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Abstract

We study estimation of the operator Ψ in the linear model Y = Ψ(X) + ε, when X and Y take

values in Hilbert spaces H1 and H2, respectively. Our main objective is to obtain consistency

without imposing some rather inconvenient technical assumptions that have been used in the

literature. We develop our theory in a time dependent setup which comprises as important special

case the autoregressive Hilbertian model.
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1 Introduction

In this paper we are concerned with a regression problem of the form

Yk = Ψ(Xk) + εk, k ≥ 1, (1.1)

where Ψ is a linear operator mapping from space H1 to H2. This model is fairly general and many

special cases have been intensively studied in the literature. Our main objective is the study of

this model when the regressor space H1 is infinite dimensional. In the latter case, model (1.1) can

be seen as a general formulation of a functional linear model, which is one of the most popular

topics in functional data literature. Its various forms are introduced in Chapters 12–17 of Ramsay

and Silverman [23]. To name a few recent references we mention Cuevas et al. [9], Malfait and

Ramsay [21], Cardot et al. [5], Chiou et al. [6], Müller and Stadtmüller [22], Yao et al. [25], Cai

and Hall [3], Li and Hsing [20], Reiss and Ogden [24], Febrero-Bande et al. [12], Crambes et al. [8],

Ferraty et al. [13].

From an inferential point of view a natural problem is the estimation of the ‘regression operator’ Ψ.

This topic has been discussed from several angles. For example, Cardot et al. [4] provide consistency

results for the case of the ‘functional regressor and scalar response model’, while Cueavas et al. [9]

consider a ‘functional regressors and responses’ setup assuming a non-random design. Yao et al. [25]

also considered the ‘functional regressors and responses model’ but deal with the case where the

observations are not fully observed but are obtained from sparce, irregular data measured with error.
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The two main methods of estimation are based on principal component analysis (e.g. Bosq [1] and

Cardot et al. [4]) or spline smoothing estimators (e.g. Hastie and Mallows [14], Marx and Eiler [11],

Crambes et al. [8]).

In this paper we address the estimation problem for Ψ when the data are fully observed using the

principal component approach. Let us explain what distinguishes our paper from previous work.

(i) A crucial difficulty is that we are working with an infinite dimensional operator Ψ, which needs

to be approximated by a sample version Ψ̂K of finite dimension K, say. A delicate issue is the choice

of K. In existing papers determination of K requires very specific assumptions on the spectrum

of the covariance operator of the regressor variables. In the next section we will explain why such

assumptions pop up throughout the literature and show that consistency can be established without

any assumption on the spectrum by proposing a purely data-driven procedure for the choice of K.

(ii) We allow the regressors Xk to be dependent. This is important for two reasons. First, many

examples in FDA literature exhibit dependencies as the data stem from a continuous time process

which is then segmented into a sequence of curves, e.g. by considering daily data. Examples of this

kind include intraday patterns of pollution records, meteorogical data or financial transaction data

or sequential fMRI recordings. See e.g. Horváth and Kokoszka [18].

Second, our framework detailed below, will include the important special case of a functional

autoregressive model, which has been intensively investigated in the functional literature and is often

used to model auto-regressive dynamics of a functional time series. This model is analyzed in detail

in Bosq [2]. We can not only greatly simplify the assumptions needed for consistent estimation but

also allow for a more general setup. E.g. in our Theorem 2.2 we show that it is not necessary to

assume that Ψ is a Hilbert-Schmidt operator. This quite restrictive assumption is very often imposed

though it e.g. even excludes the identity operator.

(iii) As we already mentioned before, the literature considers different forms of functional linear mod-

els. Arguably the most common are the scalar response and functional regressor and the functional

response and functional regressor case. We will not distinguish between these cases, but work with

a linear model between two general Hilbert spaces.

In the next section we will introduce notation, assumptions, the estimator and our main results.

In Section 3 we compare the performance of the proposed estimators in a small simulation study and

finally, in Section 4, we give the proofs.

2 Estimation of Ψ

2.1 Notation

Let H1, H2 be two (not necessarily distinct) separable Hilbert spaces. We denote by L(Hi, Hj),

(i, j ∈ {1, 2}), the space of bounded linear operators from Hi to Hj . Further we write 〈·, ·〉H for

the inner product on Hilbert space H and ‖x‖H =
√
〈x, x〉H for the corresponding norm. For Φ ∈

L(Hi, Hj) we denote by ‖Φ‖L(Hi,Hj) = sup‖x‖Hi≤1 ‖Φ(x)‖Hj the operator norm and by ‖Φ‖S(Hi,Hj) =
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(∑∞
k=1 ‖Φ(ek)‖2Hj

)1/2
, where e1, e2, ... ∈ Hi is any orthonormal basis (ONB) of Hi, the Hilbert-

Schmidt norm of Φ. It is well known that this norm is independent of the choice of the basis.

Furthermore, with the inner product 〈Φ,Θ〉S(H1,H2) =
∑

k≥1〈Φ(ek),Θ(ek)〉H2 the space S(H1, H2) is

again a separable Hilbert space. For simplifying the notation we use Lij instead of L(Hi, Hj) and in

the same spirit Sij , ‖ · ‖Lij , ‖ · ‖Sij and 〈·, ·〉Sij .
All random variables appearing in this paper will be assumed to defined on some common prob-

ability space (Ω,A, P ). A random element X with values in H is said to be in LpH if νp,H(X) =

(E‖X‖pH)1/p <∞. More conveniently we shall say that X has p moments. If X possesses a first mo-

ment, then X possesses a mean µ, determined as the unique element for which E〈X,x〉H = 〈µ, x〉H ,

∀x ∈ H. For X ∈ Hi and Y ∈ Hj let X⊗Y : Hi → Hj be an operator defined as X⊗Y (v) = 〈X, v〉Y .

If X and Y have 2 moments, then we say that X and Y are orthogonal (X ⊥ Y ) if EX ⊗ Y = 0.

A sequence of orthogonal elements in H with a constant mean is called H–white noise. If X ∈ L2
H

then it possesses a covariance operator C given by C = E[(X − µ)⊗ (X − µ)]. It can be easily seen

that C is a Hilbert-Schmidt operator.

2.2 Setup

We consider the general regression problem (1.1) for fully observed data. Let us collect our main

assumptions.

(A): We have Ψ ∈ L12. Further {εk} and {Xk} are zero mean variables and are assumed to be

L4–m–approximable in the sense of Hörmann and Kokoszka [17] (see below). In addition {εk} is

H2–white noise. For any k ≥ 1 we have Xk ⊥ εk.

Here is the weak dependence concept that we impose.

