es

Xi) + σjj(
∑

i;(i,j)∈Es

XT
i (

∑
l;(l,j)∈Es

XlθEs +
∑

l;(l,j)/∈Es

Xlθlj))) + nsgn(θEs)

=(

p∑
j=1

∑
i;(i,j)∈Es

∑
l;(l,j)∈Es

σjjXT
i Xl)θEs +

( p∑
j=1

XT
j (

∑
i;(i,j)∈Es

Xi)+

σjj
∑

i;(i,j)∈Es

∑
l;(l,j)/∈Es

XT
i Xlθlj

)
+ nsgn(θEs).

(12)

• The detailed derivation of the first derivatives with respect to θVm under RCON

model is as follows:

∂Q(θ)

∂σVm

=
1

2

∑
j∈Vm

n

σjj
+ ∂{(Xj +Xθ̃jσ

jj)T (Xj +Xθ̃jσ
jj)

σjj
}/∂σjj

=
n

2

∑
j∈Vm

(
1

σjj
− Cjj

(σjj)2
+ qj),

(13)

where Cij = xTi xj/n, and qj =
∑p

l=1

∑p
l′=1Cll′ θ̃lj θ̃l′j.
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• The detailed derivation of the first derivatives with respect to ρEs under RCOR

model is as follows:

∂Q(ρ, σ)

∂ρEs

=

p∑
j=1

1√
σjj

(
X(ρ̃j � σ−1/2D )

√
σjj −Xj

)T
X(

∂ρ̃j
∂ρEs

� σ−1/2D ) + nsgn(θEs).

(14)

Note that (ρ̃j � σ−1/2D ) = (σ−1/2ρ̃)[,j], the jth column of the matrix. Also we have

the vector
∂ρ̃j
∂ρEs
�σ−1/2D = (σ−1/2TEs)[,j] the jth column of the matrix. Furthermore,

ρ̃ =
∑

s′ ρEs′
TEs′ . This leads to:

∂Q(ρ, σ)

∂ρEs

=

p∑
j=1

ρEs(σ
−1/2TEs)[,j]X

TX(σ−1/2TEs)[,j] + (σ−1/2ρ̃� TEc
s)[,j]X

TX(σ−1/2TEs)[,j]

− 1√
σjj

XT
j X(σ−1/2TEs)[,j] + nsgn(θEs)

=nρEstr

(
(σ−1/2TEs)TC(σ−1/2TEs)

)
+ ntr

(
(σ−1/2ρ̃� TEc

s)TC(σ−1/2TEs)

)
− tr

(
(Xσ−1/2)TX(σ−1/2TEs)

)
+ nsgn(θEs).

(15)
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Table 1: Comparison of likelihood, composite likelihood, moment estimates on ”math”

dataset

parameter est std est std est std

likelihood composite moment

vcc1 0.0281 0.0037 0.0068 0.0005 0.0057 0.0005

vcc2 0.0059 0.0006 0.0074 0.0006 0.0098 0.0013

vcc3 0.0100 0.0009 0.0176 0.0020 0.0182 0.0029

ecc1 -0.0080 0.0015 -0.0062 0.0009 -0.0068 0.0019

ecc2 -0.0018 0.0007 -0.0008 0.0005 -0.0021 0.0008

ecc3 -0.0030 0.0004 -0.0027 0.0002 -0.0019 0.0006

ecc4 -0.0047 0.0008 -0.0051 0.0005 -0.0055 0.0012

Table 2: Comparison of ||θ − θ̂||22 from composite likelihood and moment estimates on

simulated large dataset for RCON model

n p comp moment #true edges

250 40 0.2002 2.3671 256.7475

(0.0757) (0.4580) (15.5644)

250 60 0.1109 5.6270 590.4040

(0.0367) (0.7201) (23.5606)

250 100 0.0509 23.7040 1647.0707

(0.0155) (2.0364) (34.7461)

500 40 0.0901 0.5482 256.7475

(0.0272) (0.1439) (15.5644)

500 60 0.0588 1.0924 590.4040

(0.0177) (0.1728) (23.5606)

500 100 0.0252 3.3530 1647.0707

(0.0098) (0.2781) (34.7461)

1000 40 0.0467 0.1548 256.7475

(0.0160) (0.0444) (15.5644)

1000 60 0.0282 0.2596 590.4040

(0.0090) (0.0491) (23.5606)

1000 100 0.0125 0.6686 1647.0707

(0.0037) (0.0684) (34.7461)
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Table 3: Comparison of the composite likelihood and moment estimates on simulated

large dataset for RCOR model

n p comp moment comp moment #true edges

||ρ̂− ρ0)||2 ||ρ̃− ρ0)||2 ||σ̂1/2 − σ1/2
0 ||2 ||σ̃1/2 − σ1/2

0 ||2

250 40 0.0317 0.0350 2.3869 2.2941 206.3200

(0.0043) ( 0.0050) (0.0185) (0.0179) (13.5011)

250 60 0.0196 0.0231 2.3886 2.2447 474.0400

(0.0023) ( 0.0029) (0.0146) (0.0149) (22.0247)

250 100 0.0097 0.0140 2.3905 2.1449 1316.9200

(0.0015) ( 0.0019) (0.0118) (0.0126) (33.0795)

500 40 0.0317 0.0350 0.9881 0.9226 206.3200

(0.0043) ( 0.0050) (0.0131) (0.0126) (13.5011)

500 60 0.0196 0.0231 0.9891 0.8874 474.0400

(0.0023) ( 0.0029) (0.0103) (0.0106) (22.0247)

500 100 0.0097 0.0140 0.9903 0.8167 1316.9200

(0.0015) ( 0.0019) (0.0083) (0.0089) (33.0795)

1000 40 0.0317 0.0350 0.0375 0.0615 206.3200

(0.0043) ( 0.0050) (0.0062) (0.0076) (13.5011)

1000 60 0.0196 0.0231 0.0301 0.0794 474.0400

(0.0023) ( 0.0029) (0.0046) (0.0071) (22.0247)

1000 100 0.0097 0.0140 0.0221 0.1255 1316.9200

(0.0015) ( 0.0019) (0.0034) (0.0063) (33.0795)

Table 4: Model selection performance of penalized composite likelihood based on 100

simulated datasets under each setting

n p #zero edge #true edges fn fp tuning parameter

250 40 651.6300 120.5500 27.8200 0.0000 1.2770

7.7429 12.9008 (10.2152) (0.0000) (0.3194)

250 60 1469.2300 323.0300 2.3000 5.4400 1.4985

19.5349 16.4890 (11.4111) (19.2518) (0.2514)

500 40 651.6300 121.4700 26.9000 0.0000 1.2650

7.7429 13.2432 (10.6520) (0.0000) (0.3705)

500 60 1474.0900 325.3300 0.0000 0.5800 1.0910

13.6929 11.7903 (0.0000) (5.8000) (0.1961)
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Figure 1: Estimated between-cluster edges for treatment and control groups
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Numbers in parenthesis indicate the cluster IDs, followed by the estimated θ̂Es

for the control and treatment groups.
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