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Abstract

We develop a highly scalable optimization method called “hierarchical group-thresholding”

for solving a multi-task regression model with complex structured sparsity constraints on

both input and output spaces. Despite the recent emergence of several efficient optimization

algorithms for tackling complex sparsity-inducing regularizers, true scalability in practical

high-dimensional problems where a huge amount (e.g., millions) of sparsity patterns need to

be enforced remains an open challenge, because all existing algorithms must deal with ALL

such patterns exhaustively in every iteration, which is computationally prohibitive. Our

proposed algorithm addresses the scalability problem by screening out multiple groups of

coefficients simultaneously and systematically. We employ a hierarchical tree representation

of group constraints to accelerate the process of removing irrelevant constraints by taking
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advantage of the inclusion relationships between group sparsities, thereby avoiding dealing

with all constraints in every optimization step, and necessitating optimization operation

only on a small number of outstanding coefficients. In our experiments, we demonstrate the

efficiency of our method on simulation datasets, and in an application of detecting genetic

variants associated with gene expression traits.

1. INTRODUCTION

In this paper, we propose a very efficient optimization technique for multi-task regression

with structured sparsity. We are interested in the optimization problem with the following

general form:

min
B

1

2
‖Y −BX‖2F + λ1 |B|+ λ2Ωin(B) + λ3Ωout(B) (1)

where X ∈ RJ×N is the input data for J inputs and N samples, Y ∈ RK×N is the K

output data (equivalently K tasks), and B ∈ RK×J is the regression coefficient matrix.

Here Ωin is an ℓ1/ℓ2 norm for inducing group sparsity among correlated inputs (grouping

effects in the same rows of B) and Ωout is an ℓ1/ℓ2 norm for inducing group sparsity among

correlated outputs (grouping effects in the same columns of B). In this setting, it is possible

that there exists overlap between/within input and output groups (i.e., a row group and

a column group may intersect and hence overlap). Note that this formulation subsumes

popular special cases such as single task lasso, group lasso, etc.. However, throughout this

paper, we use the formulation in (1), as it explicitly presents a highly general regression

problem, and one can still use our algorithm for a single task regression problem by setting

λ3 = 0 and K = 1.

Unfortunately, problem (1) is non-trivial to optimize as it poses two major challenges for

large scale problems. First, we need to be able to handle a large number of group sparsities

efficiently. For example, in eQTL mapping problems in bioinformatics, there exist a very

large number of groups since the number of input and output groups are proportional to K

(e.g., 2 × 104) and J (e.g., 5 × 105), respectively. Second, we need to deal with overlap of
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groups within and between Ωin and Ωout. Note that a simple coordinate descent algorithm

is not applicable when Ωin or Ωout is non-separable.

The second challenge has been addressed by many optimization techniques including

[9, 8, 11, 5, 20, 14, 17, 1, 10, 12, 3]. For example, Jacob et al. [8] proposed to select the

union of overlapping groups as the support of sparse vectors. In their optimization procedure,

input variables are duplicated to convert Ωin with overlap into the norm with disjoint groups,

and an optimization technique for group lasso [13] is applied. Jenatton et al. developed

Structured-Lasso (SLasso) algorithm for sparsity-inducing norms with overlapping groups

[9]. A smoothing proximal gradient method (SPG) [5] is developed to efficiently deal with

overlapping group lasso penalty and graph-guided fusion penalty. Also, an efficient algorithm

based on alternating direction methods [17] was proposed for overlapping group lasso with

both ℓ1/ℓ2 norm and ℓ1/ℓ∞ norm. Recently, fast overlapping group lasso (FoGLasso) [20]

was proposed for fast optimization of overlapping group lasso problem based on accelerated

gradient descent method and a proximal operator.

However, the first challenge is a scalability problem when there exist a very large number

of (overlapping) groups, and it has been relatively less studied in previous works. For exam-

ple, the time complexity of smoothing proximal gradient method (SPG) [5] is O(
∑

gm∈G |gm|),

where G is a set of groups, and a primal-dual algorithm for overlapping group lasso [14] has

time complexity of O(|Ĝ3|), where Ĝ is the set of active groups (groups having non-zero

elements). At each iteration of SLasso algorithm [9], there is an expensive matrix inversion

operation, and the inner loop of Picard-Nesterov method [1] and FoGLasso [20] have the

time complexity of O(J |G|). As the number of groups in large-scale problems can be very

large (e.g. 106), the scalability of existing algorithms could be severely affected by a large

number of groups. Thus, there is an urgent need to develop an algorithm highly scalable

to the number of groups, and in this paper, we present a highly efficient algorithm given a

very large number of (overlapping) groups. Figure 2 illustrates the efficiency of our method

in comparison to other competitors including FoGLasso, SPG, and SLasso.

