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THE GENERALIZED POVERTY INDEX

GANE SAMB LO

Abstract. We introduce the General Poverty Index (GPI),
which summarizes most of the known and available poverty
indices, in the form

GPI = δ(
A(Qn, n, Z)

nB(Q,n)

Qn
∑

j=1

w(µ1n+µ2Qn−µ3j+µ4)d

(

Z − Yj,n

Z

)

),

where

B(Qn, n) =

Q
∑

j=1

w(j),

A (·) , w (·) , and d (·) are given measurable functions, Qn is
the number of the poor in the sample, Z is the poverty line
and Y1,n ≤ Y2,n ≤ ... ≤ Yn,n are the ordered sampled incomes
or expenditures of the individuals or households. We show
here how the available indices based on the poverty gaps are
derived from it. The asymptotic normality is then estab-
lished and particularized for the usual poverty measures for
immediate applications to poor countries data.

1. Introduction

The Economists are interested in monitoring the welfare of the worse-
off in one given population. In this capacity, poverty measures are
defined and used to compare subgroups and to follow the evolution of
the poor with respect to time. A poverty measure is assumed to fulfill
a number of axioms since the pioneering work of Sen ([13]). Many
authors proposed poverty indices and studied their advantages, like
Sen himself, Thon ([17]), Kakwani ([7]), Clark-Hemming-Ulph ( [2]),
Foster-Greer-Thorbecke ([6]), Ray ([20]), Shorrocks ([15]). Most of the
required properties for such indices are stated and described in ([19])
along with a broad survey of the available poverty indices.
Asymptotic theories for theses quantities, when they come from

random samplings, have been given in recent years. Dia([5]) used

Key words and phrases. asymptotic behavior, empirical process, hungarian construction,
poverty, indices.
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point process theory to give asymptotic normality for the Foster-Greer-
Thorbecke (FGT) index. Sall and Lo([11]) studied an asymptotic the-
ory for the poverty intensity defined below and further, Sall, Seck and
Lo([9]) proved a larger asymptotic normality for a general measure
including the Sen, Kakwani, FGT and Shorrocks ones.
Now our aim, here, is to unify the monetary poverty measurements

with respect as well to Sen’s axiomatic approach as to the asymptotic
aspects. We point out that poverty may be studied through aspects
other than monetary ones as well. It can be viewed through the capabil-
ities to meet basic needs (food, education, health, clothings, lodgings,
etc.). In our monetary frame, the main tools are the poverty indices.
We give, here, a general poverty index denoted as the General Poverty
Index (GPI), which is aimed to summarize all the known and former
ones. Let us make some notation in order to define it.
We consider a population of individuals, each of which having a

random income or expenditure Y with distribution function G(y) =
P (Y ≤ y). An individual is classified as poor whenever his income or
expenditure Y fulfills Y < Z, where Z is a specified threshold level (the
poverty line).
Consider now a random sample Y1, Y2, ...Yn of size n of incomes, with

empirical distribution functionGn(y) = n−1# {Yi ≤ y : 1 ≤ i ≤ 1}. The
number of poor individuals within the sub-population is then equal to
Qn = nGn(Z).
Given these preliminaries, we introduce measurable functions A(p, q, z),

w(t), and d(t) of p, q ∈ N, and z, t ∈ R. The meaning of these functions
will be discussed later on. Set B(Qn, n) =

∑q
i=1w(i).

Let now Y1,n ≤ Y2,n ≤ ... ≤ Yn,n be the order statistics of the sample
Y1, Y2, ...Yn of Y . We consider general poverty indices of the form

(1.1)

GPIn =
A(Qn, n, , Z)

nB(Qn, n)

Qn
∑

j=1

w(µ1n + µ2Qn − µ3j + µ4) d

(

Z − Yj,n
Z

)

,

where µ1, µ2, µ3, µ4 are constants. By particularizing the functions A
and w and by giving fixed values to the µ′

is, we may find almost all
the available indices, as we will do it later on. In the sequel, (1.1) will
be called a poverty index (indices in the plural) or simply a poverty
measure according to the economists terminology.
The poverty line Z is defined by economics specialists or governmen-

tal authorities so that any individual or household with income (say
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yearly) less than Z is considered as a poor one. The poverty line de-
termination raises very difficult questions as mentioned and shown in
( [8]). We suppose here that Z is known, given and justified by the
specialists.

