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Multiple Testing for Exploratory

Research1

Jelle J. Goeman and Aldo Solari

Abstract. Motivated by the practice of exploratory research, we for-
mulate an approach to multiple testing that reverses the conventional
roles of the user and the multiple testing procedure. Traditionally, the
user chooses the error criterion, and the procedure the resulting rejected
set. Instead, we propose to let the user choose the rejected set freely,
and to let the multiple testing procedure return a confidence statement
on the number of false rejections incurred. In our approach, such con-
fidence statements are simultaneous for all choices of the rejected set,
so that post hoc selection of the rejected set does not compromise their
validity. The proposed reversal of roles requires nothing more than a re-
view of the familiar closed testing procedure, but with a focus on the
non-consonant rejections that this procedure makes. We suggest several
shortcuts to avoid the computational problems associated with closed
testing.

Key words and phrases: Closed testing, confidence set, false discovery
proportion.

1. INTRODUCTION

Central to the practice of statistics is the dis-
tinction between exploratory and confirmatory data
analysis, and the interplay between the two. Ex-
ploratory data analysis suggests and formulates hy-
potheses, which can subsequently be rigorously
tested by confirmatory data analysis. The two types
of data analysis require very different methods (Tu-
key, 1980): where confirmatory data analysis is struc-

Jelle J. Goeman is Associate Professor, Department of
Medical Statistics and Bioinformatics (S5-P), Leiden
University Medical Center, P.O. Box 9600, 2300 RC
Leiden, The Netherlands e-mail: j.j.goeman@lumc.nl.
Aldo Solari is Assistant Professor, Department of
Statistics, University of Milano-Bicocca, Italy e-mail:
aldo.solari@unimib.it.

1Discussed in 10.1214/11-STS356A, 10.1214/11-STS356B
and 10.1214/11-STS356C; rejoinder at
10.1214/11-STS356REJ.

This is an electronic reprint of the original article
published by the Institute of Mathematical Statistics in
Statistical Science, 2011, Vol. 26, No. 4, 584–597. This
reprint differs from the original in pagination and
typographic detail.

tured and rigorous, exploratory data analysis can be
open-minded and speculative.
Hypothesis testing and strict Type I error con-

trol are traditionally part of the realm of confir-
matory data analysis, and, by implication, so are
multiple testing procedures. However, multiple hy-
pothesis testing is increasingly finding its way into
exploratory data analysis. In genomics research, for
example, typical experiments test thousands of hy-
potheses corresponding to as many molecular mark-
ers. Although somewhat structured, such experi-
ments should be viewed as exploratory rather than
as confirmatory. The collection of tested hypotheses
is usually not selected on the basis of any theory,
but because it is convenient and exhaustive. The
rejected hypotheses are generally not meant to be
reported as end results, but are to be followed up
by independent validation experiments.
Despite the exploratory nature of these experi-

ments, researchers do feel a need for multiple hy-
pothesis testing methods and, in fact, routinely ap-
ply them. The main reason for this is that researchers
want to protect themselves from following up on too
many false leads and doing too many unsuccessful
validation experiments. Most multiple testing meth-
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ods, however, have been designed for confirmatory
data analysis and are ill-suited for the specific re-
quirements of exploratory research.
Before we come to the main argument of this pa-

per, we would like to set the scene by sketching
the requirements for an inferential procedure for ex-
ploratory research. Imagine the situation that we
are exploring a large, but finite number of candi-
date hypotheses, indiscriminately selected. Rather
than rigorously proving the validity of some or all
of these hypotheses, as in confirmatory analysis, we
want to select a number of promising hypotheses for
further probing in a next phase of validation. The
open-minded nature of exploratory research can be
described by three characteristics: exploratory re-
search ismild, flexible and post hoc. We explain these
three terms below, contrasting them with the more
familiar characteristics of confirmatory research.
An inferential procedure is mild if it allows some

false positives among the selected hypotheses. This
is the most obvious characteristic of exploratory re-
search. Mildness is reasonable because false positives
are expected to be detected and removed in later val-
idation experiments. Confirmatory research, in con-
trast, being the final phase of the research cycle, is
not mild but strict.
An inferential procedure is flexible if it does not

prescribe to the researcher which precise hypothe-
ses to select or not to select. For example, if the
procedure ranks the hypotheses from most to least
promising, but the researcher detects a common
theme in the hypotheses ranked second, third and
fourth, he or she can choose to follow up on these
three hypotheses and disregard the hypothesis that
ranked first. In fact, the researcher may also choose
to follow up on the hypothesis that ranked last, if
that fits the same theme. Such freedom, “picking
and choosing,” is an important part of the hypothe-
sis-generating aspect of exploratory research. In con-
firmatory research, in contrast, selection of an in-
teresting and coherent collection of hypotheses has
been done prior to the experiment, so that flexible
selection is not necessary.
Finally, an inferential procedure is post hoc if it

allows all choices that are inherent to the procedure
to be made after seeing the data. Specifically, how
mild the procedure should be, and which precise set
of hypotheses to select does not have to be chosen
beforehand, but may be chosen on the basis of the
data. This is probably the most distinguishing fea-
ture of exploratory research. The decision which in-
ferences, and how many, to follow up is often based

on a mixture of considerations; these considerations
are usually not purely statistical, and are often diffi-
cult to make explicit. In contrast, in pure confirma-
tory research all choices regarding the testing proce-
dure have to be set in stone before data collection.
An ideal multiple hypothesis testing procedure for

exploratory research should sanction a mild, post
hoc and flexible approach. Multiple testing proce-
dures generally do not fulfil these criteria. The main
present distinction is between multiple testing meth-
ods based on the familywise error (FWER), and
variants, and methods based on the false discovery
rate (FDR), and variants of that.
FWER-based methods control the probability of

making any false rejection at a prespecified rate.
These are the archetypical methods for confirma-
tory analysis. Such methods are clearly not mild,
and they are not post hoc, as all data analysis deci-
sions have to be made before seeing the data. They
can be argued to be flexible in a limited sense: it
is possible to refrain from rejecting some of the re-
jected hypotheses without violating control of the
familywise error, but it is not possible to reject any
hypotheses that were not selected by the procedure.
A variant of familywise error, k-FWER, has been
formulated that controls the probability of making
at least k ≥ 1 false rejections (Romano and Wolf,
2007). Depending on k, methods with this error rate
are mild and are flexible in the same limited way
as FWER itself is. Still, k-FWER-based methods
have so far only attracted theoretical interest as in
these methods value of k may not be chosen post
hoc, and nobody knows how to choose k a priori in
an applied setting. A recent permutation method
of Meinshausen (2006) can be seen as a method
that controls k-FWER simultaneously for all values
of k, and consequently allows post hoc selection of k.
This method is mild, post hoc, and quite flexible, al-
though it does not allow a fully arbitrary selection
of the set of rejected hypotheses.
False Discovery Rate (Benjamini and Hochberg,