We present a simple and efficient algorithm called hierarchical group-thresholding method
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(HiGT) to address the scalability problem for overlapping group lasso. We use the following

optimization strategy. First, we screen a large number of zero groups simultaneously by

testing the zero condition of multiple groups. We further improved the speed of this step

by employing a tree data structure where nodes represent the zero patterns encoded by Ωin

and Ωout at different granularity, and edges indicate the inclusion relations among them.

Using the tree data structure, we can avoid checking a large number of zero groups. Second,

given a small number of nonzero groups of coefficients from the previous step, we solve our

problem using an efficient method for overlapping group lasso. We used FoGLasso for the

second step. It is also noteworthy that the accuracy of our screening step is not affected by

the number of overlapping groups as it relies on exact optimality conditions of zero groups.

Unlike our method, a large number of overlapping groups can degrade the accuracy of some

approximation approaches (see Figure 2(b)).

In our experiments, we first evaluate the efficiency of the first step (screening step). Then,

we demonstrate the performance of our method in terms of the speed and the accuracy for

the recovery of structured sparsity via simulation study, in comparison to three state-of-the-

art methods. As an example of biological analysis, we report a novel and significant SNP

pair identified by our method, and present discussions.

Remark The problem (1) is originally motivated by expression quantitative trait loci

(eQTLs) mapping in computational biology. Here eQTLs refer to the genomic locations

or single nucleotide polymorphisms (SNPs) associated with gene expressions. In eQTL map-

ping problems, it is believed that many inputs (i.e., SNPs) impose small or medium effects

on outputs (i.e., expression traits), and we usually have J >> N (J ∼ 106, N ∼ 103) which

exacerbate the noise to signal ratio. Thus, it is desirable to explore the groups of inputs to

increase effective signal strength (individual inputs have too small effects to be detected) for

more accurate causal SNP identification. It is also desirable to perform multi-task learning

by jointly considering multiple (possibly correlated) responses to decrease the sample size

required for successful support recovery [15] (the number of samples is too small to detect
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small signals). Thus, to take advantage of both input groups Ωin and output groups Ωout

simultaneously, we are interested in solving problem (1).

Notations Given a matrix B ∈ RK×J , we denote the k-th row by βk, the j-th column

by βj , and the (k, j) element by βj

k. Given the set of groups G = {gm1, . . . , gm|G|} defined

as a subset of the power set of {1, . . . , J}, βgm

k represents the row vector with elements

{βj

k : j ∈ gm, gm ∈ G}. Similarly, for the set of groups H = {h1, . . . ,h|H|} over K rows of

matrix B, we denote by β
j

ho
the column vector with elements {βj

k : k ∈ ho, ho ∈ H}. We

also define the submatrix of Bgm

ho
as a |ho| × |gm| matrix with elements {βj

k : k ∈ ho, j ∈

gm, ho ∈ H, gm ∈ G}.

2. MULTI-TASK REGRESSION WITH STRUCTURED SPARSITY

We use a linear model parametrized by unknown regression coefficients B ∈ RK×J : Y =

BX+E, where E ∈ RK×N is i.i.d. Gaussian noise with zero mean and the identity covariance

matrix. Throughout the paper, we assume that xi
js and yiks are standardized, and consider

a model without an intercept.

Suppose that we are given a set of input groups G and a set of output groups H. We

consider a multi-task regression model with structured sparsity:

min
B

1

2
‖Y −BX‖2F + λ1‖diag (w

TB)‖1 + λ2

K
∑

k=1

∑

gm∈G

ρt‖β
gm

k ‖2 + λ3

J
∑

j=1

∑

ho∈H

νo‖β
j

ho
‖2, (2)

where gm ∈ G is the mth group of inputs, ho ∈ H is the oth group of outputs, ‖βgm

k ‖2 =
√

∑

j∈gm
(βj

k)
2, and ‖βk

ho
‖2 =

√

∑

k∈ho
(βj

k)
2. Here individual or groups of coefficients are

differently penalized with weightsw ∈ RK×J , ρ ∈ R|G| and ν ∈ R|H|. There may exist overlap