Our unified and global approach will permit various research works,
as well in the Statistical Mathematics field as in the Economics one. It
happens that poverty indices are also somewhat closely connected with
economic growth questions. We should find conditions on the functions
and the constants in (1.1) so that any kind of needed requirements are
met and that the hypotheses imposed by the asymptotic normality are
also fulfilled. This may lead to a class of perfect or almost perfect
poverty measures. In this paper, we concentrate on the description of
the GPI and on the asymptotic normality theory. Our best achieve-
ment is that (1.1), is asymptotically normal for a very broad class of
underlying distributions. These results are then specialized for the
particular and popular indices.
We then begin to describe all the available indices in the frame of

(1.1) in the next section. In section 3, we establish the asymptotic nor-
mality. Related application works to poverty databases can be found
in [10] for instance.

2. How does the GPI include the poverty indices

We begin by making two remarks. First, for almost all the indices,
the function δ(·) is the identity one

∀(u ≥ 0), δ(u) = Id(u) = u.

We only noticed one exception in the Clark-Hemming-Ulph (CHUT)
index. Secondly, we may divide the poverty indices into non-weighted
and weighted ones. The non weighted measures correspond to those
for which the weight is constant and equal to one :

w(µ1n + µ2Qn − µ3j + µ4) ≡ 1.

We begin with them.

2.1. The non-weighted indices. First of all, the Foster-Greer-Thorbecke
(FGT) index of parameter [6] defined for α ≥ 0,

(2.1) FGTn(α) =
1

n

Qn
∑

j=1

(

Z − Yj,n
Z

)α

.

is obtained from the GPI with

δ = Id, w ≡ 1, d(u) = uα, B(Qn, n) = Qn and A(Qn, n, Z) = Qn.
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The Ray index defined by (see [20]), for α > 0,

(2.2) RR,n =
g

nZ

Qn
∑

i=1

((Z − Yj,n)/g)
α

where

(2.3) g =
1

Qn

j=Qn
∑

j=1

(Z − Yj,n)

is derived from the GPI with

δ = Id, w ≡ 1, d(u) = uα, B(Qn, n) = Qn and A(Qn, n, Z) = Qn(g/Z)
α−1.

The coefficient A(Qn, n, Z) depends here on the income or the expen-
diture. This is quite an exception among the poverty indices. We may
also cite here the Watts index (see [18])

PW,n =
1

n

j=Qn
∑

j=1

(lnZ − lnYj,n).

But this may be derived from the FGT one as follows. The income Y
is transformed into lnY and, consequently, the poverty line is taken as
lnZ. It follows that

W (Y ) = FGT (1, lnY )

for the poverty line lnZ. The case is similar for the Chakravarty index
(see [1]), 0 < α < 1,

PCh =
1

n

j=Qn
∑

j=1

(1− (
Yj,n
Z

)α).

We may consider it through the FGT class

W (Y ) = FGT (1, Y α)

for the poverty line Zα.
Now, we have that the CHU index is clearly of the GPI form with

δ = (u) = u1/α, w ≡ 1, d(u) = uα B(Qn, n) = Qn and A(Qn, n, Z) = Qα
n/n

α−1.

Now let us describe the weighted indices.
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2.2. The weighted indices. First, the Kakwani ([7]) class of poverty
measures

(2.4) PKAK,n(k) =
Qn

nΦk(Qn)

Qn
∑

j=1

(Qn − j + 1)k
(

Z − Yj,n
Z

)

,

where

Φk(Qn) =

j=Qn
∑

j=1

jk = B(Qn, n)

comes from the GPI with

δ = Id, w(u) ≡ (u), d(u) = u, µ1 = 0,

µ2 = 1, µ3 = −1, µ4 = 1 and A(n,Qn, Z) = Qn

For k = 1, PKAK,n(1) is nothing else but the Sen poverty measure

(2.5) PSen =
2

n(Qn + 1)

Qn
∑

j=1

(Qn − j + 1)

(

Z − Yj,n
Z

)

.

