
Distance Metric Learning for Kernel Machines

Distance Metric Learning for Kernel Machines

Zhixiang (Eddie) Xu xuzx@cse.wustl.edu
Department of Computer Science and Engineering
Washington University in St. Louis
Saint Louis, MO 63130, USA

Kilian Q. Weinberger kilian@wustl.edu
Department of Computer Science and Engineering
Washington University in St. Louis
Saint Louis, MO 63130, USA

Olivier Chapelle Olivier@chapelle.cc

Criteo

Palo Alto, CA 94301

Editor:

Abstract

Recent work in metric learning has significantly improved the state-of-the-art in k-nearest
neighbor classification. Support vector machines (SVM), particularly with RBF kernels, are
amongst the most popular classification algorithms that uses distance metrics to compare
examples. This paper provides an empirical analysis of the efficacy of three of the most
popular Mahalanobis metric learning algorithms as pre-processing for SVM training. We
show that none of these algorithms generate metrics that lead to particularly satisfying
improvements for SVM-RBF classification. As a remedy we introduce support vector metric
learning (SVML), a novel algorithm that seamlessly combines the learning of a Mahalanobis
metric with the training of the RBF-SVM parameters. We demonstrate the capabilities of
SVML on nine benchmark data sets of varying sizes and difficulties. In our study, SVML
outperforms all alternative state-of-the-art metric learning algorithms in terms of accuracy
and establishes itself as a serious alternative to the standard Euclidean metric with model
selection by cross validation.

Keywords: metric learning, distance learning, support vector machines, semi-definite programming,

Mahalanobis distance

1. Introduction

Many machine learning algorithms, such as k-nearest neighbors (kNN) (Cover and Hart,
1967), k-means (Lloid, 1982) or support vector machines (SVM) (Cortes and Vapnik, 1995)
with shift-invariant kernels, require a distance metric to compare instances. These algo-
rithms rely on the assumption that semantically similar inputs are close, whereas semanti-
cally dissimilar inputs are far away. Traditionally, the most commonly used distance metrics
are uninformed norms, like the Euclidean distance. In many cases, such uninformed norms
are sub-optimal. To illustrate this point, imagine a scenario where two researchers want to
classify the same data set of facial images. The first one classifies people by age, the second

1

ar
X

iv
:1

20
8.

34
22

v1
 [

st
at

.M
L

]
 1

6
A

ug
 2

01
2

by gender. Clearly, two images that are similar according to the first researcher’s setting
might be dissimilar according to the second’s.

Uninformed norms ignore two important contextual components of most machine learn-
ing applications. First, in supervised learning the data is accompanied by labels which
essentially encode the semantic definition of similarity. Second, the user knows which ma-
chine learning algorithm will be used. Ideally, the distance metric should be tailored to the
particular setting at hand, incorporating both of these considerations.

A generalization of the Euclidean distance is the Mahalanobis distance (Mahalanobis,
1936). Recent years have witnessed a surge of innovation on Mahalanobis pseudo-metric
learning (Davis et al., 2007; Globerson and Roweis, 2005; Goldberger et al., 2005; Shental
et al., 2002; Weinberger et al., 2006). Although these algorithms use different methodolo-
gies, the common theme is moving similar inputs closer and dissimilar inputs further away
— where similarity is generally defined through class membership. This transformation
can be learned through convex optimization with pairwise constraints (Davis et al., 2007;
Weinberger et al., 2006), gradient descent with soft neighborhood assignments (Goldberger
et al., 2005), or spectral methods based on second-order statistics (Shental et al., 2002).

Typically, the Mahalanobis metric learning algorithms are used in a two-step approach.
First the metric is learned, then it is used for training the classifier or clustering algorithm of
choice. The resulting distances are semantically more meaningful than the plain Euclidean
distance as they reflect the label information. This makes them particularly suited for
the k-nearest neighbor rule, leading to large improvements in classification error (Davis
et al., 2007; Globerson and Roweis, 2005; Goldberger et al., 2005; Shental et al., 2002;
Weinberger et al., 2006). In fact, several algorithms explicitly mimic the k-NN rule and
minimize a surrogate loss function of the corresponding leave-one-out classification error on
the training set (Goldberger et al., 2005; Weinberger et al., 2006).

Although the k-nearest neighbor rule can be a powerful classifier especially in settings
with many classes, it comes with certain limitations. For example, the entire training data
needs to be stored and processed during test time. Also, in settings with fewer classes
(especially binary) it is generally outperformed by Support Vector Machines (Cortes and
Vapnik, 1995). Because of their high reliability as out-of-the-box classifiers, SVMs have
become one of the quintessential classification algorithms in many areas of science and
beyond. An important part of using SVMs is the right choice of kernel. The kernel function
k(xi,xj) encodes the similarity between two input vectors xi and xj . There are many
possible choices for such a kernel function. One of the most commonly used kernels is the
Radial Basis Function (RBF) kernel (Schölkopf and Smola, 2002), which itself relies on a
distance metric.