1995) methods control the expected proportion of
falsely rejected hypotheses among the rejected hy-
potheses. Such methods are not very well suited for
traditional confirmatory research and take a step
toward exploratory research. FDR-based methods
are certainly mild compared to FWER-based meth-
ods. However, they are not post hoc, as the set of
rejected hypotheses is completely determined after
setting the FDR threshold. Moreover, FDR-based
methods are not flexible: as shown by Finner and
Roters (2001), and illustrated in a practical exam-
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ple by Marenne et al. (2009), selecting a subset from
the hypotheses that the FDR-controlling procedure
rejects may increase the false discovery rate above
the prespecified level, just like, of course, selecting
a superset can. Many variants of FDR have been
proposed (e.g., Storey, 2002; Efron et al., 2001; Van
Der Laan, Dudoit and Pollard, 2004), but none of
these has the desired three characteristics of the
ideal multiple testing procedure for exploratory in-
ference. Methods have been formulated for selective
inference (Benjamini and Yekutieli, 2005), but these
still do not allow the full flexibility of exploratory se-
lection.
In this paper we present an approach to multiple

testing that does allow mild, flexible and post hoc
inference. By the nature of the requirements of be-
ing flexible and post hoc, such a procedure cannot
prescribe what hypotheses to reject, but can only
advise. This reverses the traditional roles of the user
and the procedure in multiple testing. Rather than,
as in FWER- or FDR-based methods, to let the user
choose the quality criterion, and to let the procedure
return the collection of rejected hypotheses, the user
chooses the collection of rejected hypotheses freely,
and the multiple testing procedure returns the as-
sociated quality criterion. In our view, the task of
a multiple testing procedure in the exploratory con-
text is not to dictate what to reject, but to quantify
the risk taken, in terms of the potential number of
false rejections, of following up on any specific set of
hypotheses, chosen freely.
This reversal of roles can be achieved while avoid-

ing the pitfall of proposing yet another variant of
FWER or FDR; it can be done simply by com-
bining the familiar concept of the confidence set,
the discrete version of the confidence interval, with
the well-known closed testing procedure (Marcus,
Peritz and Gabriel, 1976), widely recognized as a
fundamental principle of multiple testing. What we
will show is that the closed testing procedure can
be used to construct exact simultaneous confidence
sets for the number of false rejections incurred when
rejecting any specific set of hypotheses, measuring
the risk of following up on this particular set of hy-
potheses. Because the confidence sets are simulta-
neous over all possible sets of rejected hypotheses,
the user is free to optimize, making the procedure
valid even under post hoc selection of the rejected
set.
The approach we propose is constrained by the

requirement that the number of hypotheses poten-
tially to be followed up is finite and that these hy-

potheses can be listed a priori. While this require-
ment rules out the most open-minded and unstruc-
tured applications of exploratory research, many ex-
ploratory problems are structured enough to fit the
framework.
Our proposed procedure has strong links to k-

FWER methods. In fact, the constructed confidence
sets can be seen as controlling the k-FWER, but
simultaneously for all values of k, thus sanction-
ing post hoc selection of k and removing the re-
quirement of selecting k a priori, which tradition-
ally plagues k-FWER-based methods. Through this,
our method links to the approach of Meinshausen
(2006); we come back to this link in Section 4.2.
Another interesting link is with methods that have

appeared in recent years for estimating π0, the num-
ber of true hypotheses among the collection of all hy-
potheses (Schweder and Spjøtvoll, 1982; Benjamini
and Hochberg, 2000; Langaas, Lindqvist and Fer-
kingstad, 2005; Meinshausen and Bühlmann, 2005;
Jin and Cai, 2007). The procedure outlined in this
paper automatically gives a confidence set for the
quantity π0, because the collection of all hypotheses
is one of the possible sets of rejected hypotheses that
the user can choose to follow up, and the number of
false rejections in that set is exactly π0.
The outline of this paper is as follows. In the next

section, we review the closed testing procedure and
the role of the concept of consonance in that pro-
cedure. We argue that non-consonant closed test-
ing procedures have been underrated, and illustrate
the type of additional inference that is possible from
a non-consonant closed testing procedure, but typ-
ically neglected, before we argue how these addi-
tional inferences can be used to construct a con-
fidence set. Section 3 applies the approach to se-
lection of variables in a multiple regression model.
Section 4 explores computational issues related to
closed testing procedures and proposes situations
in which shortcuts can be found. Finally, Section 5
looks at estimation of the number of correctly re-
jected hypotheses. Software to perform the meth-
ods described in this paper is available in the cherry
package, downloadable from CRAN.

2. NON-CONSONANT CLOSED TESTING

The closed testing procedure (Marcus, Peritz and
Gabriel, 1976) is well known as a cornerstone of fam-
ilywise error control. In this section we show how
closed testing may also be used to construct con-
fidence sets for the number of falsely rejected hy-
potheses.



4 J. J. GOEMAN AND A. SOLARI

Fig. 1. Intersection hypotheses formed by elementary hy-
potheses H1, H2 and H3. Rejected hypotheses have been
marked with a cross. The rejection of H2 ∩H3 is a non-con-
sonant rejection.