As to the Shorrocks ([15]) index

(2.6) PSH,n =
1

n2

Qn
∑

j=1

(2n− 2j + 1)

(

Z − Yj,n
Z

)

,

it is obtained from the GPI with

B(Qn, n) = Q(2n−Q), A(n,Qn, Z) = Qn(2n−Qn)/n

and

δ = Id, w(u) ≡ (u), d(u) = u, µ1 = 2, µ2 = 0, µ3 = 2, µ3 = 1.

Thon ([17]) proposed the following measure

PTh =
2

n(n+ 1)

Qn
∑

j=1

(n− j + 1)

(

Z − Yj,n
Z

)

which belongs to the GPI family for

B(n,Qn) = Qn(n−Qn + 1)/2, A(n,Qn, Z) = Q(n−Q+ 1)/(n+ 1),

and

δ = Id, w(u) ≡ u, d(u) = u, µ1 = 1, µ2 = 0, µ3 = 1, µ3 = 1.

Not all the poverty indices are derived from the GPI. What precedes
only concerns those based on the poverty gaps

(Z − Yj), 1 ≤ j ≤ Qn.



6 GANE SAMB LO

We mention one of them in the next subsection.

2.3. An index not derived from the GPI. The Takayama ([16])
index

PTA,n = 1 +
1

n
− 2

µn2

Qn
∑

j=1

(n− j + 1)Yj,n,

where µ is the empirical mean of the censored income, cannot be derived
from the GPI. The main reason is that, it is not based on the poverty
gaps Z − Yj,n. It violates the monotonicity axiom which states that
the poverty measure increases when one poor individual or household
becomes richer.

Now we must study the so-called GPI with respect to the axiomatic
approach as well as to the asymptotic theory. We focus in this paper to
the general theory of asymptotic normality. The interest of this unified
approach is based on the fact that we obtain at once the asymptotic
behaviors for all the available poverty indices, as particular cases. In-
deed, in the next section, we will describe apply the general theorem
to the particular usual indices.

3. Asymptotic normality of the GPI

Let us write the GPI in the form

(3.1) GPIn = δ(Jn)

with

(3.2) Jn =
1

n

Qn
∑

j=1

c(n,Qn, j) d

(

Z − Yj,n
Z

)

,

where c(n,Qn, j) = A(Qn, n, , Z)×w(µ1n+µ2Qn−µ3j+µ4) / B(Qn, n).
Since Y is an income or expenditure variable, its lower endpoint

y0 is not negative. This allows us to study (3.1) via the transform
X = 1/(Y − y0). Throughout this paper, the distribution function of
X is

F (·) = 1−G(y0 + 1/·),
whose upper endpoint is then +∞. Hence (3.2) is transformed as

(3.3) Jn =
1

n

q
∑

j=1

c(n, q, j) d

(

Z − y0 −X−1
n−j+1,n

Z

)

.
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We will need conditions on the function d(·) and on the weight
c(n,q,j), as in ([9]). First assume that

(D1) d(·) admits a continuous derivative on ]0, 1).

(D2) d′( z−y0
z

) and d((z − y0)/z) are finite.

For A(u) = 1/F−1(1− u), we assume that:

(C1) A(·) is differentiable (0, 1) ( and its derivative is denotedA′(u) =
a(u).)
(C2) a(·) is continuous on an interval [a′, a′′] with 0 < a′ < a′′ < 1.

(C3) ∃ u0 > 0, ∃ η > −3/2, ∀ u ∈ (0, u0) , |a(u)| < C0 u
η exp(

∫ 1

u
b(t)t−1dt), with

b(t) → 0 as t→ 0.

The condition (C3) means that a(·) bounded by a regularly varying
function

S(u) = C0 u
η exp(

∫ 1

u

b(t)t−1dt)

of exponent η > −3/2. As to the function δ, we need it to be differ-

entiable on ]0,+∞[, precisely :

(E) There is κ > 0 such that δ(·) is continuously differentiable on
]0, κ].