This paper considers metric learning for support vector machines. As a first contribution,
we review and investigate several recently published kNN metric learning algorithms for
the use of SVMs with RBF kernels. We demonstrate empirically that these approaches do
not reliably improve SVM classification results up to statistical significance. As a second
contribution, we derive a novel metric learning algorithm that specifically incorporates the
SVM loss function during training. Here, we learn the metric to minimize the validation
error of the SVM prediction at the same time that we train the SVM. This is in contrast
to the two-step approach of first learning a metric and then training the SVM classifier
with the resulting kernel. This algorithm, which we refer to as Support Vector Metric

2

Distance Metric Learning for Kernel Machines

Learning (SVML), is particularly useful for three reasons. First, it achieves state-of-the-
art classification results and clearly outperforms other metric learning algorithms that are
not explicitly geared towards SVM classification. Second, it provides researchers outside of
the machine-learning community a convenient way to automatically pre-process their data
before applying SVMs.

This paper is organized as follows. In Section 2, we introduce necessary notation and
review some background on SVMs. In Section 3 we introduce several recently published
metric learning algorithms and report results for SVM-RBF classification. In Section 4
we derive the SVML algorithm and some interesting variations. In Section 5, we evaluate
SVML on nine publicly available data sets featuring a multitude of different data types and
learning tasks. We discuss related work in Section 6 and conclude in Section 7.

2. Support Vector Machines

Let the training data consist of input vectors {x1, . . . ,xn} ∈ Rd with corresponding discrete
class labels {y1, . . . , yn} ∈ {+1,−1}. Although our framework can easily be applied in a
multi-class setting, for the sake of simplicity we focus on binary scenarios, restricting yi to
two classes.

There are several reasons why SVMs are particularly popular classifiers. First, they
are linear classifiers that involve a quadratic minimization problem, which is convex and
guarantees perfect reproducibility. Furthermore, the maximum margin philosophy leads to
reliably good generalization error rates (Vapnik, 1998). But perhaps most importantly, the
kernel-trick (Schölkopf and Smola, 2002) allows SVMs to generate highly non-linear decision
boundaries with low computational overhead. More explicitly, the kernel-trick maps the
input vectors xi implicitly into a higher (possibly infinite) dimensional feature space with
a non-linear transformation φ : Rd → H. Training a linear classifier directly in this high
dimensional feature space H would be computationally infeasible if the vectors φ(xi) were
accessed explicitly. However, SVMs can be trained completely in terms of inner-products
between input vectors. With careful selection of φ(), the inner-product φ(xi)

>φ(xj) can
be computed efficiently even if computation of the mapping φ() itself is infeasible. Let the
kernel function be k(xi,xj) = φ(xi)

>φ(xj) and the n× n kernel matrix be Kij = k(xi,xj).
The optimization problem of SVM training can be expressed entirely in terms of the kernel
matrix K. For the sake of brevity, we omit the derivation and refer the interested reader
to one of many detailed descriptions thereof (Schölkopf and Smola, 2002). The resulting
classification rule of a test point xt becomes

h(xt) = sign(

n∑
j=1

αjyjk(xj ,xt) + b), (1)

where b is the offset of the separating hyperplane and α1, . . . , αn are the dual variables
corresponding to the inputs x1, . . . ,xn. In the case of the hard-margin SVM, the parameters
αi are learned with the following quadratic optimization problem

min
α1,...,αn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj)

3

subject to :

n∑
i=1

αiyi = 0 and αi ≥ 0. (2)

The optimization problem (2) ensures that all inputs xi with label yi = −1 are on one side
of the hyperplane, and those with label yj = +1 are on the other. These hard constraints
might not always be feasible, or in the interest of minimizing the generalization error (e.g.
in the case of noisy data). Relaxing the constraints can be performed simply by altering
the kernel matrix to

K← K +
1

C
In×n. (3)

Solving (2) with a kernel matrix (3) is equivalent to a squared-penalty of the violations of
the separating hyperplane (Cortes and Vapnik, 1995). This formulation requires no explicit
slack variables in the optimization problem and therefore simplifies the derivations of the
following sections.

2.1 RBF Kernel

There are many different kernel functions that are suitable for SVMs. In fact, any function
k(·, ·) is a well-defined kernel as long as it is positive semi-definite (Schölkopf and Smola,
2002). The Radial Basis Function (RBF)-Kernel is defined as follows:

k(xi,xj) = e−d
2(xi,xj), (4)

where d(·, ·) is a dissimilarity measure that must ensure positive semidefiniteness of k(·, ·).
The most common choice is the re-scaled squared Euclidean distance, defined as

d2(xi,xj) =
1

σ2
(xi − xj)

>(xi − xj), (5)

with kernel width σ > 0. The RBF-kernel is one of the most popular kernels and yields
reliable good classification results. Also, with careful selection of C, SVMs with RBF-
kernels have been shown to be consistent classifiers (Steinwart, 2002).

2.2 Relationship with kNN

The k-nearest neighbor classification rule predicts the label of a test point xt through a
majority vote amongst its k nearest neighbors. Let ηj(xt) ∈ {0, 1} be the neighborhood
indicator function of a test point xt, where ηj(xt) = 1 if and only if xj is one of the k
nearest neighbors of xt. The kNN classification rule can then be expressed as

h(xt) = sign(

n∑
j=1

ηj(xt)yj). (6)

Superficially, the classification rule in (6) very much resembles (1). In fact, one can interpret
the SVM-RBF classification rule in (1) as a “soft”-nearest neighbor rule. Instead of the zero-
one step function ηj(xt), the training points are weighted by αjk(xt,xj). The classification is
still local-neighborhood based, as k(xt,xj) decreases exponentially with increasing distance
d(xt,xj). The SVM optimization in (2) assigns appropriate weights αj ≥ 0 to ensure that,
on the leave-one-out training set, the majority vote is correct for all data points by a large
margin.