between groups in G and groups in H, and within groups in G or H. Note that B will have

zero patterns which are the union of groups in G and H and individual coefficients. The

supports of B (nonzero βj

k’s) will be the complement of zero patterns. As the contribution

of this paper is to propose an efficient optimization method, for simplicity, we assume that

all weights are set to 1.
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Example We illustrate an example of the penalty used for problem (2). Suppose we have

two inputs and outputs, {x1,x2}, {y1,y2}, and B which includes {β1
1 , β

2
1 , β

1
2 , β

2
2}. For the

input and output groups, we have G = {g1}, g1 = {1, 2}, H = {h1} and h1 = {1, 2}. Under

this setting, the penalty for problem (2) is given by

Ω(B) = λ1

2
∑

k=1

2
∑

j=1

|βj

k|+ λ2

2
∑

k=1

√

√

√

√

2
∑

j=1

(βj

k)
2 + λ3

2
∑

j=1

√

√

√

√

2
∑

k=1

(βj

k)
2. (3)

3. HIERARCHICAL GROUP-THRESHOLDING

In this section, we propose an efficient method to optimize problem (2) referred to as Hierar-

chical Group-Thresholding (HiGT). Our algorithm consists of two steps. First, We identify

zero groups by checking optimality conditions (called thresholding) as we walk through a

predefined hierarchical tree. After walking though the nodes in the tree, some groups of

coefficients might not achieve zero. Second, we optimize problem (2) with only these groups

of non-zero βj

k’s using an efficient optimization technique available for overlapping group

lasso.

Let us characterize the zero patterns induced by ℓ1/ℓ2 norms in problem (2). We first

consider a block of Bgm

ho
which consists of one input group (gm ∈ G) and one output group

(ho ∈ H). Since each group can be zero simultaneously (βgm

k = 0, βj

ho
= 0), there exist

zero patterns for Bgm

ho
= 0 when β

gm

k = 0, ∀k ∈ ho or βj

ho
= 0, ∀j ∈ gm. Furthermore, the

union of multiple B
gm

ho
’s can generate zero patterns for BG

H = 0 which consists of multiple

input groups and multiple output groups, {ho} ∈ H and {gm} ∈ G. One might be able to

check these zero patterns by checking optimality conditions for each β
gm

k = 0 and β
j

ho
= 0.

However, this approach may be inefficient as it needs to examine a large number of groups.

Instead, to efficiently check the zero patterns, we will test multiple groups simultaneously

(i.e., all groups in B
gm

ho
or BG

H). Also, we will construct a hierarchical tree, and exploit the

inclusion relations between the zero patterns so that we can identify zero groups efficiently

by traversing the tree while avoiding unnecessary optimality checks.
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Figure 1: An example of a tree that contains BG
H, where H = {h1,h2}, and G = {g1, g2}.

The root node contains zero pattern for BG
H = 0, and the leaf nodes represent the zero

patterns for Bgm

ho
= 0.

In Figure 1, we show an example of the tree for BG
H when H = {h1,h2}, G = {g1, g2},

and |g1| = |g2| = |h1| = |h2| = 2. We denote the set of zero patterns of B (i.e., Bgm

ho
’s or

BG
H’s) by Z = {Z1, . . . , Z|Z|}. For example, Z1 can be a zero pattern for BG

H = 0 (the root

node in Figure 1). Let us denote B(Zt) by the coefficients of B corresponding to Zt’s zero

pattern. Then we define a tree as follows. A node is represented by Z ∈ Z, and there exists a

directed edge from Z1 ∈ Z to Z2 ∈ Z if and only if Z1 ⊃ Z2 and ∄Z ∈ Z : Z1 ⊃ Z ⊃ Z2. Note

that each layer encodes different granularities of sparsity pattern. When we have multiple

BG
H’s, we can generate a subtree for each BG

H separately, and then connect all the subtrees

to the dummy root node for B = 0.

We can observe that our procedure has the following properties. First, by testing zero

conditions for each node, we can identify multiple zero groups simultaneously. Second,

walking through the tree, if B(Zt) = 0, we know that all the descendants of Zt are also

zero due to the inclusion relations of the tree. Hence, we can skip to check the optimality

conditions that the descendants of Zt are zero.