First we introduce some notation. Let H1, . . . ,Hn

be the collection of hypotheses of interest, the ele-
mentary hypotheses, out of which we want to select
hypotheses to follow up. Some of these hypotheses
are true; let T ⊆ {1, . . . , n} denote the unknown in-
dices of true hypotheses. To use a closed testing
procedure, we must consider not only the elemen-
tary hypotheses, but also all intersection hypothe-
ses of the form HI =

⋂
i∈I Hi, where I ⊆ {1, . . . , n},

I 6=∅. Figure 1 illustrates the intersection hypothe-
ses formed by three hypotheses H1, H2 and H3 in
the form of a graph, with arrows denoting subset
relationships (ignore the crosses for now).
An intersection hypothesis HI is true whenever all

Hi, i ∈ I , are true, that is, whenever I ⊆ T . Let the
closure C be the collection of all nonempty subsets
of the index set {1, . . . , n}. Each element of C corre-
sponds to an intersection hypothesis, some of which
are true. Let T = {I ∈ C : I ⊆ T} be the subsets cor-
responding to true intersection hypotheses. The col-
lection C also contains singleton sets. Noting that
we can equate Hi = H{i}, let H = {I ∈ C :#I = 1}
be the subsets corresponding to the elementary hy-
potheses.
The closed testing procedure works as follows. It

requires α-level tests for every intersection hypoth-
esis HI , I ∈ C, which are called the local tests. Ap-
plying these local tests, let U ⊆ C be the collection
of subsets U ∈ C for which the test rejects the hy-
potheses HU . The collection U represents the raw
rejections uncorrected for multiple testing. Based on
these raw rejections, the closed testing procedure re-
jects every I ∈ C for which J ∈ U for every J ⊇ I .
Denote the collection of all such I by X . It was
shown very elegantly by Marcus, Peritz and Gabriel
(1976) that with this rejected set the closed testing
procedure strongly controls the familywise error for

all hypotheses HI , I ∈ C, at level α. They showed
that the event E = {HT /∈ U}, which happens with
probability at least 1− α, implies that X ∩ T =∅.
In the example of Figure 1, suppose that the hy-

potheses rejected by the local tests are the ones
marked with a cross. In this example H1 is rejected
by the closed testing procedure because the four hy-
potheses H1, H1 ∩H2, H1 ∩H3 and H1 ∩H2 ∩H3

are all rejected by their local test. In fact, in the
example of Figure 1 we have X = U , because each
hypothesis rejected by the local test has all its an-
cestors in the graph of Figure 1 rejected.
When using the closed testing procedure for fami-

lywise error control, the intersection hypotheses are
generally constructed for the benefit of the proce-
dure, but are not of genuine interest by themselves.
The reported result of the procedure is therefore
usually not the collection X , but only X ∩H. From
the perspective of familywise error control, a rejec-
tion I ∈ X for which there is no J ∈ X ∩ H with
J ⊂ I is a wasted rejection. Such a rejection was not
instrumental in facilitating a rejection of interest; if
that rejection had not occurred, the same rejected
set X ∩H of elementary hypotheses would have re-
sulted from the procedure. This consideration has
led to a quest for consonant closed testing proce-
dures. A closed testing procedure is consonant if the
local tests for every I ∈ C are chosen in such a way
that rejection of I implies rejection of at least one
J ∈H. It is easily shown that for every closed testing
procedure there is a consonant procedure that re-
jects at least as much in X ∩H. Moving from a non-
consonant to a consonant procedure may often lead
to a gain in power on the elementary hypotheses.
From a familywise error perspective, consonance is,
therefore, a desirable property, and non-consonant
procedures are best avoided (Bittman et al., 2009).
However, once we are interested in milder infer-

ence than a familywise error-based one, the premise
that only rejection of the elementary hypotheses H1,
. . . ,Hn is of interest should be dropped, and non-
consonant closed testing procedures need not be
avoided. We illustrate this with the simple example
of Figure 1, which will immediately serve as a small
showcase of the point of view on multiple testing we
propose in this paper. Here, the only one of the el-
ementary hypotheses that has been rejected is H1.
Of the intersection hypotheses we see three “con-
sonant” rejections, namely H1 ∩H2 ∩H3, H1 ∩H2

and H1 ∩H3, which have all facilitated rejection of
the elemental hypothesis H1. We also see one “non-
consonant” rejection, H2 ∩H3. A familywise error
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perspective would dictate rejection of H1 and noth-
ing else. An exploratory perspective, however, on the
same data would lay the choice what and how many
hypotheses to reject with the user. An obstinate user
could, for example, choose not to reject H1, but to
reject H2 and H3. What can we say about the risk
incurred by such a user in terms of the number of
false rejections?
In general, the number of false rejections made

when rejecting the hypotheses Hi, i ∈R, is equal to
τ(R) = #(T ∩R), the number of true null hypothe-
ses among R. For a given set R, this quantity is
just a function of the model parameters, for which
we can find estimates and confidence intervals just
like for any other function of the model parameters.
The confidence interval takes the form of a confi-
dence set, because τ(R) only takes discrete values.
We come to the issue of estimation later, and first
construct such a confidence set.
To construct a confidence set, define

CR = {I ∈ C : I ⊆R},
the collection of all intersection hypotheses involving
only rejected hypotheses, and let

tα(R) = max{#I : I ∈ CR, I /∈ X},
taking tα(R) = 0 if CR ⊆ X . The quantity tα(R) is
the size of the largest subset of R for which the
corresponding intersection hypothesis is not rejected
by the closed testing procedure. We claim that the
set

{0, . . . , tα(R)}(1)

is a (1− α)-confidence set of the parameter τ(R).
To prove the coverage of this set, remember that

if the event E has happened, then all rejections
that the closed testing procedure has made are cor-
rect. Given that E has happened, the value of τ(R)
cannot be greater than the value of tα(R), because
otherwise a true intersection hypothesis would have
been rejected, which is inconsistent with the defini-
tion of E. Consequently, τ(R) ∈ {0, . . . , tα(R)} with
probability at least P(E)=1−α, which makes {0, . . . ,
tα(R)} a (1− α)-confidence set for τ(R).
The confidence set (1) is always one-sided, never

providing a nontrivial lower bound for τ(R). The
reason for this is that the confidence set originates
from a procedure that is focused on rejecting, not on
accepting null hypotheses. Furthermore, for many
applications the null hypotheses are point hypothe-
ses, of which it can never be proved that they are

Table 1

Confidence sets for the numbers of incorrect rejections τ (R)
and correct rejections φ(R) incurred with various choices of
the rejected set, based on the closed testing result of Figure 1

R Confidence set for τ(R) Confidence set for φ(R)

{1} {0} {1}
{2} {0, 1} {0, 1}
{3} {0, 1} {0, 1}
{1,2} {0, 1} {1, 2}
{1,3} {0, 1} {1, 2}
{2,3} {0, 1} {1, 2}
{1,2,3} {0, 1} {2, 3}

true. In these cases, no procedure can produce a con-
fidence interval with a nontrivial lower bound, and
the upper bound is the only bound of real interest.
Often interest is in quantifying not the number

of true hypotheses in R, but the number of false
hypotheses φ(R) =#R− τ(R). A confidence set for
φ(R) follows from (1) immediately as