4

Distance Metric Learning for Kernel Machines

3. Metric Learning

It is natural to ask if the SVM classification rule can be improved with better adjusted
metrics than the Euclidean distance. A commonly used generalization of the Euclidean
metric is the Mahalanobis metric (Mahalanobis, 1936), defined as

dM(xi,xj) =
√

(xi − xj)>M(xi − xj), (7)

for some matrix M ∈ Rd×d. The matrix M must be semi-positive definite (M � 0), which
is equivalent to requiring that it can be decomposed into M = L>L, for some matrix
L ∈ Rr×d. If M = Id×d, where Id×d refers to the identity matrix in Rd×d, (7) reduces
to the Euclidean metric. Otherwise, it is equivalent to the Euclidean distance after the
transformation xi → Lxi. Technically, if M = L>L is a singular matrix, the corresponding
Mahalanobis distance is a pseudo-metric1. Because the distinction between pseudo-metric
and metric is unimportant for this work, we refer to both as metrics. As the distance in (7)
can equally be parameterized by L and M we use dM and dL interchangeably.

In the following section, we will introduce several approaches that focus on Mahalanobis
metric learning for k-nearest neighbor classification.

3.1 Neighborhood component analysis

Goldberger et al. (2005) propose Neighborhood Component Analysis (NCA), which min-
imizes the expected leave-one-out classification error under a probabilistic neighborhood
assignment. For each data point or query, the neighbors are drawn from a softmax proba-
bility distribution. The probability of sampling xj as a neighbor of xi is given by:

pij =

 e−d2L(xi,xj)∑
k 6=i e

−d2
L
(xi,xk)

if i 6= j

0 if i = j
(8)

Let us define an indicator variable yij ∈ {0, 1} where yij = 1 if and only if yi = yj . With
the probability assignment described in (8), we can easily compute the expectation of the
leave-one-out classification accuracy as

Aloo =
1

n

n∑
i=1

n∑
j=1

pijyij . (9)

NCA uses gradient ascent to maximize (9). The advantage of the probabilistic framework
over regular kNN is that (9) is a continuous, differentiable function with respect to the linear
transformation L. By contrast, the leave-one-out error of regular kNN is not continuous or
differentiable. The two down-sides of NCA are its relatively high computational complexity
and non-convexity of the objective.

1. A pseudo-metric is not require to preserve identity, i.e. d(xi,xj) = 0 ⇐⇒ xi = xj .

5

3.2 Large Margin Nearest Neighbor Classification

Large Margin Nearest Neighbor (LMNN), proposed by Weinberger et al. (2006), also mimics
the leave-one-out error of kNN. Unlike NCA, LMNN employs a convex loss function, and
encourages local neighborhoods to have the same labels by pushing data points with different
labels away and pulling those with similar labels closer. The authors introduce the concept
of target neighbors. A target neighbor of a training datum xi are data points in the training
set that should ideally be the nearest neighbors (e.g. the closest points under the Euclidean
metric with the same class label). LMNN moves these points closer by minimizing∑

j i

dM(xi,xj), (10)

where j i indicates that xj is a target neighbor of xi. In addition to the objective (10),
LMNN also enforces that no datum with a different label can be closer than a target
neighbor. In particular, let xi be a training point and xj one of its target neighbors. Any
point xk of different class membership than xi should be further away than xj by a large
margin. LMNN encodes this relationship as linear constraints with respect to M.

d2M(xi,xk) ≥ d2M(xi,xj) + 1 (11)

LMNN uses semidefinite programming to minimize (10) with respect to (11). To account
for the natural limitations of a single linear transformation the authors introduce slack
variables. More explicitly, for each triple (i, j, k), where xj is a target neighbor of xi and
yk 6= yi, they introduce ξijk ≥ 0 which absorbs small violations of the constraint (11). The
resulting optimization problem can be formulated as the following semi-definite program
(SDP) (Boyd and Vandenberghe, 2004):

min
M�0

∑
j i

d2M(xi,xj) + µ
∑

j i,k:yk 6=yi

ξijk

subject to:
(1) d2M(xi,xk)− d2M(xi,xj) ≥ 1− ξijk
(2) ξijk ≥ 0

Here µ ≥ 0 defines the trade-off between minimizing the objective and penalizing constraint
violations (by default we set µ = 1).

3.3 Information-Theoretic Metric Learning

Different from NCA and LMNN, Information-Theoretic Metric Learning (ITML), proposed
by Davis et al. (2007), does not minimize the leave-one-out error of kNN classification. In
contrast, ITML assumes a uni-modal data-distribution and clusters similarly labeled inputs
close together while regularizing the learned metric to be close to some pre-defined initial
metric in terms of Gaussian cross entropy (for details see Davis et al. (2007)). Similar
to LMNN, ITML also incorporates the similarity and dissimilarity as constraints in its
optimization. Specifically, ITML enforces that similarly labeled inputs must have a distance
smaller than a given upper bound dM(xi,xj) ≤ u and dissimilarly labeled points must be

6

Distance Metric Learning for Kernel Machines

further apart than a pre-defined lower bound dM(xi,xj) ≥ l. If we denote the set of similarly
labeled input pairs as S, and dissimilar pairs as D, the optimization problem of ITML is:

min
M�0

tr(MM−1
0)− log det(MM−1

0)

subject to:
(1) d2M(xi,xj) ≤ u ∀(i, j) ∈ S,
(2) d2M(xi,xj) ≥ l ∀(i, j) ∈ D.