Definition 2.1 (Hörmann and Kokoszka [17]). A random sequence {Xn}n≥1 with values in H is

called Lp–m–approximable if it can be represented as

Xn = f(δn, δn−1, δn−2, ...)

where the δi are iid elements taking values in a measurable space S and f is a measurable function

f : S∞ → H. Moreover if δ′i are independent copies of δi defined on the same probability space, then

for

X(m)
n = f(δn, δn−1, δn−2, ..., δn−m+1, δ

′
n−m, δ

′
n−m−1, ...)

we have

∞∑
m=1

νp,H(Xm −X(m)
m ) <∞.

The notion of Lp–m–approximability implicitely assumes that the process is stationary. Evidently

an i.i.d. sequence with finite fourth moment is L4–m–approximable. This leads to the classical

functional linear model. However, our setup is much more general and allows e.g. to cover the
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autoregressive Hilbertian model of order 1 (ARH(1)), given by the recursion Xk+1 = Ψ(Xk) + εk+1.

(See Section 2.4.) Other examples of functional time series covered in this framework can be found

in [17]. This form of weak dependence also implies that a possible non-zero mean of Xk can be

estimated consistently by the sample mean. Moreover we have (see [16])

√
n‖X̄ − µ‖H1 = OP (1).

We conclude that the mean can be accurately removed in a preprocessing step and that EXk = 0 is

not a stringent assumption. Since by Lemma 2.1 in [17] {Yk} will also be L4–m–approximable, the

same argument justifies that we study a linear model without intercept.

Our moment assumptions are mild. We are not aware of any article that works with less than 4

moments, while for several consistency results bounded variables or finite moments of all order are

assumed.

2.3 The estimator

We will explain now the idea behind estimation of Ψ. Similar as in Bosq [1] it is based on a finite

basis approxmation of the operator. To achieve optimal approximation in finite dimension, we choose

eigenfunctions of the covariance operator C = E[X1 ⊗ X1] as our basis. Another expansion based

on predictive factors has been proposed by Kargin and Onatski [19]. Here the intention is to use

directions that minimize the prediction error in the autoregressive context.

Throughout this paper we use next to the covariance operator C the cross-covariance operator

∆ = E[X1 ⊗ Y1]. By Assumption (A) both of them are Hilbert-Schmidt operators.

Now let (λi, vi)i≥1 be the eigenvalues and corresponding eigenfunctions of the operator C, such

that λ1 ≥ λ2 ≥ .... The eigenfunctions are orthonormal and those belonging to a non-zero eigenvalue

form an orthonormal basis of C(H1) = Im(C). Note that with probability one we have X ∈ Im(C).

Since Im(C) is again a Hilbert-space, it is no real restriction to assume that H1 = Im(C), i.e. that

the operator is of full rank. In this case all eigenvalues are strictly positive. Using linearity of Ψ and

the requirement Xk ⊥ εk we obtain

∆(vj) = E〈X1, vj〉H1Y1

= E〈X1, vj〉H1Ψ(X1) + E〈X1, vj〉H1ε1

= Ψ(E〈X1, vj〉H1X1)

= Ψ(C(vj))

= λjΨ(vj).

Then for any x ∈ H1 the derived equation leads us to the representation

Ψ(x) = Ψ

( ∞∑
j=1

〈vj , x〉vj

)
=

∞∑
j=1

∆(vj)

λj
〈vj , x〉. (2.1)

We assume here implicitely that dim(H1) =∞. If dim(H1) = M <∞, then (2.1) still holds with ∞
replaced by M . In fact, here the theory would become much simpler. To avoid distinguishing between
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the different cases we will exlusively work in the infinite dimensional setup. Equation (2.1) gives a

core idea for estimation of Ψ. We will estimate ∆, vj and λj from our sample X1, . . . , Xn, Y1, . . . , Yn

and substitute the estimators into formula (2.1). The estimated eigenelements (λ̂j,n, v̂j,n; 1 ≤ j ≤ n)

will be obtained from the empirical covariance operator

Ĉn =
1

n

n∑
k=1

Xk ⊗Xk.

In a similar straightforward manner we set

∆̂n =
1

n

n∑
k=1

Xk ⊗ Yk.

For ease of notation we will suppress in the sequel the dependence on the sample size n of these

estimators.

Apparently, from the finite sample we cannot estimate the entire sequence (λj , vj), rather we have

to work with a truncated version. This leads to

Ψ̂K(x) =
K∑
j=1

∆̂(v̂j)

λ̂j
〈v̂j , x〉, (2.2)

where the choice of K = Kn is crucial. Notice that since we want our estimator to be consistent,

Kn has to grow with the sample size to infinity in order to cover all the summands. On the other

hand we know that λj → 0 and hence it will be a delicate issue to control the behavior of 1
λ̂j

. A

small error in the estimation of λj can have an enormous impact on (2.2). The usual approach is

to relate Kn on the decay-rate of {λj}. For example Cardot et al. [4] assume that nλ4
Kn
→ ∞ and

nλ2Kn
(
∑Kn
j=1

1
αj

)2
→∞, when

α1 = λ1 − λ2 and αj = min{λj−1 − λj , λj − λj+1}, j > 1. (2.3)

Similar requirements are used in other papers (see e.g. Theorem 8.7 in [2] or Assumption (B.5) in

Yao et al. [25]). We will avoid any such assumptions by suggesting Kn that is purlely data-driven.

2.4 Consistency results

For our first result, Theorem 2.1, the sole assumptions on the spectrum and on Ψ are:

(B): The eigenvalues {λj} are mutually distinct and Ψ is a Hilbert-Schmidt operator.

Assuming distinct eigenvalues is standard in functional data analysis and is commonly used for

results involving functional principal components. Without this assumption the eigenfunctions in

representation (2.1) are no longer identifiable. In Theorem 2.2 we will show that in practice we can

completely avoid Assumption (B). The Kn we use in Theorem 2.1, is given as follows:

(K): Let Kn = min(Bn, En,mn) where Bn = arg max{j ≥ 1| 1
λ̂j
≤ mn} and En = arg max{k ≥

1|max1≤j≤k
1
α̂j
≤ mn} for some sequence {mn} such m6

n = o(n). Here λ̂j and α̂j are the estimates

for λj and αj (given in (2.3)), respectively, obtained from Ĉ.
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The choice of Kn is motivated by a ‘bias variance trade-off’ argument. If an eigenvalue is very

small (in our case � 1/mn) it means that the direction it explains is not very important in the

representation of Xk. Therefore excluding it from the representation of Ψ will not cause a big bias

whereas it will considerably reduce the variance. It will be only included if the sample size is big

enough, in which case we can hope for a reasonable accuracy of λ̂j . Since all the quantities involved

can be computed from the sample our procedure can be a fast alternative to cross-validation or

AIC type criteria as suggested in [25] for the choice of K in practical applications. In practice it is

recommended to replace 1
λ̂j

in the definition of Bn by λ̂1
λ̂j

and 1
α̂j

in the definition of En by λ̂1
α̂j

to

adapt for scaling. For the asymptotics such a modification has no influence.