{fα(R), . . . ,#R},
where fα(R) =#R−tα(R). Confidence sets for other
quantities that depend only on τ(R) and #R, such
as the false discovery proportion τ(R)/#R, may be
derived in a similar way.
Returning to the example of Figure 1 with choice

of a rejected set, R= {2,3}, we have a realized value
of tα(R) = 1. We conclude that {0,1} is a (1− α)-
confidence set for the number of false rejections in-
curred when rejecting H2 and H3. Even though nei-
ther H2 or H3 was rejected by the closed testing
procedure, when rejecting both H2 and H3 the user
can be confident of making at least one correct rejec-
tion. The choice of R = {2,3} is only one of many
possible rejection choices that the user can make.
For each alternative choice, a confidence set can be
made in the same way as for R= {2,3}. These con-
fidence sets, and the corresponding confidence sets
for φ(R), are given in Table 1.
The important thing to note about confidence sets

of the form (1) is that they are simultaneous con-
fidence sets, which all depend on exactly the same
event E for their coverage. Because these confidence
sets are simultaneous, the user can review all these
confidence sets, and select the rejected set R that
he or she likes best, while still keeping correct 1−α
coverage of the selected confidence set: under the
event E, all confidence sets cover the true parame-
ter simultaneously, and therefore, under the same
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event E, the selected confidence set covers the true
parameter. Consequently, the selected confidence set
has coverage of at least P(E) = 1−α. The simulta-
neity of the sets makes their coverage robust against
post hoc selection.
In the specific case of Table 1, the user might

choose to follow up on all three hypotheses, which
would give him or her confidence in at least two
discoveries of a false null hypothesis. On the other
hand, if sufficient funds are available for only two
validation experiments, the user may choose to fol-
low up on any two hypotheses, any pair giving con-
fidence of obtaining at most one false positive.
Contrary to the application of closed testing for

familywise error control, in terms of confidence sets
non-consonant rejections do improve the results ob-
tained from the procedure. Without the rejection of
H2∩H3 in Figure 1 the confidence sets for R= {2,3}
and for R = {1,2,3} would have been larger than
the ones given in Table 1. From the definition of
consonance it follows immediately that the value
of tα(R) in a consonant closed testing procedure is
equal to the number of hypotheses in R that are
not rejected by the closed testing procedure under
a familywise error regime. In non-consonant closed
testing procedures, the value of tα(R) can be sub-
stantially smaller, as we shall see in examples be-
low.
Essentially, the example of Table 1 summarizes

the confidence set approach to multiple testing. The
user has unlimited options in selecting what to re-
ject, and may review all options and their conse-
quences in order to make his or her choice. This ap-
proach fulfills all three criteria set for multiple test-
ing in exploratory research formulated in the intro-
duction. The procedure is flexible, because it does
not prescribe any rejections but leaves the choice
which hypotheses to follow up completely in the
hands of the user. The procedure is mild, because it
allows any number or proportion of false rejections
that the user desires. Furthermore, the procedure is
post hoc, because it allows the user to review the
consequences, in terms of the potential number of
false rejections, of any choice of rejected hypothe-
ses before making a final choice, without compro-
mising the quality of the inferences obtained. Still,
even with the lenience of all these properties, the
inferential statements resulting from the procedure
are absolutely classical and rigorous, requiring no
new definitions of error rates but only the classical
concept of simultaneous confidence sets.

Table 2

Uncorrected p-values (t-test) for relevance of variables in the
full model and selected model

Covariate Full model Selected model

(Intercept) 0.036 0.000
Forearm 0.061 0.000
Biceps 0.755 –
Chest 0.420 –
Neck 0.518 –
Shoulder 0.905 –
Waist 0.000 0.000
Height 0.033 0.005
Calf 0.303 –
Thigh 0.351 0.036
Head 0.105 –

3. EXAMPLE: SELECTING COVARIATES

IN REGRESSION

One area of statistics in which common practice
is highly exploratory and post hoc is the selection
of covariates in a multiple regression. Methods such
as forward or backward selection, or their combina-
tion, are typically used to select a model containing
a subset of a set of candidate covariates. Often, p-
values that are reported for the selected covariates
completely ignore the selection process. The confi-
dence set method outlined in the previous section
can be used in this situation to set confidence lim-
its to the number of selected variables that is truly
associated with the response variable.
As an example, consider the physical dataset (Lar-

ner, 1996), in which 10 physical measurements on 22
male subjects (length, and circumference of various
parts of the body) are used as covariates for mod-
eling body mass. An analysis based on a linear re-
gression model with a forward–backward algorithm
selects the four covariates forearm, waist, height and
thigh as the relevant variables. Table 2 gives the p-
values of the covariates in both the full and the se-
lected model. The reported p-values of the selected
model are known to be anti-conservative as they do
not take the selection into account. An important
question to ask, therefore, is how many truly rele-
vant variables are, in fact, included in this selection.
This would give a measure of confidence for the se-
lected set.
Following the strategy outlined in the previous

section, we construct a linear regression model with
an intercept and 10 regression coefficients β1, . . . , β10,
and define the elementary hypotheses Hi, i= 1, . . . ,
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10, to be the hypotheses that the corresponding
regression coefficient βi = 0. Next we construct all
1,023 intersection hypothesesHI , I ∈ C, each of which
corresponds to the hypothesis that βj = 0 for all
j ∈ I . As the local tests we choose the F -test of
the corresponding null model against the saturated
model, tested at level α= 0.05.
The closed testing procedure rejects 626 out of

the 1023 hypotheses, among which there is one el-
ementary hypothesis: waist. Several non-consonant
rejections have occurred. We can summarize these
by finding the defining rejections, that is, the re-
jections I ∈X which have no rejected subset J ⊂ I ,
J ∈ X . For this dataset, these defining rejections are
the following seven sets:

{waist}
{forearm, neck, shoulder, height}
{forearm, biceps, shoulder, calf }
{forearm, shoulder, height, calf }
{forearm, biceps, chest, neck, shoulder, thigh}
{forearm, shoulder, height, thigh}
{forearm, calf, thigh}

As each of these sets corresponds to a rejected
intersection hypothesis, we can conclude with 95%
confidence that each of the seven sets contains at
least one truly relevant covariate. It is tempting to
say that, beside waist, forearm must be relevant,
since it is included in all defining sets except the
first. This is not warranted, however, as the sets are
also consistent with alternative truths, such as that
both shoulder and thigh are relevant variables. What
we can conclude, is that if we select, for example, the
set

R= {waist, forearm, calf, thigh}(2)

we have selected at least two relevant variables. Fur-
thermore, we can also directly conclude that waist
is a relevant variable.
Coming back to the set R = {waist, forearm,

height, thigh} selected by the forward–backward pro-
cedure, we can find all 15 intersection hypotheses of
the four hypotheses in R and check whether they
were rejected by the closed testing procedure. We
find that R ∈ X , but {forearm, height, thigh} /∈ X ,
so that tα(R) = 3. Therefore, we can say with con-
fidence that the selected set R contains one truly
relevant hypothesis, but not that it contains more
than one. From this result, it is clear that the p-
values given for the selected model in Table 2 are
highly untrustworthy.