Considering these properties, we develop our optimization method for the following rea-

sons. First, if B is sparse, our method is very efficient since we can skip optimality checks

for many zero patterns in Z. Mostly we will check only nodes located at the high levels of
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the tree. Second, our method is simple to implement. All we need is to check whether each

node in the tree attains zero. After identifying zero groups, we solve problem (2) with a

small number of non-zero groups of coefficients using an available optimization technique.

Specifically, our hierarchical group-thresholding method has the following procedure:

1. Construct a tree that contains the groups of zero patterns of B (i.e., Bgm

ho
and BG

H).

In our experiments, we used two input and two output groups for each BG
H, i.e., |H| =

|G| = 2.

2. Use depth-first-search (DFS) to traverse the tree, and check optimality conditions to

see if the zero patterns at each node Z achieve zero. If Z satisfies the optimality

condition to be zero, skip the descendants of Z, and visit the next node according to

the DFS order.

3. With the groups of βj

ks which did not achieve zero in the previous step, we solve

problem (2) using an available optimization algorithm for overlapping group lasso. We

used FoGLasso [20] for this step.

In the next section, we show two main ingredients of our optimization method that include

1) the construction of a hierarchical tree, and 2) the optimality condition of each Z ∈ Z in

the tree.

3.1 Construction of Hierarchical Tree

Here we consider each BG
H separately. We first generate a tree for each BG

H, and then combine

them to make a single tree. In each block of BG
H, we examine the zero patterns of Bgm

ho
, which

are included in BG
H, {gm} ∈ G, {ho} ∈ H. These zero patterns of Bgm

ho
are shown in the leaf

nodes in Figure 1. Note that even though we present a two-level tree throughout this paper,

one can design a tree with multiple levels. Then we need to determine the edges of the tree

by investigating the relations of the nodes. Given their relations between BG
H and B

gm

ho
(i.e.,

BG
H ⊃ B

gm

ho
), we create a directed edge Z1 → Z2. Finally, we make a dummy root node and

generate an edge from the dummy node to the roots of all subtrees for BG
H = 0.
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3.2 Screening Rules for Multiple Groups

We present rules for checking zero conditions of each node in the tree. We start with

optimality condition for problem (2) by computing a subgradient of its objective function

with respect to βj

k and set it to zero:

(yk − βkX) (xj)
T = λ1s

j

k + λ2c
j

k + λ3d
j

k, (4)

where sjk, c
j

k and djk are a subgradient of penalties in problem (2) with respect to βj

k.

We first show a rule for identifying B
gm

ho
= 0 which includes |ho| output groups and |gm|

input groups of coefficients. We assume that our algorithm starts with B = 0, and set

βkX = 0, ∀k. Under the assumption, we can test Bgm

ho
= 0 separately using Eq. (4).

Proposition 1 B
gm

ho
= 0 if

∑

k∈ho

∑

j∈gm

∣

∣yk(xj)
T − λ1s

j

k

∣

∣ ≤
∣

∣

∣
λ2

√

|ho| − λ3

√

|gm|
∣

∣

∣
where

sjk =







yk(xj)
T

λ1

if
∣

∣yk(xj)
T
∣

∣ ≤ λ1

sign
(

yk(xj)
T
)

if
∣

∣yk(xj)
T
∣

∣ > λ1.

Proof From the optimality condition in (4), Bgm

ho
= 0 if

∑

k∈ho

∑

j∈gm

{

yk(xj)
T − λ1s

j

k

}2
=

∑

k∈ho

∑

j∈gm

{

λ2(c
j

k) + λ3(d
j

k)
}2

≤ λ2
2|ho|+ λ2

3|gm|+ 2λ2λ3

∑

k∈ho

∑

j∈gm

(cjk)(d
j

k)

≤
(

λ2

√

|ho| − λ3

√

|gm|
)2

.