Theorem 2.1. Consider the linear Hilbertian model (1.1) and assume that Assumptions (A) and

(B) hold and {Kn} is defined as in (K). Then the estimator described in Section 2.3 is weakly

consistent, i.e. ‖Ψ̂Kn −Ψ‖L12
P→ 0, if n→∞.

The technical Assumption (B) appears still unsatisfactory. Unfortunately it cannot be completely

avoided. To see this, assume for example that Ψ is the identity operator, which is not Hilbert-Schmidt

anymore. Then for any ONB {vi} we have Ψ =
∑

i≥1 vi ⊗ vi. Even if from the finite sample our

estimators for v1, . . . , vK would be perfect (vi = v̂i) we have ‖Ψ− Ψ̂K‖L12 = 1 for any K ≥ 1. This

is easily seen by evaluating Ψ and Ψ̂K at vK+1.

A way to overcome such difficulties it to argue that in practice we will be satisfied if the estimator

Ψ̂ is such that ‖Ψ(X)− Ψ̂(X)‖ is small if X
d
= X1. E.g. if 〈X, v〉 = 0 with probability one, then the

direction v plays no role for describing X and a larger value of ‖Ψ(v)− Ψ̂(v)‖ doesn’t pose a problem

if for example we are interested in prediction. The next theorem shows that we can further simplify

the assumptions if we are only interested in showing ‖Ψ(X)− Ψ̂(X)‖H2

P→ 0. In particular, (B) can

be dropped.

Theorem 2.2. Let Assumption (A) hold and define the estimator Ψ̂Kn as in Section 2.3 with

Kn = arg max{j ≥ 1| λ̂1
λ̂j
≤ mn}, where mn = o(

√
n). Then ‖Ψ(X)− Ψ̂Kn(X)‖H2

P−→ 0.

This result should be compared to Theorem 3 in Crambes and Mas [7] where an asymptotic

expansion of E‖Ψ(X) − Ψ̂k(X)‖2H2
is obtained (for fixed k). Their result implies consistency, but

requires again assumptions on the decay rate of {λi}, that Ψ is Hilbert-Schmidt, and the existence

of moments of all order of the Xk.

It should be noted that we are studying in this paper only convergence in probability, whereas for

example [2] or [4] have also obtained results on almost sure convergence, but for the price of further

technical assumptions (e.g. boundedness of the Xk’s).

An obvious question is which rate of growth for mn is optimal (in some sense to be specified).

Though desirable, we belief that optimality results will be extremely difficult under the very general

conditions of this paper. Rates of convergence seem to require more information on the spectrum

or the operator Ψ and this is exactly what we wanted to avoid here. In Section 3 we perform a

simulation study, which suggests that Theorem 2.2 will remain true if we use mn = O(
√
n). In fact,

for large n we see that mn =
√
n performs better than mn = 0.1

√
n throughout all constellations

that we tested.
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2.5 Applications to functional time series

We show that our framework covers the ARH(1) model of Bosq [2]. With i.i.d. innovations δk ∈ L4
H

the process {Xk} defined via Xk+1 = Ψ(Xk) + δk+1 is L4
H–approximable if Ψ ∈ L(H,H) such that

‖Ψ‖L(H,H) < 1, see [17]. The stationary solution for Xk has the form

Xk =
∑
j≥0

Ψj(δk−j).

Setting εk = δk+1 and Yk = Xk+1 we obtain the linear model (1.1). Independence of {δk} implies that

Xk ⊥ εk and hence Assumption (A) holds. Bosq [2] has obtained a (strongly) consistent estimator

of Ψ, if Ψ is Hilbert-Schmidt and again by imposing assumptions on the spectrum of C.

In our approach we don’t even need that the innovations {δk} are i.i.d. As long as we can assure

that {δk} and {Xk} are L4–m–approximable we only need that {δk} is H-white noise. Indeed,

denoting A∗ the conjugate of operator A, we have for any x ∈ H1 and y ∈ H2 that

E〈Xk, x〉H1〈εk, y〉H2 =
∑
j≥0

E〈Ψj(δk−j), x〉H1〈δk+1, y〉H2

=
∑
j≥0

E〈δk−j , (Ψj)∗(x)〉H1〈δk+1, y〉H2 = 0.

This shows Xk ⊥ εk and Assumption (A) follows.

We obtain the following

Corollary 2.1. Let {Xn}n≥1 be an ARH(1) process given by the recurrence equation Xn+1 = Ψ(Xn)+

εn+1. Assume ‖Ψ‖L12 < 1. If {εi} is H-white noise and Assumption (A) holds, then for the estimator

Ψ̂K given in Theorem 2.2 we have ‖Ψ(X) − Ψ̂K(X)‖H2

P→ 0. In particluar if {εi} is i.i.d. in L4
H ,

Assumption (A) will hold.

Corollary 2.2. Let {Xn}n≥1 be an ARH(1) process given by the recurrence equation Xn+1 = Ψ(Xn)+

εn+1. Assume ‖Ψ‖S12 < 1. If {εi} is H-white noise and Assumptions (A) and (B) hold, then the

estimator Ψ̂K given in Theorem 2.1 is consistent.

Another possible application of our result refers to a recently introduced functional version of

the celibrated ARCH model (Hörmann et al. [15]), which plays a fundamental role in financial

econometrics. It is given by the two equations

yk(t) = εk(t)σk(t), t ∈ [0, 1], k ∈ Z

and

σ2
k(t) = δ(t) +

∫ 1

0
β(t, s)y2

k−1(s)ds, t ∈ [0, 1], k ∈ Z.

Without going into details, let us just mention that using a trick one can write the squared observa-

tions of a functional ARCH model as an autoregressive process with innovations νk(t) = y2
k(t)−σ2

k(t).

The new noise {νk} is no longer independent and hence the results of [2] are not applicable to prove

consistency of the involved estimator for the operator β. But it is shown in [15] that the innovations

of this new process form Hilbertian white noise and that the new process is L4–m–approximable.

This allows us to obtain a consistent estimator for β.
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3 Simulation study

Didericksen et al. [10] have investigated in an empirical study the performance of different estimators

for the regression operator Ψ in the FAR(1) setup Xn+1 = Ψ(Xn)+εn. For their study they compare

different kernel operators Ψ. By the smoothness of the chosen kernels, curves Xn are mapped to

quite smooth and flat curves Ψ(Xn), even if Xn is irregularly shaped. In such a setup Didericksen

et al. [10] conclude that choosing K = 3 or K = 4 gives broadly speaking the best results among

all chosen setups. We have choosen operators Ψ that produce more distinctive curves Ψ(Xn). Our

conclusion below is that if the spectrum of EX ⊗X is not decaying very fast, we need to choose K

much bigger than 3 or 4 to get good estimates. This is true even for moderate sample sizes. We

show that our procedure proposes K = Kn that are close to the optimal K = KOPT
n .