To find out how many of the original 10 hypothe-
ses are relevant, we take R to be the full set of 10
hypotheses, and we calculate tα(R) = 8 for this set.
Apparently, we can conclude that there are at least
two covariates among these 10 that are determinants
of mass. The smallest set that contains at least two
relevant covariates is the set (2).
It should be noted that the set selected by vari-

able selection procedure should not generally be ex-
pected to be optimal from a confidence set perspec-
tive, because the perspectives of the two procedures
are quite different. This is best illustrated by think-
ing of a dataset in which there are two covariates
which are both highly correlated with each other,
and with the response. Variable selection algorithms
will always choose one of the two variables, disre-
garding the second one as superfluous given the first.
The confidence set approach, however, will empha-
size the uncertainty of the choice between the two
variables, and will not reject any intersection hy-
pothesis that involves only one of the two covariates.
To have confidence that at least one truly relevant
covariate is included, both of the highly correlated
variables must be selected. This reflects a difference
in emphasis between the two approaches: variable
selection selects optimal sets, whereas the confidence
set approach quantifies the uncertainty inherent in
the selection process.
It is interesting to investigate the price of post

hoc selection relative to a priori selection. It is im-
mediate from the procedure that reducing the tested
set of hypotheses to a set R a priori is at least as
powerful as, and likely more powerful than, testing
a larger set and selecting the same set R post hoc.
Post hoc selection will generally result in wider con-
fidence sets than a priori selection: this is the price
to be paid for the risk of overfit caused by post hoc
selection. In the example this price is surprisingly
small. If the set R= {waist, forearm, height, thigh}
would have been defined a priori as the set of hy-
potheses of interest, treating the remaining covari-
ates’ regression coefficients as nuisance parameters,
the confidence set of φ(R) improves from {1,2,3,4}
to {2,3,4}. The confidence set for φ(R) for the set R
defined in (2) does not change.

4. SHORTCUTS

In its standard form, application of a closed test-
ing procedure requires 2n− 1 tests to be performed.
Smart bookkeeping can reduce this number some-
what, especially if some intersection hypotheses high



8 J. J. GOEMAN AND A. SOLARI

up in the hierarchy turn out non-significant, because
it can be used that if I /∈X , then immediately J /∈X
for every J ⊂ I , which saves calculation of some of
the tests. Still, even with such tricks and with high
computational power, the closed testing procedure
becomes computationally intractable in its general
form for a number of hypotheses around 20–30, de-
pending on the computational effort needed for each
single test.
If a large number of hypotheses is to be investi-

gated, it is, therefore, convenient if the local tests
can be chosen in such a way that not all these tests
need to be calculated. Methods for avoiding calcu-
lation of some of the hypothesis tests in the closed
testing procedure are known as shortcuts. The lit-
erature on shortcuts in the closed testing procedure
has been focused mainly on consonant procedures,
and on finding the rejected individual hypotheses
(Grechanovsky and Hochberg, 1999; Zaykin et al.,
2002; Hommel, Bretz and Maurer, 2007; Bittman
et al., 2009; Brannath and Bretz, 2010). In this sec-
tion, we loosely extend the concept of shortcuts to
non-consonant procedures, and discuss ways of find-
ing tα(R) in a computationally easy way for spe-
cific choices of the local test, namely those based
on Fisher combinations, on Simes’ inequality, and
on sums of normally distributed test statistics. We
also demonstrate how the permutation-based pro-
cedure of Meinshausen (2006) fits into the closed
testing framework. Finally, we touch upon the pos-
sible use of other procedures than closed testing for
constructing confidence sets.

4.1 Fisher Combinations

The case of independent null hypotheses deserves
special attention as a benchmark, because several
important multiple testing methods (Benjamini and
Hochberg, 1995; Efron et al., 2001; Storey, 2002)
have been initially formulated for independent hy-
potheses only. Independent tests are relatively rare
in practical applications.
One highly suitable choice for the local tests in the

independent case is Fisher’s combination method.
It requires only the p-values p1, . . . , pn of the tests
of the elemental hypotheses H1, . . . ,Hn, and rejects
an intersection hypothesis corresponding to I ∈ C
whenever

−2
∑

i∈I

log(pi)≥ g#I ,

where gr is the (1−α)-quantile of a χ2-distribution
with 2r degrees of freedom. This test is a valid α-

Table 3

Adverse events data, taken from Herson (2009), sorted to
increasing p-values and with a typo corrected

Adverse event p-value

Anemia 0.02
Myocardial infarct 0.03
Diarrhea 0.04
Nausea and vomiting 0.04
Stomatitis 0.08
Skin rash 0.10
Dehydration 0.12
Shortness of breath 0.18
Renal failure 0.20
Fever 0.23
Blurred vision 0.26
Nose bleed 0.28
Anorexia 0.30
Bronchitis 0.31
Wheezing 0.40
Headache 0.50

level test of the hypothesis HI if the p-values pi,
i ∈ I , are independent. Note that the requirement
of being a valid local test only refers to intersection
null hypotheses that are true, so that there is no
requirement of independence among p-values of false
null hypotheses, nor even between p-values of true
and false null hypotheses.
Fisher’s method is highly non-consonant, as sum

test often are. Moreover, the simple structure of the
local tests allows easy shortcuts to be formulated.
For any s <#R, we have that tα(R)≤ s if

u(R,s+ 1)≥ max
0≤j≤M

{gs+j+1 − u(R̄, j)},

where u(I, k) is the sum of the k smallest values
of −2 log(pi) with i ∈ I , R̄ is the complement of R,
and M is the number of values of −2 log(pk) in R̄
smaller than the (s+1)th largest value of −2 log(pk)
in R. This shortcut, related to the shortcut of Za-
ykin et al. (2002), allows calculation of tα(R) for
any R without exponentially many tests having to
be calculated. It is an example of a general method
for finding shortcuts for exchangeable tests, which
we explain in Appendix A.
As an example, consider the following application

in the realm of adverse drug reactions. Consider the
data in Table 3, which give raw p-values for null
hypotheses concerning the presence of adverse drug
reactions reported for a certain drug. We assume the
hypotheses to be independent, although the validity
of this assumption can be disputed.
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Fig. 2. Number of correct rejections versus number of re-
jections for the data of Table 3. The bars only give the lower
bound of the 95% confidence interval; the number of false null
hypotheses (correct rejections) is likely to be larger than indi-
cated.