Here we used the fact that
∑

j∈gm
(cjk)

2 ≤ 1,
∑

k∈ho
(djk)

2 ≤ 1 and
∣

∣

∣

∑

k∈ho

∑

j∈gm
(cjk)(d

j

k)
∣

∣

∣

2

≤
∑

k∈ho

∑

j∈gm
(cjk)

2
∑

k∈ho

∑

j∈go
(djk)

2 ≤ |gm||ho| by Cauchy-Schwarz inequality. The above

inequality holds since −
√

|gm||ho| ≤
∑

k∈ho

∑

j∈gm
(cjk)(d

j

k). Also, sjk ∈ [−1, 1] is deter-

mined to minimize the left-hand side of the inequality, which is equivalent to applying soft-

thresholding to yk(xj)
T . �

Note that Proposition 1 becomes the condition to identify a zero group for overlapping

group lasso when λ3 = 0 and K = 1 (Lemma 2 in [20]). Based on Proposition 1, we further
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propose a rule for identifying BG
H = 0, {gm} ∈ G, {ho} ∈ H as follows:

BG
H = 0 if

∑

k∈ho,ho∈H

∑

j∈gm,gm∈G

∣

∣yk(xj)
T − λ1s

j

k

∣

∣ ≤
∑

ho∈H

∑

gm∈G

∣

∣

∣
λ2

√

|ho| − λ3

√

|gm|
∣

∣

∣
. (5)

This rule does not guarantee that optimality conditions hold for Bgm

ho
= 0 for all ho ∈ H

and gm ∈ G. However, in all of our experiments, we observed no violations when |G| =

|H| = 2, and it was very efficient to identify a large number of zero groups simultaneously.

Here we give some motivation for this rule. Let us denote
∑

k∈ho

∑

j∈gm

∣

∣yk(xj)
T − λ1s

j

k

∣

∣ by

Lom, and
∣

∣

∣
λ2

√

|ho| − λ3

√

|gm|
∣

∣

∣
by Rom. If Lom ≤ Rom for all (o,m), this rule is satisfied,

and it correctly discards groups in BG
H. Now we claim that if Lom > Rom for some (o,m)

(there exist some nonzero blocks, i.e., Bgm

ho
6= 0), Pr(

∑

o,mLom ≤
∑

o,mRom) is small, and

we are unlikely to discard nonzero blocks. Suppose Lom ∼ N (γ, σ) if Bgm

ho
= 0, and Lom ∼

N (τ, σ) if B
gm

ho
6= 0, where σ is a constant, and 0 < γ < Rom ≤ (1 + S/Q)Rom <<

τ . Here S and Q are the number of zero and nonzero blocks in BG
H, respectively, and

thus S + Q = |H||G|. Then, by Hoeffding’s inequality, Pr(
∑

o,m Lom ≤
∑

o,mRom) ≤

exp

{

−2
(

E(
∑

o,m Lom)−
∑

o,mRom

)2

/C

}

, where C is a constant. We can see that if BG
H 6=

0, Pr(
∑

o,m Lom ≤
∑

o,mRom) is likely to be small since E(
∑

o,m Lom) = τQ + γS >>

(1 + S/Q) sup{Rom}Q + γS >
∑

o,mRom. Therefore, the rule in (5) would work well when

S/Q is small since the assumption for τ can be weak. However, it should be noted that if

|G|+ |H| is large, S/Q can be very large (S >> Q), and the assumption for τ becomes too

strong. As a result, this rule may be violated if we test very large blocks.

From computational perspective, the rule in (5) significantly decreases the number of

iterations for identifying zero groups as we can test a block of coefficients consisting of

multiple input groups and multiple output groups. Note that each test can be performed

very efficiently by summation of elements in a pre-computed matrix, and the speed for each

test can potentially be further improved by GPU [2].
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4. EXPERIMENTS

In this section, we show the efficiency and accuracy of our proposed method using simulated

datasets, and present its usefulness for eQTL mapping, an important application in bioin-

formatics. We also present comparison between our optimization method and three other

competitors including Fast overlapping Group Lasso (FoGLasso) [20], Smoothing Proximal

Gradient method (SPG) [5], and Structured Lasso algorithm (SLasso) [9]. Note that Fo-

GLasso is a state-of-the-art method for overlapping group lasso, and Yuan et al. showed

that FoGLasso is significantly faster than other alternative methods [20].

We designed our experiments as follows. In section 4.1, we first present the efficiency of

screening step in our method for a wide range of tuning parameters. Then, we present the

speed and accuracy of our method under various settings in comparison to other methods.

Finally, we confirm the usefulness of our method by showing an interesting interaction effect

between a pair of genetic variants in yeast that we identified using our method.

4.1 Evaluation of Efficiency of Our Method Via Simulation Study

To systematically evaluate the efficiency of our method, we generated simulated datasets

as follows. For generating X ∈ RJ×N , we first selected J input covariates from a uniform

distribution over [0, 1] for N samples. Then we defined input and output groups as follows.