Davis et al. (2007) introduce several variations, including the incorporation of slack-variables.
One advantage of the particular formulation of the ITML optimization problem is that the
SDP constraint M � 0 does not have to be monitored explicitly through eigenvector de-
compositions but is enforced implicitly through the objective.

Statistics Haber Credit ACredit Trans Diabts Mammo CMC Page Gamma

#examples 306 653 690 748 768 830 962 5743 19020
#features 3 15 14 4 8 5 9 10 11
#training exam. 245 522 552 599 614 664 770 4594 15216
#testing exam. 61 131 138 150 154 166 192 1149 3804

Metric Error Rates
Euclidean 27.37 13.12 14.11 20.54 23.46 18.17 26.91 2.56 12.62
ITML 26.50 13.68 14.71 22.86 23.14 18.20 27.67 4.78 21.50
NCA 26.39 13.48 14.10 22.59 22.74 18.17 26.53 4.74 N/A
LMNN 26.70 13.48 13.89 20.81 22.89 17.78 26.68 2.66 13.04

Table 1: Error rates of SVM classification with an RBF kernel (all parameters were set by
5-fold cross validation) under various learned metrics.

3.4 Metric Learning for SVM

We evaluate the efficacy of NCA, ITML and LMNN as pre-processing step for SVM classifi-
cation with an RBF kernel. We used nine data sets from the UCI Machine Learning repos-
itory (Frank and Asuncion, 2010) of varying size, dimensionality and task description. The
data sets are: Haberman’s Survival (Haber), Credit Approval (Credit), Australian Credit
Approval (ACredit), Blood Transfusion Service (Trans), Diabetes (Diabts), Mammographic
Mass (Mammo), Contraceptive Method Choice (CMC), Page Blocks Classification (Page)
and MAGIC Gamma Telescope (Gamma).

For simplicity, we restrict our evaluation to the binary case and convert multi-class
problems to binary ones, either by selecting the two most-difficult classes or (if those are
not known) by grouping labels into two sets. Table 1 details statistic and classification
results on all nine data sets. The best values up to statistical significance (within a 5%
confidence interval) are highlighted in bold. To be fair to all algorithms, we re-scale all
features to have standard deviation 1. We follow the commonly used heuristic for Euclidean
RBF2 and initialize NCA and ITML with L0 = 1

dI for all experiments (where d denotes the

2. The choice of σ2 = #features is also the default value for the LibSVM toolbox (Chang and Lin, 2001).

7

#features). As LMNN is known to be very parameter insensitive, we set µ to the default
value of µ = 1. All SVM parameters (C and σ2) were set by 5-fold cross validation on the
training sets, after the metric is learned. The results on the smaller data sets (n < 1000)
were averaged over 200 runs with random train/test splits, Page Blocks (Page) was averaged
over 20 runs and Gamma was run once (here the train/test splits are pre-defined).

In terms of scalability, NCA is by far the slowest algorithm and our implementation
did not scale up to the (largest) Gamma data set. LMNN and ITML require comparable
computation time (on the order of several minutes for the small- and 1-2 hours for large
data sets – for details see Section 6). As a general trend, none of the three metric learning
algorithms consistently outperforms the Euclidean distance. Given the additional compu-
tation time, it is questionable if either one is a reasonable pre-processing step of SVM-RBF
classification. This is in large contrast with the drastic improvements that these metric
learning algorithms obtain when used as pre-processing for kNN (Goldberger et al., 2005;
Weinberger et al., 2006; Davis et al., 2007). One explanation for this discrepancy could be
based on the subtle but important differences between the kNN classification rule (6) and
the one of SVMs (1). In the remainder of this paper we will explore the possibility to learn
a metric explicitly for the SVM decision rule.

4. Support Vector Metric Learning

As a first step towards learning a metric specifically for SVM classification, we incorporate
the squared Mahalanobis distance (7) into the kernel function (4) and define the resulting
kernel function and matrix as

kL(xi,xj) = e−(xi−xj)
>L>L(xi−xj) and Kij = kL(xi,xj). (12)

As mentioned before, the typical Euclidean RBF setting is a special case where L = 1
σ Id×d.

4.1 Loss function

2 1 0 1 2
0.2

0

0.2

0.4

0.6

0.8

1

sa(z)

z

0/1 loss
a = 1
a = 2
a = 5
a = 10
a = 100

Figure 1: The function sa(z) is a soft
(differentiable) approximation
of the zero-one loss. The pa-
rameter a adjusts the steepness
of the curve.

In the Euclidean case, a standard way to se-
lect the meta parameter σ is through cross-
validation. In its simplest form, this involves
splitting the training data set into two mutu-
ally exclusive subsets: training set T and val-
idation set V . The SVM parameters αi, b are
then trained on T and the outcome is evaluated
on the validation data set V . After a gridsearch
over several candidate values for σ (and C), the
setting that performs the best on the validation
data is chosen. For a single meta parameter,
search by cross validation is simple and surpris-
ingly effective. If more meta parameters need
to be set — in the case of choosing a matrix L,
this involves d× d entries — the number of pos-
sible configurations grows exponentially and the
gridsearch becomes infeasible.