We also need some conditions on the weight c(·). In order to state
the hypotheses, we introduce further notation. In fact we use in this
paper the representations of the studied random variables Xi, i ≥ 1,
by F−1(1 − Ui), i ≥ 1, where U1, U2, ... is a sequence of independent
random variables uniformly distributed on (0, 1). Now let Un(·) and
Vn(·) be the uniform empirical distribution and the empirical quantile
function based on Ui, 1 ≤ i ≤ n. We have

(3.4) j ≥ 1,
j − 1

n
< s ≤ j

n
=⇒ j

n
= Un(Vn(s))
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so that
(3.5)

j ≥ 1,
j − 1

n
< s ≤ j

n
=⇒ c(n, q, j) = c(n, q, nUn(Vn(s)) ≡ Ln(s).

Since Un(Vn(s)) → s, as n→ ∞, our condition on the weight c(·) is that
the function Ln(·) is uniformly bounded by some constant D > 0 and

(3.6) Ln(s) → L(s), as n→ ∞,

where L(·) is a non-negative C1−function on (0, 1).

We further require that, as n→ ∞,

(3.7) sup
0≤s≤1

∣

∣

√
n(Ln(s)− L(s))− γ(s)

√
n(Gn(Z)−G(Z))

∣

∣ = op(1)

for some function γ(·). Let us finally put

m(s) = L(s) d

(

Z − y0 − 1/F−1(1− s)

Z

)

.

We are now able to give our general theorem for the GPI.

Theorem 1. Suppose that (C1-2-3), (D1-2) and (3.7) hold and let

µ =

∫ G(Z)

0

γ(s)d

(

Z − y0 − 1/F−1(1− s)

Z

)

ds.

and

D =

∫ G(Z)

0

L(s) d

(

Z − y0 − 1/F−1(1− s)

Z

)

ds,

Then √
n(Jn −D) → N (0, ϑ2)

with

ϑ2 = θ2+(m(G(Z))+µ)2G(Z)(1−G(Z))+2(m(G(Z)) + µ)

Z

∫ G(Z)

0

sL(s)h(s)ds

and with

θ2 = Z−2

∫ G(Z)

0

∫ G(Z)

0

L(u) L(v) h(u)h(v)(u ∧ v − uv) du dv

where

h(s) = a(s) d′(
Z − y0 − 1/F−1(1− s)

Z
).

If furthermore (E) holds and D ∈]0, κ[, then
√
n(GPIn−δ(D)) →N (0, ϑ2δ′(D)2)
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The interest of this paper resides on the particular applications of
the theorem for the known indices. Before this, we give the guidelines
of the proof.

4. PROOFS OF THE RESULTS

All our results will be derived from the lemma below. But, first
we place ourselves on a probability space where one version of the
so-called Hungarian constructions holds. Namely, M. Csörgő and al.
(see [4]) have constructed a probability space holding a sequence of
independent uniform random variables U1, U2, ... and a sequence of
Brownian bridges B1, B2, ... such that for each 0 < ν < 1/2, as n→ ∞,

(4.1) sup
1/n≤s≤1−1/n

|βn(s)−Bn(s)|
(s(1− s))1/2−ν

= Op(n
−ν)

and for each 0 < ν < 1/4

(4.2) sup
1/n≤s≤1−1/n

|Bn(s)− αn(s)|
(s(1− s))1/2−ν

= Op(n
−ν),

where {αn(s) =
√
n (Un(s)− s)) , 0 6 s 6 1} is the uniform empirical

process and {βn(s) =
√
n (s− Vn(s)) , 0 6 s 6 1} is the uniform quan-

tile process. (See also [3] for a shorter and more direct proof, and [12]
for dual version, in the sens that, 4.1 holds for 0 < ν < 1/2 and 4.2 for
0 < ν < 1/4 in [3], while 4.1 is established for 0 < ν < 1/4 and 4.2 for
0 < ν < 1/2 in [12]). Throughout ν will be fixed with 0 < ν < 1/4.
Now we are able to give the lemma.

Lemma 1. Suppose that (C1-2-3) and (D1-2) hold and

(4.3) sup
0≤s≤1

√
n |Ln(s)− L(s)| = OP (1) as n → ∞.

Let

D =

∫ G(Z)

0

L(s) d

(

Z − y0 − 1/F−1(1− s)

Z

)

ds.