For input groups, we selected the size of input groups from a uniform distribution over [5, 10],

denoted by U(5, 10), and the size of overlapping inputs between two consecutive groups was

selected from U(1, 4). For output groups, the size of output groups was selected from U(3, 5),

and the size of overlap with the previous output group was drawn from U(1, 2). We then

simulated B ∈ RK×J , i.e, the ground-truth coefficients, which includes 52 nonzero coefficients

(βj

k = 3). Given X and B, we generated K outputs by Y = BX + E, E ∼ N (0, I). We

generated 10 different datasets for each simulation setting with N , K and J , and report the

average CPU time and average accuracy using F1 score, which is harmonic mean of precision

and recall rates. Given an estimated B, precision is defined by the ratio of the number of

correctly found nonzero coefficients to the total number of estimated nonzero coefficients,
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and recall is denoted by the number of correctly found nonzero coefficients divided by the

total number of true nonzero coefficients. Throughout all the experiments, we employed a

two-level tree (excluding the dummy root node), where the nodes at the first level contain

a block of coefficients consisting of two input groups and two output groups, and the leaf

nodes include a block of cofficients with one input group and one output group.

Evaluation of Efficiency of Screening Step Via Simulation Study We first evaluate

the efficiency of screening step (the first step in Algorithm 1) for a range of tuning parameters

{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} using simulation datasets with N = 1000,

J = 5000 and K = 5, and Table 1 shows the results. For simplicity, we set λ1 = λ2 = λ3

denoted by λ. From the table, we can observe that screening time drops significantly as

λ changes from 0.05 to 0.02, which indicates that many coefficients were discarded in the

first level of our hierarchical tree. Indeed, the number of selected groups was decreased

from 17071 to 116 without missing true nonzero coefficients. It should be noted that the

updating time (the second step in Algorithm 1) was also substantially reduced when λ is

changed from 0.02 to 0.05 due to the small number of groups selected by screening step.

Thus, our algorithm became very efficient from λ = 0.05 since both screening and updating

step were very fast. For large tuning parameters (e.g. λ ≥ 0.2), we started to miss true

coefficients, and when λ = 0.5, all coefficients were set to zero due to heavy penalization.

We can observe that λ = 0.05 or 0.1 are appropriate for our simulation datasets, and in the

following experiments, we will use these two tuning parameters.

Evaluation of Speed and Induced Structured Sparsity Via Simulation Study We

compared the speed and the accuracy of our HiGT method with the three alternatives of

FoGLasso, SPG and SLasso. We first show the results under a single task regression setting

where λ3 = 0, and K = 1 (this setting was used in previous papers for FoGLasso, SPG

and SLasso). Figure 2(a,b) show CPU time and F1 score of the four methods with different

number of input variables from 1000 to 20000, fixing N = 1000, K = 1, λ1 = λ2 = 0.05, and

12



Table 1: Efficiency of our screening step for a range of tuning parameters. For comparison,

CPU time for updating step (the second step in Algorithm 1) is also presented. The fourth

column denotes the number of groups selected by our screening step (total number of groups:

19152), and the last column represents the number of true nonzero coefficient discarded by

our screening step.

λ1 = λ2 = λ3 Screening Time (s) Updating Time (s) # Selected Groups # Missing β
j
k 6= 0

0.001 0.465 13.246 19152 0

0.002 0.482 13.497 19152 0

0.005 0.470 12.515 19151 0

0.01 0.481 9.343 19124 0

0.02 0.476 6.018 17071 0

0.05 0.246 0.022 116 0

0.1 0.255 0.010 51 0

0.2 0.249 0.003 16 20

0.5 0.239 0 0 52
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Figure 2: (a) CPU time and (b) F1 score comparison of our proposed HiGT method, Fo-

GLasso, SPG, and SLasso with different number of input variables under a single task re-

gression setting. We used simulation datasets with N = 1000, K = 1, λ1 = λ2 = 0.05, and

λ3 = 0.

λ3 = 0. We observed that our method was much more scalable than other methods, and

perfectly recovered true nonzero coefficients. FoGLasso achieved the same accuracy but it

was not as fast as HiGT due to the lack of hierarchical group screening step. In the following

comparison analysis, we included only FoGLasso and SPG which showed good performance.

Figure 3 shows efficiency and F1 score of three methods including HiGT, FoGLasso, and

SPG under various simulation settings. For all experiments, we set λ1 = λ2 = λ3 = 0.1.