8

Distance Metric Learning for Kernel Machines

We follow the intuition of validating meta parameters on a hold-out set of the training
data. Ideally, we want to find a metric parameterized by L that minimize the classification
error EV on the validation data set

L = argmin
L
EV (L) where: EV (L) =

1

|V |
∑

(x,y)∈V

[h(x) = y].

Here [h(x) = y] ∈ {0, 1} takes on value 1 if and only if h(x) = y. The classifier h(·), defined
in (1) depends on parameters αi and b, which are re-trained for every intermediate setting
of L. Performing the minimization in (13) is non-trivial because the sign(·) function in (1)
is non-continuous. We therefore introduce a smooth loss function LV , which mimics EV ,
but is better behaved.

LV (L) =
1

|V |
∑

(x,y)∈V

sa(yh(x)) where: sa(z) =
1

1 + eaz
. (13)

The function sa(z) is the mirrored sigmoid function, a soft approximation of the zero-one
loss. The parameter a adjusts the steepness of the curve. In the limit, as a� 0 the function
LV becomes identical to EV . Figure 1 illustrates the function sa(·) for various values of a.

4.2 Gradient Computation

Our surrogate loss function LV is continuous and differentiable so we can compute the
derivative ∂LV

∂h(x) . To obtain the derivative of LV with respect to L we need to complete

the chain-rule and also compute ∂h(x)
∂L . The SVM prediction function h(x), defined in (1),

depends on L indirectly through αi, b and K. In the next paragraph we follow the original
approach of (Chapelle et al., 2002) for kernel parameter learning. This approach has also
been used successfully for wrapper-based multiple-kernel-learning (Rakotomamonjy et al.,
2008; Sonnenburg et al., 2006; Kloft et al., 2010). For ease of notation, we abbreviate
h(x) by h and use the vector notation α = [α1, . . . , αn]>. Applying the chain-rule to the
derivative of h results in:

∂h

∂L
=
∂h

∂α

∂α

∂L
+
∂h

∂K

∂K

∂L
+
∂h

∂b

∂b

∂L
. (14)

The derivatives ∂h
∂α ,

∂h
∂b ,

∂h
∂K ,

∂K
∂L are straight-forward and follow from definitions (12) and

(1) (Petersen and Pedersen, 2008). In order to compute ∂α
∂L and ∂b

∂L , we express the vector
(α, b) in closed-form with respect to L. Because we absorb slack variables through our kernel
modification in (3) and we use a hard-margin SVM with the modified kernel, all support
vectors must lie exactly one unit from the hyperplane and satisfy

yi(
n∑
j=1

Kijαjyj + b) = 1. (15)

Since the parameters αj of non-support vectors are zero, the derivative of these αj with
respect to L are also all-zero and do not need to be factored into our calculation. We can

9

0 50 100 150
0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

iterations iterations

 training
 valiation
 test

LVEV

er
ro
r

lo
ss

0 50 100 150
0.09

0.1

0.11

0.12

0.13

0.14

0.15

iterations iterations

 training
 valiation
 test

LVEV

er
ro
r

lo
ss

Figure 2: An example of training, validation and test error on the Credit data set. As
the loss LV (left) decreases, the validation error EV (right) follows suit (solid
blue lines). For visualization purposes, we did not use a second-order function
minimizer but simple gradient descent with a small step-size.

therefore (with a slight abuse of notation) remove all rows and columns of K that do not
correspond to support vectors and express (15) as a matrix equality(

K̄ y
y> 0

)
︸ ︷︷ ︸

H

(
α
b

)
=

(
1
0

)

where K̄ij = yiyjK(xi, xj). Consequently, we can solve for α and b through left-multiplication
with H−1. Further, the derivative with respect to L can be derived from the matrix inverse
rule (Petersen and Pedersen, 2008), leading to

(α, b)>=H−1(1 · · · 1, 0)> and
∂(α, b)

∂Lij
=−H−1

∂H

∂Lij
(α, b)>. (16)

4.3 Optimization

Because the derivative ∂H
∂L follows directly from the definition of K̄ and (12), this completes

the gradient ∂LV
∂L . We can now use standard gradient descent, or second order methods to

minimize (13) up to a local minimum. It is important to point out that (16) requires the
computation of the optimal α, b, given the current matrix L. These can be obtained with
any one of the many freely available SVM packages (Chang and Lin, 2001) by solving the
SVM optimization (2) for the kernel K that results from L. In addition, we also learn the
regularization constant C from eq. (3) with our gradient descent optimization. For brevity
we omit the exact derivation of ∂LV

∂C but point out that it is very similar to the gradient
with respect to L, except that it is computed only from the diagonal entries of K.

We control the steps of gradient descent by early-stopping. We use part of the training
data as a small hold-out set to monitor the algorithm’s performance, and we stop the
gradient descent when the validation results cease to improve.

10

Distance Metric Learning for Kernel Machines

We refer to our algorithm as Support Vector Metric Learning (SVML). Algorithm 1
summarizes SVML in pseudo-code. Figure 2 illustrates the value of the loss function LV as
well as the training, validation and test errors.

Algorithm 1 SVML in pseudo-code.