Then we have the expansion

√
n(Jn −D) = Nn(1) +Nn(2)

+

∫ G(Z)

1/n

√
n(Ln(s)− L(s))d

(

Z − y0 − 1/F−1(1− s))

Z

)

ds+ oP (1)
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with

(4.4) Nn(1) =
1

Z

∫ G(Z)

1/n

L(s)Bn(s)h(s)ds

and

(4.5) Nn(2) = m(G(Z))Bn(G(Z))

for

m(s) = L(s) d

(

Z − y0 − 1/F−1(1− s)

Z

)

.

Proof. This expansion is formulae (4.14) in ([9]). Then, we have the
expansion

√
n(Jn−Cn) =

1

Z

∫ G(Z)

1/n

L(s)Bn(s)h(s) ds+n
−1/2Ln(1/n) d

(

Z − y0 − 1/F−1(1− U1,n)

Z

)

+

∫ Gn(Z)

1/n

√
n(Ln(s)− L(s)) d

(

Z − y0 − 1/F−1(1− Vn(s))

Z

)

ds

+
1

Z

∫ Gn(Z)

G(Z)

L(s)Bn(s)h(s)ds+
1

Z

∫ Gn(Z)

1/n

Ln(s)Bn(s) (h(ζn(s))−h(s)) ds

+
1

Z

∫ Gn(Z)

1/n

Ln(s) (βn (s)− Bn(s)) h(ζn(s)) ds

It is proved in ([9]) that
√
n(Jn − Cn) = Nn(1) +Nn(2)

+

∫ Gn(Z)

1/n

√
n(Ln(s)−L(s)) d

(

Z − y0 − 1/F−1(1− Vn(s))

Z

)

ds+oP (1).

This gives √
n(Jn − Cn) = Nn(1) +Nn(2)

+

∫ G(Z)

1/n

√
n(Ln(s)− L(s))d

(

Z − y0 − 1/F−1(1− s))

Z

)

ds

+

∫ G(Z)

Gn(Z)

√
n(Ln(s)−L(s)) d

(

Z − y0 − 1/F−1(1− Vn(s))

Z

)

ds+ oP (1)

The condition (4.3) leads to the result. �

We are now able to prove the Theorem.
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Proof. Let(Ω,Σ,P) be the probability space on which (4.1) and (4.2)
hold. The Lemma together with (4.3), (3.7) and (4.5), imply

√
n(Jn −D) = Nn(1) +Nn(3) + oP (1),

where Nn(1) is defined in (4.4) and
(4.6)
Nn(3) = (m(G(Z)+µ)αn(G(Z))+oP (1) = (m(G(Z)+µ)Bn(G(Z))+oP (1).

The vector (Nn(1), Nn(3)) is Gaussian and
(4.7)

cov(Nn(1), Nn(3)) =
m(G(Z)) + µ

Z
E

∫ G(Z)

1/n

L(s)h(s)Bn(G(Z))Bn(s)ds

=
m(G(Z)) + µ

Z

∫ G(Z)

1/n

s L(s) h(s) ds.

Then
√
n(Jn − D) is a linear transform Nn(1) + Nn(3) of the Gauss-

ian vector (Nn(1), Nn(3)), plus an oP (1) term. The variance of this
Gaussian term is easily computed through (4.7) and the conclusion fol-
lows, that is

√
n(Jn−D) is asymptotically a centered Gaussian random

variable with variance (4.7). �

5. Asymptotic normality of particular indices

5.1. The FGT-like class. This concerns the indices of the form

FGT (α) =
1

n

Qn
∑

j=1

d

(

Z − Yj,n
Z

)

.

We have here
Ln = 1

so that
γ = 0

Then √
n(Jn−D) → N (0, ϑ2)

with

ϑ2 = θ2 +m(G(Z)2G(Z)(1−G(Z)) +
2m(G(Z))

Z

∫ G(Z)

0

sh(s)ds

and

D =

∫ G(Z)

0

(

Z − y0 − 1/F−1(1− s)

Z

)α

ds.

We should remark that the conditions (D1 − D2) hold for d(u) =
uα, α ≥ 0.
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5.1.1. The statistics nearby the FGT-class. This concerns the statistics
of the form

Jn = δ

(

A(Qn, n)

n

Qn
∑

j=1

d

(

Z − Yj,n
Z

))

,

where we have a random weight not depending on the rank’s statistic.
We will have two sub-cases.