An analysis based on familywise error rate (Šidák,
1967) or false discovery rate (procedure of Benjamini
and Hochberg, 1995) results in no rejections for these
data. However, among the hypotheses with small p-
values, the researcher notices three hypotheses con-
cerned with problems of the gastrointestinal tract:
diarrhea, nausea and vomiting, and stomatitis. The
researcher may hypothesize that the drug causes
problems in this area, and may consider following up
on these three hypotheses. For this choice of R we
can calculate fα(R) = 1 at α= 0.05, and we can con-
clude that the drug in question has at least some ad-
verse effect somewhere in the gastrointestinal tract.
The researcher can be confident that following up
on these three hypotheses will lead to at least one
potentially successful validation experiment.
Alternatively, if the researcher wants to optimize

the number of correct rejections, he or she may sim-
ply wish to reject those hypotheses that have the
smallest p-values. In that case the only choice the
researcher has to make is the number of rejections,
and a plot such as Figure 2 may be made, which
plots the lower bound of the number of correct re-
jections fα(R) against the number of rejections #R.
Based on this plot, the researcher can claim with
95% confidence that at least five adverse drug reac-

tions occur for this drug, and that these are found
among the hypotheses with the 10 smallest p-values.
If the researcher does not have funds available for 10
follow-up experiments, the researcher may want to
validate the top six, which gives confidence of find-
ing at least four false null hypotheses, or perhaps
the top three, for confidence of finding at least two
false null hypotheses.
Figure 2 also illustrates the link between our pro-

posed approach and the k-FWER criterion. A user
wishing to control k-FWER can reject any set R
that has tα(R)< k, for example taking R as the set
corresponding to the i smallest p-values, choosing i
as the largest value such that tα(R)< k still holds.
The graph of Figure 2 simultaneously shows the
numbers of rejections allowed with k = 1,2,3,4, . . . ,
which are given by i= 0,3,6,7, . . . . A major advan-
tage of our approach over traditional k-FWER con-
trol approaches is that control is simultaneous over
all rejected sets, and therefore over all choices of k.
The procedure thus bridges the gap between weak
FWER control, related to n-FWER, and strong 1-
FWER control. Furthermore, rather than choosing k
in advance, its value may be picked after seeing the
data without destroying the associated control prop-
erty. The link between k-FWER and our approach
is not limited to local tests based on Fisher combi-
nations.
An interesting feature of using Fisher’s method

in combination with the confidence set approach is
that the method may prove the presence of false
null hypotheses even in the situation that no indi-
vidual p-value is smaller than α. Consider the fol-
lowing p-values, taken from Huang and Hsu (2007):

p1 = 0.051; p2 = 0.064;

p3 = 0.097; p4 = 0.108.

Even though all p-values are non-significant individ-
ually, the confidence set for φ(R) when rejecting the
top two hypotheses is {1,2}, when rejecting the top
three hypotheses {2,3}, and when rejecting all four
hypotheses {2,3,4}. This indicates that even in ab-
sence of any individually significant hypotheses we
can make a rigorous confidence statement that at
least two out of the first three hypotheses are false.
Fisher’s method is highly non-consonant, and can

be very powerful, especially if there are many mod-
erately small p-values. It is not uniformly more pow-
erful than other tests, however. Compared to con-
sonant local tests, such as Sidak’s, Fisher’s method
tends to have smaller values of tα(R) for large re-
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jected sets R due to its large number of non-conso-
nant rejections, but Sidak’s method often has more
sets R which have tα(R) = 0, due to a higher number
of consonant rejections.

4.2 Simes Type Local Tests and Permutations

A different type of local test with potentially non-
consonant rejections is a type of test that rejects
a hypothesis HI , I ∈ C, whenever

pI(i) ≤ c#I
i(3)

for at least one 1 ≤ i ≤ #I , where pI(i) is the ith

smallest among the p-values {pj}j∈I of the elemen-
tary hypotheses with indices in I , and cmi , 1≤m≤ n,
1 ≤ i ≤m, are appropriately chosen critical values.
Without loss of generality we can take cmi ≤ cmj if
i≤ j.
We call local tests of the form (3) Simes type local

tests because if we choose

cmi =
iα

m
,(4)

the test based on (3) is a valid α-level test of HI

by Simes’ (1986) inequality. Simes’ inequality holds
whenever p-values of true null hypotheses are inde-
pendent, but also under more general conditions, as
investigated by Sarkar (1998). In particular it holds
for p-values from identically distributed, nonnega-
tively correlated test statistics.
A variant of Simes’ inequality has been proposed

by Hommel (1983). This variant uses critical values

cmi =
iα

Km ·m,(5)

where Km =
∑m

v=1 v
−1. Unlike the one based on

Simes’ inequality, the local test defined by these crit-
ical values is of the correct level α whatever the de-
pendence structure of the original p-values.
Local tests of the form (3) do not generally allow

shortcuts for the calculation of tα(R), but two use-
ful shortcuts are available if the critical values are
chosen in such a way that

cli ≤ cmi whenever l≥m.(6)

The first shortcut this condition allows is the gen-
eral shortcut described in Appendix A, the condi-
tions of which are fulfilled whenever (6) holds. The
second shortcut is even faster to calculate, but is
less general: it holds for rejected sets of the form
R = {i :pi ≤ q} only. Let p(i), i = 1, . . . , n, be short

for pI(i) with I = {1, . . . , n}. For R of the form men-

tioned, we have the shortcut

fα(R)>max{Sr : 1≤ r ≤#R},(7)

where Sr =max{s≥ 0 :p(r) ≤ cnr−s}. The value of Sr

can be interpreted as the number of more stringent
critical values cnr−1, . . . , c

n
1 by which the p-value p(r)

overshoots its mark cnr . The number of false hy-
potheses is larger than the greatest such overshoot of
the ordered p-values in the set R. The shortcut (7) is
useful for making plots such as the one in Figure 2.
We prove this shortcut in Appendix B. A slightly
more powerful variant of the shortcut (7) is avail-
able if we have

cmi ≤ cm−w
i−w for every 1≤w < i.(8)