1: Initialize L.
2: while Hold-out set result keeps improving do
3: Compute kernel matrix K from L as in (7).
4: Call SVM with K to obtain α and b.
5: Compute gradient ∂LV

∂L as in (16) and perform update on L.
6: end while

4.4 Regularization and Variations

In total, we learn d × d parameters for the matrix L and n + 1 parameters for α and b.
To avoid overfitting, we add a regularization term to the loss function, which restricts the
matrix L from deviating too much from its initial estimate L0:

LV (L) =
1

|V |
∑

(x,y)∈V

sa(yh(x)) + λ‖L− L0‖2F (17)

Another way to avoid overfitting is to impose structural restrictions on the matrix L.
If L is restricted to be spherical, L = 1

σ Id×d, SVML reduces to kernel width estimation.
Alternatively, one can restrict L to be any diagonal matrix, essentially performing feature
re-weighing. This can also be useful as a method for feature selection in settings with noisy
features (Weston et al., 2001). We refer to these two settings as SVML-Sphere and SVML-
Diag. Both of these special scenarios have been studied in previous work in the context of
kernel parameter estimation (Ayat et al., 2005; Chapelle et al., 2002). See section 6 for a
discussion on related work.

Another interesting structural limitation is to enforce L ∈ Rr×d to be rectangular, by
setting r < d. This can be particularly useful for data visualization. For high dimensional
data, the decision boundary of support machines is often hard to conceptualize. By setting
r = 2 or r = 3, the data is mapped into a low dimensional space and can easily be plotted.

4.5 Implementation

The gradient, as described in this section, can be computed very efficiently. We use a
simple C/Mex implementation with Matlab. As our SVM solver, we use the open-source
Newton-Raphson implementation from Olivier Chapelle3. As function minimizer we use an
open-source implementation of conjugate gradient descent4. Profiling of our code reveals
that over 95% of the gradient computation time was spent calling the SVM solver. For a
large-scale implementation, one could use special purpose SVM solvers that are optimized
for speed (Bottou et al., 2007; Joachims, 1998). Also, the only computationally intensive

3. Available at http://olivier.chapelle.cc/primal/.
4. Courtesy of Carl Edward Rasmussen, available from http://www.gatsby.ucl.ac.uk/~edward/code/

minimize/minimize.m

11

http://www.gatsby.ucl.ac.uk/~edward/code/minimize/minimize.m
http://www.gatsby.ucl.ac.uk/~edward/code/minimize/minimize.m

parts of the gradient outside of the SVM calls are all trivially parallelizable and could be
computed on multiple cores or graphics cards. However, as it is besides the point of this
paper, we do not focus on further scalability.

5. Results

To evaluate SVML, we revisit the nine data sets from Section 3.4. For convenience, Table 2
restates all relevant data statistics and also includes classification accuracies for all metric
learning algorithms. SVML is naturally slower than SVM with Euclidean distance but
requires no cross validation for any meta parameters. For better comparison, we also include
results for 1-fold and 5-fold cross validation for all other algorithms. In both cases, the meta
parameters σ2, C were selected from five candidates each – resulting in 25 or 125 SVM
executions. The kernel width σ2 is selected from within the set {4d, 2d, d, d2 , d4} and the
meta parameter C was chosen from within {0.1, 1, 10, 100}. As SVML is not particularly
sensitive to the exact choice of λ – the regularization parameter in (17) – we set it to 100 for
the smaller data sets (n < 1000) and to 10 for the larger ones (Page, Gamma). We terminate
our algorithm based on a small hold-out set.

Statistics Haber Credit ACredit Trans Diabts Mammo CMC Page Gamma

#examples 306 653 690 748 768 830 962 5743 19020
#features 3 15 14 4 8 5 9 10 11
#training exam. 245 522 552 599 614 664 770 4594 15216
#testing exam. 61 131 138 150 154 166 192 1149 3804

Metric Error Rates
Euclidean 1-fold 27.16 13.16 14.36 21.05 23.84 18.43 27.12 2.61 12.70
Euclidean 3-fold 27.40 13.10 14.13 20.58 23.39 18.27 26.77 2.55 12.68
Euclidean 5-fold 27.37 13.12 14.11 20.54 23.46 18.17 26.91 2.56 12.62
ITML + SVM 1-fold 26.57 13.78 14.15 23.01 23.19 19.14 28.65 4.82 22.63
ITML + SVM 3-fold 26.13 13.58 13.88 22.98 23.17 17.98 27.68 4.77 21.50
ITML + SVM 5-fold 26.50 13.68 14.71 22.86 23.14 18.20 27.67 4.78 21.50
NCA + SVM 1-fold 26.44 13.74 14.14 22.89 22.84 17.76 27.47 4.73 N/A
NCA + SVM 3-fold 26.47 13.45 14.00 22.67 22.72 18.12 26.60 4.73 N/A
NCA + SVM 5-fold 26.39 13.48 14.10 22.59 22.74 18.17 26.53 4.74 N/A
LMNN + SVM 1-fold 26.38 13.11 13.97 21.02 22.97 17.84 26.80 2.85 13.04
LMNN + SVM 3-fold 26.44 13.30 13.93 20.73 22.86 17.57 26.66 2.81 12.79
LMNN + SVM 5-fold 26.70 13.48 13.89 20.81 22.89 17.78 26.68 2.66 13.04
SVML-Sphere 27.42 13.43 13.78 20.26 23.24 17.81 28.23 3.61 12.70
SVML-Diag 28.15 13.33 15.11 20.46 24.14 17.35 29.51 2.92 12.54
SVML 25.99 12.83 13.92 20.89 23.25 17.57 26.34 3.41 12.54

Table 2: Statistics and error rates for all data sets. The data sets are sorted by smallest to
largest from left to right. The table shows statistics of data sets and error rates
of SVML and comparison algorithms. The best results (up to a 5% confidence
interval) are highlighted in bold.