5.1.2. The case of CHU’s index. Recall

CHUn(α) =
Qn

nZ

{

1

Qn

Qn
∑

j=1

(Z − Yj,n)
α

}1/α

=

{

1

n

Qα−1
n

nα−1

Qn
∑

j=1

(
Z − Yj,n

Z
)α

}1/α

= δ(Jn)

We easily get,
√
n((q/n)α−1−G(Z)α−1) = (α−1)G(Z)α−2

√
n(Gn(Z)−G(Z))+ op(1)

= (α− 1)G(Z)α−2Bn(G(Z)) + op(1).

By putting

Cn = FGT (α) =
1

n

Qn
∑

j=1

(
Z − Yj,n

Z
)α

and

(5.1) C =

∫ G(Z)

0

(

Z − y0 − 1/F−1(1− s)

Z

)α

ds,

we have, by the general theorem
√
n(Cn − C) = Nn(1) +Nn(2) + op(1)

with L = 1 . By combining these formulae, we get
√
n(Jn −G(Z)α−1C) → N(0, ζ2)

with

ζ2 = θ2 +H(1−G(Z))

∫ G(Z)

0

s a(s)ds+H2G(Z)(1−G(Z))/2

where,

H = C(α− 1) +G(Z)m(G(Z))G(Z)α−2.

Finally, we get
√
n(CHUn(α)− δ(G(Z)α−1C) → N(0, (ζδ′(G(Z)α−1C)2),
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where
δ′(G(Z)α−1C)2 = G(Z)−(α−1)2/αC(1−α)/α.

5.1.3. The case of Ray’s index. Recall

(5.2) PR,n(α) =
g

nZ

Qn
∑

j=1

((Z − Yj,n)/g)
α

where

(5.3) g =
1

q

j=Qn
∑

j=1

(Z − Yj,n).

We have
Jn = gα−1 × Cn

with
Cn = FGTn(α)

and

C(α) =

∫ G(Z)

0

(

Z − y0 − 1/F−1(1− s)

Z

)α

ds.

We use the notation for the CHU index and we also get (5.1). But

g =
Zn

Qn
× 1

n

j=Qn
∑

j=1

(
Z − Yj,n

Z
) ≡ Zn

Qn
Kn.

We also have

√
n(Kn −K) =

1

Z

∫ G(Z)

1/n

Bn(s)a(s)ds+m1(G(Z))Bn(G(Z)) + op(1)

with

K = C(1) =

∫ G(Z)

0

Z − y0 − 1/F−1(1− s)

Z
ds

and
√
n(
Zn

q
− ZG(Z)−1) = Z

√
N(G(Z)−Gn(Z))G(Z)

−2 + op(1)

= −Z√nBn(Gn(Z))G(Z)
−2 + op(1).

By combining all that precedes, we arrive at
√
n(g −KZG(Z)−1) = (m1(G)ZG(Z)

−1 −KZG(Z)−2)Bn(G(Z))

+
1

G(Z)

∫ G(Z)

1/n

Bn(s)a(s)ds+ op(1)
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and √
n(gα−1 − (KZ/G(Z))α−1) = (α− 1)(KZ/G(Z))α−2

= (α− 1)(KZ/G(Z))α−2 (m1(G)ZG(Z)
−1 −KZG(Z)−2)Bn(G(Z))

+
(α− 1)(KZ/G(Z))α−2

G(Z)

∫ G(Z)

1/n

Bn(s)a(s)ds+ op(1)

= R1Bn(G(Z)) +R2

∫ G(Z)

1/n

Bn(s)a(s)ds+ op(1).

Finally √
n(Rn − (KZ/G(Z))α−1)C) =

(KZ/G(Z))α−1)

Z

∫ G(Z)

1/n

Bn(s)h(s)ds+(KZ/G(Z))α−1) mα(G(Z))Bn(G(Z))

+CR1Bn(G(Z)) + CR2

∫ G(Z)

1/n

Bn(s)a(s)ds+ op(1)

=

∫ G(Z)

1/n

Bn(s)ψ(s)ds+
{

(KZ/G(Z))α−1) mα(G(Z)) + CR1

}

Bn(G(Z))+oP (1)

=

∫ G(Z)

1/n

Bn(s)a(s)ds+ A2Bn(G(Z)) + oP (1),

with

ψ(s) = a(s)
{

C(α)R2 + (KZ/G(Z))α−1Z−1d′(Z−1(Z − y0 − 1/F−1(1− s)))
}

.