From this figure, we can observe the following:

• For all settings with different number of groups, samples, input and output variables,

our algorithm was much more efficient than the other methods.

• Our HiGT algorithm and FoGLasso showed the same F1 score (close to 1) for all

simulation settings.

• Screening step in our algorithm never made a mistake for all experiments.
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Figure 3: CPU time and F1 score comparison of our proposed HiGT method, FoGLasso,

and SPG with different (a,e) number of groups (N = 1000), (b,f) samples (J = 500, K = 5),

(c,g) input variables (N = 1000, K = 5), and (d,h) output variables (N = 1000, J = 150).
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• In general, the accuracy of HiGT and FoGLasso did not decrease as the problem size

increased.

• For all methods, CPU time increased linearly with the number of groups but the

slopes were significantly different. Our HiGT method has a very small slope due to

the efficient screening step.

4.2 Detecting eQTLs Having Interaction Effects in Yeast Genome

We also solved problem (2) using our HiGT method with yeast data [4] which contains 1260

unique SNPs and observed gene-expression levels of 5637 genes. To show the usefulness of

our method, we briefly report the most significant eQTLs having interaction effects that we

identified (chr1:154328-chr5:350744). According to our estimation, it turns out this pair of

genetic variants affected 455 genes enriched with the GO category of ribosome biogenesis

with corrected p-value < 10−35. This SNP pair was very closely located on gene NUP60 and

gene RAD51, respectively, and we found that there exists a significant genetic interaction

between the two genes [6]. As both SNPs are closely located to NUP60 and RAD51 (within

500bp), we can assume that the two SNPs affected the two genes (NUP60 and RAD51),

and their genetic interaction in turn acted on a large number of genes related to ribosome

biogenesis. It implies that this pair of SNPs can be a truly meaningful biological finding. We

consider that our detection of this SNP pair is novel as the exact locations of the SNP pair

were not reported in both Storey et al. [18] and a statistical test for pairwise interactions

[16].

5. DISCUSSIONS

In this paper, we presented an efficient algorithm for a large-scale overlapping group lasso

problem in highly general settings. Our method relies on a screening step which can efficiently

discard a large number of irrelevant groups simultaneously. Our simulation confirmed that

our model is significantly faster than other competitors while maintaining high accuracy. In

our analysis of yeast eQTL datasets, we reported a pair of genetic variants that potentially

16



interact with each other and influence on ribosome biogenesis.

One of promising research directions of this work would be to consider parallelization

of our method. Note that we can naturally parallelize the screening step as it considers a

set of groups separately. However, the second step of our algorithm needs to be performed

sequentially after the screening step is completed. A efficiently parallelized algorithm would

not only further speed up the algorithm but also allow us to deal with very large problems

which cannot fit into memory. We are also interested in theoretical analysis of our screening

step in terms of sure screening property for ultra high dimensional problems [7] or the

properties of strong rules for discarding covariates [19]. Finally, we plan to apply our efficient

algorithm to very large-scale eQTL mapping problems in bioinformatics for understanding

the biological mechanisms of complex human diseases.
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Algorithm 1 Hierarchical Group Thresholding (HiGT) algorithm
G ← groups of inputs;H ← groups of outputs

T (Z, E)← a hierarchical tree with groups of zero patterns (see Section 3.1)

{Z(1), Z(2), . . . , Z(|Z|)} ← DFS order of Z in T (Z, E)

(1. Screening Step)

V ← ∅

t← 1

while t ≤ |Z| do

if Z(t) corresponds to BG
H = 0 then

p ← Rule in (5)

else if Z(t) corresponds to Bgm

ho

= 0 then

p ← Rule in Proposition 1

else

t← t+ 1; continue; (Skip dummy root node)

end if

if p holds (condition for B(Z(t)) = 0) then

t← DFS order of t′ such that Z(t′) is not a descendant of Z(t), t
′ > t and ∄t′′ : t′ > t′′ > t

(Skip the descendants of Z(t))

else if p = Rule in Proposition 1 then

V ← V ∪ groups in Z(t) (Keep the groups in Z(t))

t← t+ 1

else

t← t+ 1

end if

end while

(2. Updating Step)

With the coefficients in V and their corresponding groupings in G and H, we optimize problem (2) using

an efficient optimization technique for overlapping group lasso (We used FoGLasso [20] for this step).
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