12

Distance Metric Learning for Kernel Machines

Haber Credit ACredit Trans Diabts Mammo CMC
0

20

40

60

80

100

120

140

160

180

200
Se

co
nd

s

Euclid 1fold
Euclid 3fold
Euclid 5fold
ITML 1fold
ITML 3fold
ITML 5fold
NCA 1fold
NCA 3fold
NCA 5fold
LMNN 1fold
LMNN 3fold
LMNN 5fold
SVML Sp
SVML Diag
SVML

Page Gamma
0

2000

4000

6000

8000

10000

12000
Small data sets Large data sets

Figure 3: Timing results on all data sets. The timing includes metric learning, SVM training
and cross validation. The computational resources for SVML training are roughly
comparable with 3-5 fold cross validation with a Euclidean metric. (NCA did not
scale to the Gamma data set.)

As in Section 2, experimental results are obtained by averaging over multiple runs on
randomly generated 80/20 splits of each data set. For small data sets, we average 200 splits,
20 for medium size, and 1 for the large data set Gamma (where train/test splits are pre-
defined). For the SVML training, we further apply a 50/50 split for training and validation
within the training set, and another 50/50 split on the validation set for early stopping.
The result from SVML appeared fairly insensitive to these splits.

As a general trend, SVML with a full matrix obtains the best results (up to significance)
on 6 out of the 9 data sets. It is the only metric that consistently outperforms Euclidean
distances. The diagonal version SVML-Diag and SVML-Sphere both obtain best results
in 2 out of 9 and are not better than the uninformed Euclidean distance with 5-fold cross
validation. None of the kNN metric learning algorithms perform comparably.

In general, we found the time required for SVML training to be roughly between 3-
fold and 5-fold cross validation for Euclidean metrics, usually outperforming LMNN, ITML
and NCA. Figure 3 provides running-time details on all data sets. We consider the small
additional time required for SVML over Euclidean distances with cross validation as highly
encouraging.

5.1 Dimensionality Reduction.

In addition to better classification results, SVML can also be used to map data into a
low dimensional space while learning the SVM, allowing effective visualizations of SVM
decision boundaries even for high dimensional data. To evaluate the capabilities of our
algorithm for dimensionality reduction and visualization, we restrict L to be rectangular.
Specifically, a mapping into a r = 2 or r = 3 dimensional space. As comparison, we
use PCA to reduce the dimensionality before the SVM training without SVML (all meta
parameters were set by cross-validation). Figure 4 shows the visualization of the support
vectors of the Credit data set after a mapping into a two dimensional space with SVML

13

PCA SVML-2d

Figure 4: 2D visualization of the Credit data set. The figure shows the decision surface
and support vectors generated by SVML (L ∈ R2×d) and standard SVM after
projection onto the two leading principal components.

and PCA. The background is colored by the prediction function h(·). The 2D visualization
shows a much more interpretable decision boundary. (Visualizations of the LMNN and
NCA mappings were very similar to those of PCA.) Visualizing the support vectors and
the decision boundaries of kernelized SVMs can help demystify hyperplanes in reproducing
kernel Hilbert spaces and might help with data analysis.

6. Related Work

Multiple publications introduce methods to learn Mahalanobis metrics. Previous work has
focussed primarily on Mahalanobis metrics for k-nearest neighbor classifiers (Davis et al.,
2007; Globerson and Roweis, 2005; Goldberger et al., 2005; Shental et al., 2002; Shalev-
Shwartz et al., 2004; Weinberger et al., 2006) and clustering (Davis et al., 2007; Shalev-
Shwartz et al., 2004; Shental et al., 2002; Xing et al., 2002). None of these algorithms is
specifically geared towards SVM classification. A detailed discussion of NCA, ITML and
LMNN is provided in Section 3.

Another related line of work focusses on learning of the kernel matrix. The most com-
mon approach is to find convex combinations of already existing kernel matrices (Bach et al.,
2004; Lanckriet et al., 2004) or kernel learning through semi-definite programming (Grae-
pel, 2002; Ong et al., 2005). The most similar area of related work is the field of kernel
parameter estimation (Ayat et al., 2005; Chapelle et al., 2002; Cherkassky and Ma, 2004;
Friedrichs and Igel, 2005). In particular, (Friedrichs and Igel, 2005) can be viewed as learn-
ing a Mahalanobis metric for the Gaussian kernel – however, instead of minimizing a soft
surrogate of the validation error with gradient descent, the authors use genetic programming
to maximize the “fittness” of the kernel parameters. The method of (Chapelle et al., 2002)
uses gradient descent to learn the σ parameter of the RBF kernel matrix. SVML was highly
inspired by this work. The main difference between our work and (Chapelle et al., 2002) is
that SVML learns the full matrix L, and therefore a Mahalanobis metric, whereas Chapelle
et al. only learn the parameter σ or individual weights for blocks of features. Spherical and

14

Distance Metric Learning for Kernel Machines

diagonal SVML can be viewed as a version of (Chapelle et al., 2002). Similarly, (Ayat et al.,
2005; Schittkowski, 2005) also explore feature re-weighting for support vector machines with
alternative loss functions.

