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Discussion of “Multiple Testing for
Exploratory Research” by J. J. Goeman
and A. Solari
Nicolai Meinshausen

I want to congratulate the authors on this thought-
provoking and important paper on multiple testing
in exploratory settings.
Standard Multiple Testing procedures can appear

very mechanistic. Hypotheses are ordered by increas-
ing p-value. Given a Type I error criterion, the Mul-
tiple Testing procedure selects a cut-off in this list.
Simply working down the list of hypotheses in or-
der of their p-values is perhaps suboptimal for ex-
ploratory analysis as a lot of information is lost in
this way and important discoveries might be missed.
Some previous work has addressed this issue by
changing the ranking of the hypotheses. To high-
light only three examples: Tibshirani and Wasser-
man (2006) devised a method to borrow strength
across highly correlated test statistics in microarray
experiments. Storey (2007) proposed an “optimal
discovery” procedure that again leads to a different
ranking of variables than the ranking implied by the
marginal p-values. One of the authors also proposed
a very powerful way of incorporating known net-
work structure into the testing procedure [Goeman
and Mansmann, 2008].
The proposed approach to exploratory multiple

testing is more radical, though, than changing the
cut-off or changing the ranking of hypotheses. In-
stead of the perhaps rather dull task of selecting
a cut-off in a list of ordered hypotheses, the re-
searcher can reject for follow-up analysis any set of
hypotheses he or she regards as interesting, using all
the information at hand. The method then returns
a lower bound on the number of false null hypothe-
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ses (true discoveries) in this set. Since the bound is
valid simultaneously across all sets, an exploratory
approach does not invalidate the error bound.
I think this method will be very important and

useful in many fields as it allows a flexible explo-
ration of possibly interesting sets of hypotheses, while
at the same time protecting the practitioner against
too many false rejections (or at least managing ex-
pectations about the number of true discoveries one
can hope to make).
There is a price to be paid for the simultaneous

nature of the bound, though. I have some doubts
(hopefully unfounded) about the applicability to
large-scale testing situations as they arise, for ex-
ample, in genomics or astronomy for two reasons:
computational complexity and statistical power.
It is obvious and also acknowledged by the au-

thors that the proposed procedure without short-
cuts will be impractical for even just a few dozen
hypotheses. The computational complexity is sim-
ply too high. An example is shown in Figure 1 for
a genomics regression example with less than one
hundred observations. The proposed method takes
already more than half a minute for 12 predictor
variables on a standard computer with a 3 GHz
CPU and the supplied cherry R-package and the
complexity seems to be (super-)exponential in the
number of hypotheses, as one would expect. The
proposed shortcuts are not applicable in all settings.
If they are applicable, they seem to be very effective
in reducing the computational complexity, making
large-scale testing feasible. Figure 1 shows that even
testing situations with > 106 tests are handled in
about a second or less.
Maybe more worrying, the statistical power of the

method deteriorates with an increasing number of
hypotheses. This is due to the simultaneous nature
of the bound on the number of correctly rejected
hypotheses among all possible sets of hypotheses.
I compared the power for a simple setting, in which
there arem independent p-values pi with i= 1, . . . ,m
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Fig. 1. Left: computational time (on log-scale) for the standard approach in regression (solid line), with the number of
hypotheses ranging from 2 to 12, and computational time for the shortcut for independent tests (dotted line), with the number
of hypotheses between 2 · 105 and 1.2 · 106. Only the latter is feasible for large-scale testing. Right: the average lower bound
on the total number of true discoveries with the proposed approach (circles) and an alternative given in the text (diamonds).
Due to the simultaneous nature of the proposed bounds, the overall power to reject is good for a few dozen hypotheses but is
deteriorating as the number of hypotheses grows into the hundreds.

with distribution pi ∼ U([0, ci]) and ci = 1 if i >
10 and ci = 0.1/m if i ≤ 10 (there are hence 10
false null hypotheses). If rejecting all hypotheses,
the lower bound for the number of correctly rejected
hypotheses is shown as a function of m in Figure 1,
along with the bound for the same quantity pro-
posed by Meinshausen and Rice (2006). The pro-
posed approach works very well up to a few dozen
hypotheses. If the number of hypotheses is in the
hundreds, the number of sets the bound needs to be
valid over is getting so large that the power of the
method starts to deteriorate quickly.
I acknowledge that the comparison is not quite fair

since the method in Meinshausen and Rice (2006)
does much less: it only gives a lower bound on the to-
tal number of false null hypotheses or a lower bound
for the number of true discoveries in a list that is or-
dered by increasing p-values of the hypotheses. [If we
were to ask only if there are any false null hypotheses
at all, we could be even more sensitive to deviations
from the global null hypothesis with Higher Criti-
cism (Donoho and Jin, 2004).] And for fewer than
50 hypotheses, the proposed bound is remarkably
good.
The power and computational cost objectives thus

both indicate that the method is working very well

for up to a few dozen hypotheses but will probably
need refinements for large-scale testing.
A thought regarding the presentation of results.

As proposed, the method acts somewhat like a black-
box: if given a set of hypotheses, it returns a lower
bound on the number of true discoveries within this
set. While this might be the right approach in many
exploratory settings, I also think that many practi-
tioners could use some guidance as to which sets of
hypotheses could be interesting (without prescribing
exactly which ones to reject, so as to not fall back
into the standard ranking scheme). A step in this
direction is the helpful concept of defining hypothe-

ses, which summarizes the results of the procedure
in compact form.
Each defining hypothesis is a set of hypotheses out

of which at least one hypothesis must be a false null
hypothesis. In other words: the defining hypothe-
ses have a logical AND–OR connection (with AND
between the sets of hypotheses and OR between hy-
potheses in a set). A complementary view could be
given by a logical OR–AND connection, with OR
between sets of hypotheses and AND between hy-
potheses in a set. The results are still presented as
sets of hypotheses. Among all these sets and con-
ditional on event E, there is now guaranteed to be
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Fig. 2. An alternative presentation of the results in the re-
gression example. All dots on each horizontal line form a set of
hypotheses. Out of all nine sets, at least one must correspond
to a set of false null hypotheses (conditional on event E).

at least one set such that all hypotheses in this set
are false. This extends the usual Multiple Testing
paradigm, where the user is handed back just one
set of hypotheses, which is guaranteed to be a set of
false null hypotheses.
In the regression example, there are nine such

sets, the first two being {waist, height, calf, thigh}
and {waist, neck, calf, thigh}. Figure 2 visualizes
them. Among these nine sets, at least one must be
a set where all hypotheses are false null hypothe-
ses (always conditional on the event E). We can
then directly read off that if height is known to be
a null hypothesis (either by a follow-up experiment
or through prior knowledge), then the results give no
reason any longer to suppose that chest was a false
null (since chest is only part of the fifth set; and if
height is a true null, this set can be excluded and

neck will not any longer be in the union of all other
candidate sets). Or, if calf can be excluded, then
the results do not give reason to still suspect that
neck was a false null hypothesis. Such statements
and connections are much more difficult to read off
the set of defining hypotheses but might be useful in
practice, when planning which hypotheses to follow
up.
I want to congratulate the authors again on this

very impressive and useful paper and I hope to see
strong uptake of the method.
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