3.1 Setup

For the simulation study we obviously have to work with finite dimensional spaces H1 and H2.

However, because of the asymptotical nature of our results, we set the dimension relatively high

and define H1 = H2 = span{vj : 0 ≤ j ≤ 34}, where v0(t) = 1, v2k−1(t) = sin(2πkt) and v2k(t) =

cos(2πkt) are the first 35 elements of a Fourier basis on [0, 1]. We work with Gaussian curves Xi(t)

by setting

Xi(t) =

35∑
j=1

A
(j)
i vj−1(t), (3.1)

where (A
(j)
1 , A

(j)
2 , . . . , A

(j)
35 )′ are independent Gaussian random vectors with mean zero and covariance

Σ. This setup allows us to easily manipulate the eigenvalues {λi} of a covariance operator CX =

EX ⊗ X. Indeed, if we define Σ = diag(a1, . . . , a35), then λi =
√
ai and vi is the corresponding

eigenfunction. We test three sets of eigenvalues:

• Λ1 : (1, e−1/5, e−2/5, . . . , e−35/5) [fast decay],

• Λ2 : (1, 34
35 , . . . ,

1
35) [slow decay],

• Λ3 : (1, 1, . . . , 1) [no decay].

The noise {εk} is also assumed to be of the form (3.1) with coefficients {A(j)
i , i, j ≥ 0} i.i.d. N (0, σ2)

and σ2 ∈ {0.25, 1, 2.25, 4}. Finally we used the following 3 operators:

• Ψ1 identity,

• Ψ2 = Γ1 + Γ2, such that Γ1 : vi 7→ 2
3vπi and Γ2 : vi 7→ 1

3vπ′i , where πi = 1 + (i+ 4 mod 35) and

π′i = 1 + (i mod 35),

• Ψ3(x) =
∑35

i=1

∑35
j=1 ψij〈x, vi〉vj , where the coefficients ψij have been generated as i.i.d. stan-

dard normal random variables (once generated, they were fixed for the entire simulation),

normalized such that ‖Ψ3‖L12 = 1.
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Figure 1 shows application of Ψi (i = 1, 2, 3) on four realizations of the process X and the

corresponding curves Ψi(X), Ψ̂i(X) and Y .
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Figure 1: Columns 1 to 4 correspond to Ψi(X), Ψ̂i(X), Ψ̂OPT
i (X) and Ψi(X) + ε (i = 1, 2, 3),

respectively. Here Ψ̂i and Ψ̂OPT
i are operators given by the formula (2.2) with K obtained by our

procedure and with the optimal one in terms of NMSE (see (3.2)). Estimators were computed for

n = 1280. The same 4 curves were used with each operator. They were drawn from a distribution

indicated by Λ1 and they are presented at the top-left chart (Ψ1 = Id).

3.2 Results

As a performance measure for our procedure we used a normalized mean square error defined as

NMSE =

∑n
k=1 ‖Ψ(Xk)− Ψ̂(Xk)‖2H2∑n

k=1 ‖Ψ(Xk)‖2H2

. (3.2)

Following Theorem 2.2 we chose mn = c
√
n with the 3 different constants c = 0.1, 0.5, 1 and sample

sizes n = 10×2`, ` = 0, . . . , 11. The NMSE and the size of K = Kc
n is shown for different constellations

in the Appendix. We display the results only for σ = 1. Not surprisingly, the bigger the variance

of the noise, the bigger NMSE but otherwise our findings were the same across all constellations of

σ. The column KOPT
n shows the value of K that gave the smallest NMSE among all possible values

K = 1, . . . , 35.
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The tables in the Appendix show that the choice of K proposed by our method is very satisfactory

and close to KOPT
n (which gives the smallest NMSE) or at least that the corresponding NMSE’s were

comparable. We can see that for small sample sizes it is preferable to use c = 0.1 while for large n

it turns out that c = 1 performs best.

4 Proofs

Throughout this entire section we assume the setup and notation of Section 2.2.

4.1 Proof of Theorem 2.1

We work under Assumptions (A) and (B) and with Kn given in (K). The first important lemma

which we use in the proof of Theorem 2.1 is an error bound for the estimators of the operators ∆

and C. Below we extend results in [17].

Lemma 4.1. There is a constant U depending only on the law of {(Xk, Yk)} such that

nmax{E‖∆− ∆̂n‖S12 , E‖C − Ĉn‖S11} < U.

Proof of Lemma 4.1. We only prove the bound for ∆, the one for C is similar. First note that by

Lemma 2.1 in [17] and Assumption (A) {Yk} is also L4–m–approximable. Next we observe that

nE
∥∥∆− ∆̂n

∥∥2

S12 = nE

∥∥∥∥∥ 1

n

n∑
k=1

Zk

∥∥∥∥∥
2

S12

,

where Zk = Xk ⊗ Yk −∆. Set Z
(r)
k = X

(r)
k ⊗ Y

(r)
k −∆. Using the stationarity of the sequence {Zk}

we obtain

nE

∥∥∥∥∥ 1

n

n∑
k=1

Zk

∥∥∥∥∥
2

S12

=
∑
|r|<n

(
1− |r|

n

)
E〈Z0, Zr〉S12

≤ E‖Z0‖2S12 + 2
∞∑
r=1

|E〈Z0, Zr〉S12 |. (4.1)

By the Cauchy-Schwarz inequality and the independence of Z
(r−1)
r and Z0 we derive:

|E〈Z0, Zr〉S12 | = |E〈Z0, Zr − Z(r−1)
r 〉S12 | ≤ (E‖Z0‖2L12)

1
2 (E‖Zr − Z(r−1)

r ‖2S12)
1
2 .

Using ‖X0 ⊗ Y0‖S12 = ‖X0‖H1‖Y0‖H2 and again the Cauchy-Schwarz inequality we get

E‖Z0‖2L12 = E‖X0‖2H1
‖Y0‖2H2

≤ ν2
4,H1

(X0)ν2
4,H2

(Y0) <∞.