7. Conclusion

In this paper we investigate metric learning for SVMs. An empirical study of three of the
most widely used out-of-the-box metric learning algorithms for kNN classification shows
that these are not particularly well suited for SVMs. As an alternative, we derive SVML,
an algorithm that seamlessly combines support vector classification with distance metric
learning. SVML learns a metric that attempts to minimize the validation error of the
SVM prediction at the same time as it trains the SVM classifier. On several standard
benchmark datasets we demonstrate that our algorithm achieves state-of-the-art results
with very high reliability. An important feature of SVML is that it is very insensitive to
its few parameters (which we all set to default values) and does not require any model
selection by cross validation. In fact, we demonstrate that SVML outperforms traditional
SVM-RBF with the Euclidean distance (where parameters are set through cross validation)
consistently in accuracy while requiring a comparable amount of computation time. These
aspects make SVML a very promising general-purpose metric learning algorithm for SVMs
with RBF kernels, which also incorporates automatic model selection. We are currently
implementing an open-source plug-in for the popular LIBSVM library (Chang and Lin,
2001) and extending it to multi-class settings.

7.1 Acknowledgements

We thank Marius Kloft, Ulrich Rueckert, Cheng Soon Ong, Alain Rakotomamonjy, Soeren
Sonnenburg and Francis Bach for motivating this work. We also thank the National Institute
of Health for supporting Zhixiang Xu on grant NIH 1-U01-NS073457-01. Further, we would
like to thank Yahoo Research for their generous support through the Yahoo Research Faculty
Engagement Program.

References

N. E. Ayat, M. Cheriet, and C. Y. Suen. Automatic model selection for the optimization of SVM
kernels. Pattern Recognition, 38(10):1733–1745, 2005.

F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning, conic duality, and the
SMO algorithm. In Proceedings of the twenty-first international conference on Machine learning,
page 6. ACM, 2004.

L. Bottou, O. Chapelle, and D. DeCoste. Large-scale kernel machines. MIT Press, 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
England, 2004.

C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support
vector machines. Machine Learning, 46(1):131–159, 2002.

15

http://www.csie.ntu.edu.tw/~cjlin/libsvm

V. Cherkassky and Y. Ma. Practical selection of SVM parameters and noise estimation for SVM
regression. Neural Networks, 17(1):113–126, 2004.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. In IEEE Transactions in Information
Theory, IT-13, pages 21–27, 1967.

J.V. Davis, B. Kulis, P. Jain, S. Sra, and I.S. Dhillon. Information-theoretic metric learning. In
Proceedings of the 24th international conference on Machine learning, pages 209–216. ACM, 2007.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.ics.

uci.edu/ml.

F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters. Neurocomputing, 64:
107–117, 2005.

A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In Advances in Neural
Information Processing Systems 18, 2005.

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems
17, pages 513–520, Cambridge, MA, 2005. MIT Press.

T. Graepel. Kernel matrix completion by semidefinite programming. Artificial Neural Networks
ICANN 2002, pages 141–142, 2002.

T. Joachims. Making large-scale svm learning practical. LS8-Report 24, Universität Dortmund, LS
VIII-Report, 1998.

M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Non-sparse regularization and efficient training
with multiple kernels. Arxiv preprint arXiv:1003.0079, 2010.

G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jordan. Learning the kernel
matrix with semidefinite programming. The Journal of Machine Learning Research, 5:27–72,
2004.

S.P. Lloid. Least squares quantization in PCM. Special issue on quantization of the IEEE trans. on
information theory, 1982.

P.C. Mahalanobis. On the generalized distance in statistics. In Proceedings of the National Institute
of Science, Calcutta, volume 12, page 49, 1936.

C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. Journal of
Machine Learning Research, 6(07), 2005.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, oct 2008. URL http://www2.imm.dtu.

dk/pubdb/p.php?3274. Version 20081110.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning
Research, 9:2491–2521, 2008.

K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial and
Management Optimization, 1(4):465, 2005.

16

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

Distance Metric Learning for Kernel Machines

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. In
Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, 2004.

N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component
analysis. In Proceedings of the Seventh European Conference on Computer Vision (ECCV-02),
volume 4, pages 776–792, London, UK, 2002. Springer-Verlag. ISBN 3-540-43748-7.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. The
Journal of Machine Learning Research, 7:1531–1565, 2006. ISSN 1532-4435.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal
of Machine Learning Research, 2:67–93, 2002. ISSN 1532-4435.

V. Vapnik. Statistical Learning Theory. Wiley, N.Y., 1998.

K. Q. Weinberger, J. C. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest
neighbor classification. MIT Press, 2006.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for
SVMs. Advances in neural information processing systems, pages 668–674, 2001.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to
clustering with side-information. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

17

	1 Introduction
	2 Support Vector Machines
	2.1 RBF Kernel
	2.2 Relationship with kNN

	3 Metric Learning
	3.1 Neighborhood component analysis
	3.2 Large Margin Nearest Neighbor Classification
	3.3 Information-Theoretic Metric Learning
	3.4 Metric Learning for SVM

	4 Support Vector Metric Learning
	4.1 Loss function
	4.2 Gradient Computation
	4.3 Optimization
	4.4 Regularization and Variations
	4.5 Implementation

	5 Results
	5.1 Dimensionality Reduction.

	6 Related Work
	7 Conclusion
	7.1 Acknowledgements