In this case, we have the same shortcut as (7), but
with Sr =max{s≥ 0 :p(r) ≤ cn−s

r−s}. The proof of this
statement is analogous to the proof for (7) and is
also given in Appendix B. It is easy but tedious to
show that the Simes critical values (4) and (5) con-
form to (6) and that the critical values (4) also con-
form to the stronger (8), so that the shortcuts may
be used for these choices of the local test (see also
Benjamini and Heller, 2008).
As a side note, we remark that the critical val-

ues (4) and (5) are the same as the critical val-
ues used in the false discovery rate controlling algo-
rithms of Benjamini and Hochberg (1995) and Ben-
jamini and Yekutieli (2001), respectively. The corre-
spondence between the critical values creates a con-
nection between the corresponding methods. The set
that has been rejected by the false discovery rate al-
gorithm always has fα(R) > 0 based on the closed
testing procedure with the corresponding local test.
Note that the assumptions underlying each local test
and its corresponding false discovery rate algorithm
are very similar. For the example data of Section 4.1,
the Simes local test leads to no rejections, which is
consistent with finding no rejections with the proce-
dure of Benjamini and Hochberg (1995).
Permutation testing can be a powerful tool to take

into account the joint distribution of the p-values.
Useful shortcuts in a closed testing procedure with
permutation-based local tests can be constructed
from the work of Meinshausen and Bühlmann (2005)
and Meinshausen (2006). These authors describe
a permutation-based way to find critical values ki,
i= 1, . . . , n, such that the probability under the com-
plete null hypothesis that p(i) ≤ ki for at least one i
is bounded by α. The same method may in principle
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also be used to find corresponding permutation crit-
ical values kIi for every intersection hypothesis HI ,
I ∈ C, and therefore a local test for every intersec-
tion hypothesis HI ; a closed testing procedure can
be made on the basis of these tests. However, un-
less the number of hypotheses is limited, this will
be extremely time-consuming, and it would lead to
a closed testing procedure for which shortcuts are
not available. A way out of this dilemma can be
found by remarking that, by construction of the per-
mutation critical values, we have kIi ≥ ki for every i
and I . Therefore, a valid, though conservative, local
test may be constructed by simply using a procedure
of the form (3) with cmi = ki for every 1 ≤ m ≤ n.
This local test fulfils the condition (6) and therefore
admits shortcuts. With this choice of a local test, the
confidence set approach to multiple testing can be
used for every collection of test statistics for which
permutation is possible, opening up the possibility
to use permutation-based closed testing in genomics
research.
Meinshausen (2006) constructed simultaneous con-

fidence bands for the number of falsely rejected hy-
potheses for rejected sets of the form R= {i :pi ≤ q},
similar to Figure 2, based on the permutation crit-
ical values k1, . . . , kn he found. Even though Mein-
shausen did not use closed testing, these confidence
bands are identical to the confidence bounds that
would be obtained when using the local tests (3)
with cmi = ki in combination with the shortcut (7).
By exploiting the shortcut of Appendix A rather
than this simpler shortcut, it becomes possible to
extend Meinshausen’s method to be able to find con-
fidence bounds for τ(R) for sets R not of the form
R= {i :pi ≤ q}. Alternatively, for a very small num-
ber of tests, the full permutation-based closed test-
ing procedure may be used, which could be more
powerful.

4.3 Normally Distributed Test Statistics

Workable local tests may also be constructed on
the basis of normally distributed scores. Consider
the situation that we have scores z1, . . . , zn for each
hypothesis H1, . . . ,Hn, respectively, which are stan-
dard normally distributed if their respective null hy-
pothesis is true, and we would reject Hi one-sidedly
when zi is large. This situation occurs quite fre-
quently in practice, at least asymptotically, for ex-
ample if we do many one-sided binomial z-tests.
A sensible choice for a test statistic for a local test
is ZI =

∑
i∈I zi. Consider first the case in which the

scores of true null hypotheses are independent. In

that case ZI is normally distributed with mean 0
and variance #I , and we may reject HI whenever
ZI ≥

√
#I ·Φ(1− α), where Φ is the standard nor-

mal distribution function. If the scores are not in-
dependent but only jointly normally distributed, we
have the following, more conservative result. In that
case ZI is normally distributed with mean 0 but un-
known variance. Let Σ be the correlation matrix of
{zi}i∈I , then the variance of ZI is given by 1

TΣ1,
where 1 is a vector of ones of length #I . This vari-
ance is bounded by #I times the largest eigenvalue
of Σ, and therefore by (#I)2. It follows that for α≤
1/2, we may reject HI whenever ZI ≥#I ·Φ(1−α).
This type of test was used by Van De Wiel, Berkhof
and Van Wieringen (2009).
Both tests are exchangeable and lead to easy short-

cuts in the sense of Appendix A. In practice, the test
for the non-independent case can be highly conser-
vative if used for small values of α, unless the scores
are strongly positively correlated. One case to note,
however, is the case that α= 1/2, when the critical
value is 0 for both the independent and the gen-
eral situation, negating the conservativeness of the
latter. This situation is relevant for the method of
Section 5.

4.4 Other Types of Shortcuts

Shortcuts of the form described in the appendices
can only be used within a restricted class of local
tests that is calculated as an exchangeable function
of per-hypothesis statistics. Other types of shortcuts
may be devised for other classes of local tests in the
future.
A very different way to construct confidence inter-

vals of τ(R) while avoiding calculation of the com-
plete closed testing procedure is to use a different
multiple testing procedure that still allows non-con-
sonant rejection of some intersection hypotheses. Ex-
amples of such procedures are the tree-based testing
procedure of Meinshausen (2008), recently improved
by Goeman and Solari (2010), the focus level pro-
cedure of Goeman and Mansmann (2008), and the
gatekeeping method of Edwards and Madsen (2007).
These procedures allow familywise error inference on
a collection of hypotheses comprising the elementary
hypotheses and a selection from the 2n− 1 intersec-
tion hypotheses, and may produce non-consonant
rejections on these intersection hypotheses. The re-
sults of these procedures may be used as a basis for
constructing confidence intervals in the same way as
the results of the closed testing procedure were used
in Section 2.
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5. ESTIMATION