To finish the proof we show that
∞∑
r=1

(E‖Zr − Z(r−1)
r ‖2L12)

1
2 < ∞. By using an inequality of the

type |ab− cd|2 ≤ 2|a|2|b− d|2 + 2|d|2|a− c|2 we obtain

E‖Zr − Z(r−1)
r ‖2S12 = ‖Xr ⊗ Yr −X(r−1)

r ⊗ Y (r−1)
r ‖2S12
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≤ 2E‖Xr‖2H1
‖Yr − Y (r−1)

r ‖2H2
+ 2E‖Y (r−1)

r ‖2H2
‖Xr −X(r−1)

r ‖2H1

≤ 2ν2
4,H1

(Xr)ν
2
4,H2

(Yr − Y (r−1)
r ) + 2ν2

4,H2
(Y (r−1)
r )ν2

4,H1
(Xr −X(r−1)

r ).

Convergence of (4.1) follows now directly from L4-m–approximability.

Application of this lemma leads also to bounds for estimators of eigenvalues and eigenfunctions

of C via the following two lemmas (see [17]).

Lemma 4.2. Suppose λi, λ̂i are the eigenvalues of C and Ĉ, respectively, listed in decreasing order.

Let vi, v̂i be the corresponding eigenvectors and let ĉi = 〈vi, v̂i〉. Then for each j ≥ 1,

α̂j‖vj − ĉj v̂j‖H1 ≤ 2
√

2‖Ĉ − C‖L11 ,

where α̂j = min{λ̂j−1 − λ̂j , λ̂j − λ̂j+1} and α̂1 = λ̂2 − λ̂1.

Lemma 4.3. Let λj , λ̂j be defined as in Lemma 4.2. Then for each j ≥ 1,

|λj − λ̂j | ≤ ‖C − Ĉ‖L11 .

In the following calculations we work with finite sums of the representation in (2.1):

ΨK(x) =

K∑
j=1

∆(vj)

λj
〈vj , x〉. (4.2)

In order to prove the main result we consider the term ‖Ψ − Ψ̂K‖L12 and decompose it using the

triangle inequality into four terms

‖Ψ− Ψ̂K‖L12 ≤
4∑
i=1

‖Si(K)‖L12 ,

where

S1(K) =
K∑
j=1

(
ĉj v̂j ⊗

∆̂(ĉj v̂j)

λ̂j
− ĉj v̂j ⊗

∆(ĉj v̂j)

λ̂j

)
, (4.3)

S2(K) =
K∑
j=1

(
ĉj v̂j ⊗

∆(ĉj v̂j)

λ̂j
− ĉj v̂j ⊗

∆(ĉj v̂j)

λj

)
, (4.4)

S3(K) =

K∑
j=1

(
ĉj v̂j ⊗

∆(ĉj v̂j)

λj
− vj ⊗

∆(vj)

λj

)
, (4.5)

S4(K) = Ψ−ΨK . (4.6)

The following simple lemma gives convergence of S4(Kn), provided Kn
P→∞.

Lemma 4.4. Let {Kn, n ≥ 1} be a random sequence taking values in N, such that Kn
P→ ∞ as

n→∞. Then ΨKn defined by the equation (4.2) converges to Ψ in probability.
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Proof. Notice that since ‖Ψ‖2S12 =
∞∑
j=1
‖Ψ(vj)‖2H2

< ∞ for some orthonormal base {vj}, we can find

mε ∈ N such that ‖Ψ−Ψm‖2S12 =
∑
j>m
‖Ψ(vj)‖2H2

≤ ε, whenever m > mε. Hence

P (‖Ψ−ΨKn‖2S12 > ε) =
∞∑
m=1

P (‖Ψ−Ψm‖2S12 > ε ∩Kn = m)

= P (Kn ≤ mε).

The next three lemmas deal with terms (4.3)–(4.5).

Lemma 4.5. Let S1(K) be defined by the equation (4.3) and U the constant derived in Lemma 4.1.

Then

P (‖S1(Kn)‖L12 > ε) ≤ Um2
n

ε2n
.

Proof. Note that for an orthonormal system {ei ∈ H1 | i ≥ 1} and any sequence {xi ∈ H2 | i ≥ 1}
the following identity holds:∥∥∥∥∥

K∑
i=1

ei ⊗ xi

∥∥∥∥∥
2

S12

=
∞∑
j=1

∥∥∥∥∥
K∑
i=1

〈ei, ej〉xi

∥∥∥∥∥
2

H2

=
K∑
j=1

‖xj‖2H2
. (4.7)

Using this and the fact that the Hilbert-Schmidt norm bounds the operator norm we derive

P (‖S1(Kn)‖2L12 > ε) ≤ P

(∥∥∥∥∥
Kn∑
j=1

ĉj v̂j ⊗
1

λ̂j
(∆̂−∆)(ĉj v̂j)

∥∥∥∥∥
2

S12

> ε

)

≤ P

(
1

λ̂2
Kn

Kn∑
j=1

‖(∆̂−∆)(ĉj v̂j)‖2H2
> ε

)
≤ P (m2

n‖∆̂−∆‖2S12 > ε).

By the Markov inequality

P (‖S1(Kn)‖2L12 > ε) ≤ E‖∆̂−∆‖2S12
m2
n

ε
≤ Um

2
n

εn
,

where the last inequality is obtained from Lemma 4.1.

Lemma 4.6. Let S2(K) be defined by the equation (4.4) and U the constant from Lemma 4.5. Then

P (‖S2(Kn)‖L12 > ε) ≤ 4U‖∆‖2S12
m4
n

ε2n
.

Proof. Assumption Kn ≤ Bn and identity (4.7) imply

P (‖S2(Kn)‖2L12 > ε) = P

(∥∥∥∥∥
Kn∑
j=1

(
1

λj
− 1

λ̂j

)
ĉj v̂j ⊗∆(ĉj v̂j)

∥∥∥∥∥
2

L12

> ε

)
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≤ P

(
Kn

max
j=1

(
λ̂j − λj
λ̂jλj

)2 Kn∑
j=1

‖∆(ĉj v̂j)‖2H2
> ε

)

≤ P

(
Kn

max
j=1

(
λ̂j − λj
λj

)2

>
ε

m2
n‖∆‖2S12

)
.

For simplifying the notation let b2 = ε
m2
n‖∆‖2S12

, then

P (‖S2(Kn)‖2L12 > ε) ≤ P

(
Kn

max
j=1

∣∣∣∣∣ λ̂j − λjλj

∣∣∣∣∣ > b

)

≤ P

(
1

λKn

Kn
max
j=1
|λ̂j − λj | > b ∩ Kn

max
j=1
|λ̂j − λj | ≤

b

2mn

)
+ P

(
Kn

max
j=1
|λ̂j − λj | >

b

2mn

)
.