Notice that
∫ G(Z)

1/n
Bn(s)h(s)ds+A1Bn(G(Z)) is a normal centered ran-

dom variable with variance

ξ2 =

∫ G(Z)

0

∫ G(Z)

0

ψ(u)ψ(v)(u ∧ v − uv) du dv

+ A2
1G(Z)(1−G(Z)) + 2A1(1−G(Z))

∫ G(Z)

0

s ψ(s)ds.

We conclude that
√
n(PR,n(α)− (KZ/G(Z))α−1)C) →d N(0, ξ2)

with
mα(u) = (Z−1(Z − y0 − 1/F−1(1− s))α,

R1 = (α− 1)(KZ/G(Z))α−2 (m1(G)ZG(Z)
−1 −KZG(Z)−2),

R2 = (α− 1)(KZ/G(Z))α−2G(Z)−1,

and
A1 = (KZ/G(Z))α−1) mα(G(Z)) + CR1
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5.2. The Shorrocks-like indices. This concerns the Thon and Shorrocks
measures. They both have a similar asymptotic behavior.
For Shorrocks’s index, we have

PSH,n =
1

n2

Qn
∑

j=1

(2n− 2j + 1)

(

Z − Yj,n
Z

)

.

But

(5.4) j ≥ 1,
j − 1

n
< s ≤ j

n
=⇒ Ln(s) = c(n, q, j) = (2−2∗j/n+1/n)

→ L(s) = 2(1− s),

and,
√
n(Ln(s)− L(s)) = −2 ∗ √n(Un(Vn(s))− s) + 1/

√
n,

By ([14]), p.151,
√
n sup
0≤s≤1

|Ln(s)− L(s)| ≤ 3/
√
n.

and then

γ ≡ 0, h(·) = a(·)
For the Thon Statistic,

PT,n =
2

n(n+ 1)

Qn
∑

j=1

(n− j + 1)

(

Z − Yj,n
Z

)

,

we also have

L(s) = 2(1− s), γ ≡ 0, a(·) = h(s).

In both cases, for Pn = PSH,n or jn = PT,n, we get
√
n(P n−D) → N (0, ϑ2)

with

D = 2

∫ G(Z)

0

(1− s)

(

Z − y0 − 1/F−1(1− s)

Z

)

ds,

ϑ2 = θ2 +m(G(Z)G(Z)(1−G(Z)) +
4m(G(Z))

Z

∫ G(Z)

0

s(1− s)a(s)ds

and with

θ2 = 4Z−2

∫ G(Z)

0

∫ G(Z)

0

(1− u)(1− v) a(u)a(v)(u ∧ v − uv) du dv.
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5.3. The Kakwani-class. The Kakwani class

PKAK,n =
Qn

nΦk(Qn)

Qn
∑

j=1

(Qn − j + 1)k
(

Z − Yj,n
Z

)

,

is introduced with a positive integer. We consider here that k is merely
a non-negative real number. It is proved in ([?]) that

L(s) = (k + 1)(1− s/G(Z))k

and that
γ(s) = k(k + 1)(1− s/G(Z))k−1(s/G(Z)2).

We remark that m(G(Z)) = 0. Then our result is particularized as
√
n(PKAK,n(k)−D) → N (0, ϑ2)

with

(5.5) ϑ2 = θ2+µ2G(Z)(1−G(Z))+ 2µ

Z
(1−G(Z))

∫ G(Z)

0

sL(s)h(s)ds

and with

θ2 = Z−2

∫ G(Z)

0

∫ G(Z)

0

L(u) L(v) h(u)h(v)(u ∧ v − uv) du dv.

for a fixed real number k ≥ 1.

We have now finished the poverty indices’ review. Some of these
results have been simulated and applied in particular issues with the
Senegalese Data.

6. Conclusion

The GPI includes most of the poverty indices. We have estab-
lished here their asymptotic normality with immediate applications
to poor countries data for finding accurate confidence intervals of the
real poverty measurement. In coming papers, a special study will be
devoted to the Takayama statistic. The GPI is to be thoroughly visited
through the poverty axiomatic approach as well.
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