The first summand vanishes because

P

(
1

λKn

Kn
max
j=1
|λ̂j − λj | > b ∩ Kn

max
j=1
|λ̂j − λj | ≤

b

2mn

)

≤ P

(
b

2λKnmn
> b ∩ |λ̂Kn − λKn | ≤

b

2mn

)

≤ P

(
1

2mn
> λKn ∩ |λ̂Kn − λKn | ≤

√
ε

m2
n2‖∆‖S212

)
,

which is equal to 0 for n large enough, since λ̂Kn ≥ 1
mn

and the distance between λKn and λ̂Kn
shrinks faster than 1

2mn
. For the second term we use Lemma 4.3 and the Markov inequality:

P (‖S2(Kn)‖2L12 > ε) ≤ P
(

Kn
max
j=1
|λ̂j − λj | >

b

2mn

)
≤ P

(
‖Ĉ − C‖L11 >

b

2mn

)
≤ 4m2

n

b2
E‖Ĉ − C‖2L11

≤ 4U‖∆‖2S12
m4
n

εn
.

Lemma 4.7. Let S3(K) be defined by (4.5) and U be the constant defined in Lemma 4.5, then

P (‖S3(Kn)‖L12 < ε) ≤ U(128‖∆‖2L12 + 4ε2)
m6
n

ε2n
.

Proof. By adding and subtracting the term ĉj v̂j∆(vj) and using the triangle inequality we derive

P (‖S3(Kn)‖L12 > ε) = P

(∥∥∥∥∥
Kn∑
j=1

1

λj
(ĉj v̂j ⊗∆(ĉj v̂j)− vj ⊗∆(vj))

∥∥∥∥∥
L12

> ε

)
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≤ P

(
Kn∑
j=1

1

λj
‖ĉj v̂j ⊗∆(ĉj v̂j − vj) + (ĉj v̂j − vj)⊗∆(vj)‖L12 > ε

)

≤ P

(
Kn∑
j=1

1

λj
(‖∆‖L12‖ĉj v̂j − vj‖H1 + ‖ĉj v̂j − vj‖H1‖∆‖L12) > ε

)
.

Now we split Ω = A ∪Ac where A = { 1
λKn

> 2mn} and get

P (‖S3(Kn)‖L12 > ε) ≤ P

(
1

λKn

Kn∑
j=1

‖ĉj v̂j − vj‖H1 >
ε

2‖∆‖L12

)

≤ P

(
Kn∑
j=1

‖ĉj v̂j − vj‖H1 >
ε

4mn‖∆‖L12

)
+ P

(
1

λKn
> 2mn

)
. (4.8)

For the first term in the inequality (4.8), by Lemma 4.2, definition of En and the Markov inequality

we get

P

(
Kn∑
j=1

‖ĉj v̂j − vj‖H1 >
ε

4mn‖∆‖L12

)
≤ P

(
mn

En
max
j=1
‖ĉj v̂j − vj‖H1 >

ε

4mn‖∆‖L12

)

≤ P

(
En

max
j=1

2
√

2

α̂j
‖Ĉ − C‖L12 >

ε

4m2
n‖∆‖L12

)

≤ P

(
‖Ĉ − C‖L12 >

ε

8
√

2m3
n‖∆‖L12

)

≤ 128‖∆‖2L12m
6
n

E‖Ĉ − C‖2L12
ε2

≤ 128U‖∆‖2L12
m6
n

ε2n
.

Since λ̂Kn ≥ 1
mn

, the second term in the inequality (4.8) is bounded by

P

(
λKn <

1

2mn

)
≤ P

(
λKn <

1

2mn
∩ |λ̂Kn − λKn | ≤

1

2mn

)
+ P

(
|λ̂Kn − λKn | >

1

2mn

)

≤ P

(
‖Ĉ − C‖L12 >

1

2mn

)

≤ 4m2
nE‖Ĉ − C‖2L12 ≤ 4U

m2
n

n
.

Thus we derive

P (‖S3(Kn)‖L12 > ε) ≤ 128U‖∆‖2L12
m6
n

ε2n
+ 4U

m2
n

n
≤ U(128‖∆‖2L12 + 4ε2)

m6
n

ε2n
.

Finally we need a lemma which assures that Kn tends to infinity.
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Lemma 4.8. Let Kn be defined as in (K), then Kn
P→∞.

Proof. We have to show that P (min{Bn, En} < p) → 0 for any p ∈ N. Since 1
mn
↘ 0, for n large

enough we have, by combining Lemma 4.1 and 4.3, that

P (Bn < p) = P

(
λ̂p <

1

mn

)
= P

(
λp − λ̂p > λp −

1

mn

)
≤ P

(
|λ̂p − λp| > λp −

1

mn

)
→ 0.

Now we are ready to prove the main result

Proof of Theorem 2.1. First, by the triangle inequality we get

‖Ψ− Ψ̂Kn‖L12 ≤ ‖Ψ− Ψ̂Kn‖L12 + ‖Ψ−ΨKn‖L12
≤ ‖S1(Kn)‖L12 + ‖S2(Kn)‖L12 + ‖S3(Kn)‖L12 + ‖Ψ−ΨKn‖L12 .

By Lemmas 4.4, 4.5, 4.6, 4.7 and assumption m6
n = o(n) we finally obtain for large enough n that

P (‖Ψ− Ψ̂Kn‖L12 > ε)

≤ U44m
2
n

ε4n
+ 43U‖∆‖2S12

m4
n

ε2n
+ 42U(128‖∆‖2L12 + ε2/4)

m6
n

ε2n
+ P (‖Ψ−ΨKn‖L12 > ε/4)

n→∞−−−→ 0.

4.2 Proof of Theorem 2.2

In order to simplify the notation we will denote K = Kn. This time as a starting point we take a

representation of Ψ in the basis {v̂1, v̂2, ...}. Let Mm = sp{v1, v2, ..., vm}, M̂m = sp{v̂1, v̂2, ..., v̂m}
where sp{xi, i ∈ I} denotes the closed span of the elements {xi, i ∈ I}. If rank(Ĉ) = `, then

{v̂i, i > `} can be any ONB of M̂⊥` . We write PA for the projection operator which maps on a closed

linear space A. As usual A⊥ denotes the orthogonal complement of A. Since for any m ≥ 1 we can

write x = PM̂m
(x) + PM̂⊥m

(x), the linearity of Ψ and the projection operator gives

Ψ(x) = Ψ(PM̂m
(x)) + Ψ(PM̂⊥m

(x))

=
m∑
j=1

〈v̂j , x〉H1Ψ(v̂j) + Ψ(PM̂⊥m
(x)).

Now we evaluate Ψ in some v̂j which is not in the kernel of Ĉ. By definitions of Ψ, Ĉ and again by

linearity of the involved operators

Ψ(v̂j) =
1

λ̂j
Ψ(Ĉ(v̂j))

=
1

λ̂j

1

n

n∑
i=1

〈Xi, v̂j〉H1Ψ(Xi)
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=
1

λ̂j

1

n

n∑
i=1

〈Xi, v̂j〉H1(Yi − εi)

=
1

λ̂j
(∆̂(v̂j) + Λ̂(v̂j)),

where Λ̂ = − 1
n

∑n
i=1Xi⊗ εi. Hence if m is such that λ̂m > 0 (which will now be implicitely assumed

in the sequel), Ψ can be expressed as

Ψ(x) =
m∑
j=1

〈v̂j , x〉H1

1

λ̂j
∆̂(v̂j) +

m∑
j=1

〈v̂j , x〉H1

1

λ̂j
Λ̂(v̂j) + Ψ(PM̂⊥m

(x)).

Note that the first term on the right-hand side is just Ψ̂m(x). Therefore for any x, the distance

between Ψ(x) and Ψ̂m(x) takes the following form

‖Ψ(x)− Ψ̂m(x)‖H2 =

∥∥∥∥∥
m∑
j=1

〈v̂j , x〉H1

1

λ̂j
Λ̂(v̂j) + Ψ(PM̂⊥m

(x))

∥∥∥∥∥
H2

. (4.9)

To assess (4.9) we need the following four lemmas.

Lemma 4.9. Let (λi, vi)i≥1 and (λ̂i, v̂i)i≥1 be eigenvalues and eigenfunctions of C and Ĉ respectively.

Set j,m ∈ N such that j ≤ m ≤ n, then

‖vj − PM̂m
(vj)‖2H1

≤ 4
‖C − Ĉ‖2L11

(λ̂m+1 − λ̂j)2
.

Proof. Note that by using Parseval’s identity we get

‖vj − PM̂m
(vj)‖2H1

=
∞∑
k=1

〈vj − PM̂m
(vj), v̂k〉2H1

=
∑
k>m

〈vj , v̂k〉2H1
.

Now

(λ̂m+1 − λ̂j)2
∑
k>m

〈vj , v̂k〉2H1
≤
∑
k>m

(λ̂k〈vj , v̂k〉H1 − λ̂j〈vj , v̂k〉H1)2

=
∑
k>m

(〈vj , Ĉ(v̂k)〉H1 − λ̂j〈vj , v̂k〉H1)2.

Since Ĉ is a self-adjoint operator, simple algebraic transformations yield

(λ̂m+1 − λ̂j)2
∑
k>m

〈vj , v̂k〉2H1
≤
∑
k>m

(〈Ĉ(vj), v̂k〉H1 − λ̂j〈vj , v̂k〉H1)2

=
∑
k>m

(〈(Ĉ − C)(vj), v̂k〉H1 − (λ̂j − λj)〈vj , v̂k〉H1)2

≤ 2
∑
k>m

|〈(Ĉ − C)(vj), v̂k〉H1 |2 + 2
∑
k>m

((λ̂j − λj)〈vj , v̂k〉H1)2.

By Parseval’s inequality and Lemma 4.3

(λ̂m+1 − λ̂j)2
∑
k>m

〈vj , v̂k〉2H1
≤ 2‖(Ĉ − C)(vj)‖2H1

+ 2|λ̂j − λj |2 ≤ 4‖Ĉ − C‖2L11 .
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Lemma 4.10. Let Ψ, X be defined as in Lemma 2.2 and K = Kn
P→∞. Then ‖PM⊥K (X)‖H2

P→ 0.

Proof. We first remark that for any ε > 0

P (‖PM⊥K (X)‖2H2
> ε) = P

( ∞∑
i=K+1

|〈vi, X〉H1 |2 > ε

)
.

Since
∑∞

i=1 |〈vi, X〉H1 |2 = ‖X‖2H1
, there exists a random variable Jε ∈ R such that

∑∞
i=Jε
|〈vi, X〉H1 |2 <

ε. Since by assumption E‖X‖2H1
< ∞, we conclude that Jε is bounded in probability. Hence we

obtain

P (‖PM⊥K (X)‖2H2
> ε) ≤ P

( ∞∑
i=K+1

|〈vi, X〉H1 |2 > ε ∩ K > Jε

)
+ P (K ≤ Jε)

= P (K ≤ Jε),

where the last term converges to zero as n→∞.

Lemma 4.11. Let Ln = arg max{r ≤ K :
∑r

i=1(λ̂K+1 − λ̂i)−2 ≤ vn}, where K = Kn is given as in

Theorem 2.2 and vn →∞. Then Ln
P→∞.

Proof. Let r ∈ N such that for all 1 ≤ i ≤ r we have λr+1 6= λi. Note that E‖X‖2H1
< ∞ implies

λi → 0 and since λi > 0 we can find infinitely many r satisfying this condition. We choose such r

and obtain

P (Ln < r) ≤ P

(
r∑
i=1

1

(λ̂K+1 − λ̂i)2
> vn ∩ K ≥ r

)
+ P (K < r).

Lemma 4.8 implies that P (K < r) → 0. The first term is bounded by P
(∑r

i=1
1

(λ̂r+1−λ̂i)2
> vn

)
.

Since λ̂i
P→ λi and r is fixed while vn →∞, it follows that P (Ln < r)→ 0 if n→∞. Since r can be

chosen arbitrarily large, the proof is finished.

Lemma 4.12. Let Ψ and X be defined as in Lemma 2.2, then ‖PMK
(X)− PM̂K

(X)‖H1

P→ 0.

Proof. Let us define two variables X(1) =
∑L

i=1〈X, vi〉H1vi, X
(2) =

∑∞
i=L+1〈X, vi〉H1vi and L as in

Lemma 4.11. Again for simplifying the notation we will write L instead of Ln. Since X = X(1) +X(2)

we derive

‖PMK
(X)− PM̂K

(X)‖H1 ≤ ‖PMK
(X(1))− PM̂K

(X(1))‖H1 + ‖PM̂K
(X(2))‖H1 + ‖PMK

(X(2))‖H1 .

(4.10)

The last two terms are bounded by 2‖X(2)‖H1 . For the first summand in (4.10) we get

‖PMK
(X(1))− PM̂K

(X(1))‖H1 =

∥∥∥∥∥
L∑
i=1

〈X, vi〉H1(vi − PM̂K
(vi))

∥∥∥∥∥
H1

.
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Let us choose vn = o(n) in Lemma 4.11. The triangle inequality, the Cauchy-Schwarz inequality,

Lemma 4.9 and the definition of L entail

‖PMK
(X(1))− PM̂K

(X(1))‖H1 ≤
L∑
i=1

|〈X, vi〉H1 |‖vi − PM̂K
(vi)‖H1

≤

(
L∑
i=1

|〈X, vi〉H1 |2
)1/2( L∑

i=1

‖vi − PM̂K
(vi)‖2H1

)1/2

≤ ‖X‖H1

(
L∑
i=1

‖vi − PM̂K
(vi)‖2H1

)1/2

≤ 2‖X‖H1‖C − Ĉ‖L11

(
L∑
i=1

1

(λ̂K+1 − λ̂i)2

)1/2

≤ 2‖X‖H1‖C − Ĉ‖L11
√
vn.

This implies the inequality

‖PMK
(X)− PM̂K

(X)‖H1 ≤ 2‖X‖H1‖C − Ĉ‖L11
√
vn + 2‖X(2)‖H1 . (4.11)

Hence by Lemma 4.1 we have 2‖X‖H1‖C − Ĉ‖L11
√
vn = oP (1). Furthermore we have that ‖X(2)‖ =(∑

j>L |〈X, vj〉|2
)1/2 P→ 0. This follows from the proof of Lemma 4.10.

Lemma 4.13. Let Ψ and X be defined as in Lemma 2.2, then ‖Ψ(PM̂⊥K
(X))‖H2

P→ 0.

Proof. Some simple manipulations show

‖Ψ(PM̂⊥K
(X))‖H2 = ‖Ψ(X − PM̂K

(X))‖H2

= ‖Ψ(PMK
(X) + PM⊥K

(X)− PM̂K
(X))‖H2

≤ ‖Ψ(PMK
(X))−Ψ(PM̂K

(X))‖H2 + ‖Ψ(PM⊥K
(X))‖H2

≤ ‖Ψ‖L12
(
‖PMK

(X)− PM̂K
(X)‖H1 + ‖PM⊥K (X)‖H1

)
.

Direct applications of Lemma 4.10 and Lemma 4.12 finish the proof.

Proof of Theorem 2.2. Set

Θn(x) =

Kn∑
j=1

Λ̂(v̂j)

λ̂j
〈v̂j , x〉H1 .

By the representation (4.9) and the triangle inequality

‖Ψ(X)− Ψ̂(X)‖H2 ≤ ‖Θn(X)‖H2 + ‖Ψ(PM̂⊥Kn
(X))‖H2 .

Lemma 4.13 shows that the second term tends to zero in probability.

If in Lemma 4.1 we define Ψ ≡ 0, then Λ̂ = ∆̂ and by independence of εk and Xk we get

Λ = 0. By the arguments of Lemma 4.5 we infer P (‖Θn‖L12 > ε) ≤ U m2
n

ε2n
, which implies that

‖Θn(X)‖H2

P→ 0.
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A Appendix

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

10 1 3.26 2 3.50 1 3.26 1 3.26

20 1 1.38 3 2.59 2 1.88 1 1.38

40 1 1.14 4 1.73 3 1.29 1 1.14

80 3 0.77 6 1.58 4 1.05 1 0.80

160 5 0.48 6 0.62 5 0.48 1 0.73

320 7 0.31 7 0.31 6 0.36 2 0.57

640 8 0.18 9 0.19 7 0.19 3 0.33

1280 11 0.11 9 0.11 8 0.12 4 0.25

2560 11 0.06 10 0.07 9 0.08 5 0.17

5120 15 0.03 11 0.04 9 0.05 6 0.10

10240 17 0.02 12 0.02 10 0.03 6 0.10

20480 17 0.01 13 0.01 11 0.02 7 0.06

Table 1: Ψ1, Λ1, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 4 0.96 12 1.85 9 1.46 1 1.01

80 12 0.68 20 0.93 16 0.79 3 0.85

320 20 0.25 27 0.30 23 0.27 9 0.50

1280 29 0.07 30 0.08 27 0.08 17 0.19

5120 35 0.02 31 0.02 30 0.02 23 0.06

20480 34 0 33 0.01 31 0.01 26 0.02

Table 2: Ψ1, Λ2, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 7 0.90 18 1.39 16 1.03 5 0.93

80 28 0.58 35 0.88 32 0.62 14 0.71

320 35 0.12 35 0.12 35 0.12 33 0.16

1280 35 0.03 35 0.03 35 0.03 35 0.03

5120 35 0.01 35 0.01 35 0.01 35 0.01

20480 35 0 35 0 35 0 35 0

Table 3: Ψ1, Λ3, σ = 1
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n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 1 2 3 3.92 2 2.68 1 2

80 1 0.90 6 1.82 4 1.18 1 0.90

320 4 0.45 8 0.70 6 0.49 2 0.57

1280 7 0.16 9 0.17 8 0.18 4 0.27

5120 11 0.05 11 0.05 9 0.07 5 0.17

20480 17 0.02 13 0.02 11 0.02 7 0.06

Table 4: Ψ2, Λ1, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 1 1.08 11 2.54 9 1.97 1 1.08

80 7 0.86 21 1.68 17 1.34 3 0.92

320 20 0.40 27 0.51 24 0.43 9 0.54

1280 28 0.12 30 0.14 27 0.13 17 0.23

5120 32 0.03 31 0.03 30 0.04 22 0.08

20480 34 0.01 33 0.01 31 0.01 26 0.02

Table 5: Ψ2, Λ2, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 6 0.97 18 2.16 16 1.65 5 1.01

80 22 0.75 35 1.49 32 1.12 14 0.83

320 35 0.22 35 0.22 35 0.22 33 0.25

1280 35 0.05 35 0.05 35 0.05 35 0.05

5120 35 0.01 35 0.01 35 0.01 35 0.01

20480 35 0 35 0 35 0 35 0

Table 6: Ψ2, Λ3, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 1 35.28 3 77.60 2 68.64 1 35.28

80 1 16.90 6 71.07 4 39.40 1 16.90

320 1 1.93 7 15.85 6 13.28 2 2.87

1280 1 1.09 9 4.67 8 3.46 4 2.06

5120 3 0.64 11 1.22 9 1.18 6 0.83

20480 6 0.24 13 0.42 11 0.33 7 0.26

Table 7: Ψ3, Λ1, σ = 1
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n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 1 2.39 12 61.32 9 40.39 1 2.39

80 1 1.50 20 34.95 16 27.85 3 3.87

320 1 1.15 27 10.96 23 9.81 9 4.35

1280 3 1.04 30 3.20 27 2.66 17 2.01

5120 17 0.53 31 0.74 30 0.73 23 0.64

20480 29 0.18 33 0.21 31 0.20 26 0.19

Table 8: Ψ3, Λ2, σ = 1

n KOPT
n NMSE K1

n NMSE K0.5
n NMSE K0.1

n NMSE

20 1 1.33 18 47.52 16 27.09 5 4.04

80 1 1.20 35 36.28 32 26.53 14 5.84

320 1 1.05 35 5.24 35 5.24 33 4.50

1280 8 0.96 35 1.22 35 1.22 35 1.22

5120 34 0.28 35 0.28 35 0.28 35 0.28

20480 35 0.08 35 0.08 35 0.08 35 0.08

Table 9: Ψ3, Λ3, σ = 1
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