In addition to the confidence interval, it can some-
times be informative to have a point estimate of the
number of true null hypotheses among a set of in-
terest. Estimation of the number of true null hy-
potheses has been a subject of recent interest in
the context of genomic data analysis, and several
authors (Schweder and Spjøtvoll, 1982; Benjamini
and Hochberg, 2000; Langaas, Lindqvist and Fer-
kingstad, 2005; Meinshausen and Bühlmann, 2005;
Jin and Cai, 2007) have proposed methods for esti-
mating τ(R), although for R= {1, . . . , n} only. The
quantity τ(R) for R = {1, . . . , n} is commonly re-
ferred to as π0.
The confidence intervals of the previous sections

are easily adapted to produce a point estimate of τ(R)
for any set R. We propose to use the value t1/2(R)
as an estimate, the upper bound of the confidence
interval, calculated at the significance level α= 1/2.
This estimate can be seen as a conservative median
estimate of the true quantity τ(R): by the proper-
ties of tα(R) derived in the previous sections, t1/2(R)
exceeds the value of τ(R) with a probability that is
bounded above by 1/2. Furthermore, this property
holds simultaneously for all R by the simultaneity of
the confidence interval on which it is based, which
makes the defining property of the estimate robust
against selection of R.
The estimate can be used to get an impression

where the “midpoint” of the confidence interval is.
Applying the procedure to the physical dataset of
Section 3 at α= 1/2, we find the following defining
rejections:

{waist}
{forearm}
{height}
{chest, calf, thigh}
{neck, calf, thigh}
{thigh, head}

The estimated number of true null hypotheses among
all 10 hypotheses, for which the 95% confidence set
was {0, . . . ,8}, is calculated as 6, which points to an
estimated number of four relevant variables in the
regression. For the set R= {waist, forearm, height,
thigh} of four variables selected by the stepwise pro-
cedure, the number of truly relevant variables is es-
timated at 3 (the 95% confidence set for this quan-
tity was {1,2,3,4}). In contrast, the set (2) which
included with 95% confidence at least two relevant
variables, also contains an estimated number of two

relevant variables. The smallest rejected set that
contains an estimated number of four relevant vari-
ables is the set R= {waist, forearm, height, thigh,
head}. We can report this optimized set without fear
of overfit, because the property that the number of
truly relevant covariates is overestimated with prob-
ability at most 1/2 holds simultaneously for all re-
jected sets.
In the adverse event data of Section 4.1 the num-

ber of true null hypotheses among the 16 hypothe-
ses is estimated at two using a Fisher local test at
α = 1/2. In this case, all rejections turn out to be
consonant: rejecting the 14 hypotheses with small-
est p-values leads to an estimated number of 0 false
discoveries. If we use Simes rather than Fisher for
the local test, we even obtain an estimated number
of 0 true null hypotheses among all 16 hypotheses.
We warn against using the estimate of the num-

ber of falsely rejected hypotheses by itself, without
the associated confidence interval. To see the danger
of this, consider the simplest “multiple testing prob-
lem” in which only a single null hypothesis is tested.
The estimation procedure of this section would esti-
mate this hypothesis as true whenever the p-value is
greater than 1/2, and as false whenever it is smaller
than or equal to 1/2. This seems generally too le-
nient a conclusion to be a viable strategy, although
it may be useful in some highly exploratory and risk-
seeking settings. In these situations, the special sta-
tus of α= 1/2 in the shortcut of Section 4.3 may be
of interest.

6. CONCLUSION

All exploratory research is essentially picking and
choosing. From a large number of potential hypothe-
ses to follow up, the researcher selects for further
investigation those hypotheses or sets of hypotheses
that stand out in the researcher’s eyes. This selec-
tion is made in complete freedom. The notion that
any statistical method would dictate what the re-
searcher should find interesting is contrary to the
spirit of exploratory research.
However, a well-known risk of picking and choos-

ing is overfit, “cherry-picking.” Patterns that strike
the researcher as relevant and interesting may have
arisen due to chance, and turn out to be false posi-
tives in follow-up experiments. To protect a research-
er against too many disappointments of this type, it
is important to make a realistic assessment of the
risk taken when following up on a certain collection
of hypotheses.
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In this paper, we have presented an approach to
multiple testing that is especially designed for the
requirements of exploratory research, and which re-
verses the way that multiple testing methods are
typically used. Rather than letting the user decide
on the error rate, and the procedure on the rejec-
tions, we let the user decide on the rejections, and
the procedure on the error rate. Our approach does
not rely on the definition of any new error rates,
and has not even required the design of a new al-
gorithm. The approach uses the classical concept of
the simultaneous confidence set, together with the
equally classical closed testing procedure, although
both in a novel way.
The end result of the procedure is a collection of

confidence sets for the number of falsely rejected hy-
potheses for all possible choices of the rejected set.
The most important property of these confidence
sets is that they are simultaneous. This simultaneity
protects the user of the procedure against overopti-
mism resulting from post hoc selection of the re-
jected set, and removes many of the problems tradi-
tionally associated with cherry-picking from a large
set.
Finally, the approach is very general, and the lim-

its on its useability are mostly computational. The
most important assumption we make is that the
number of hypotheses potentially to be followed up
is finite, and that these hypotheses may be enu-
merated before starting the experiment. Aside from
that, the ability of the closed testing procedure to
work with any choice of a local test makes that pro-
cedure very flexible. Only if the number of hypothe-
ses becomes large, computational issues limit the
choice of local tests to those for which shortcuts are
available. The shortcuts described in this paper al-
ready cover a wide range of application areas. More
and improved shortcuts are likely to be found in the
future.

APPENDIX A: SHORTCUTS FOR

EXCHANGEABLE LOCAL TESTS

We present a fairly general method for construct-
ing shortcuts in the closed testing procedure which
can be used for finding tα(R) and are appropriate
for the methods in Section 4. This shortcut delin-
eates a class of local tests for which tα(R) can be
calculated for any R by calculating only n2, rather
than 2n tests. We give the shortcut for a p-value-
based method. The shortcut for methods based on
other scores (e.g., Section 4.3) is completely analo-
gous.

Assume that the local test is exchangeable, that is,
rejection of HI , I ∈ C, only depends on the set PI =
{pi}i∈I of raw p-values, and not on the collection I
itself. Let δ be the function that maps from a set
of p-values P to rejection, δ(P ) = 1 if the collection
P = PI would lead to rejection of HI , and δ(P ) = 0
otherwise. Further, suppose that

δ({p1, . . . , pk})≥ δ({q1, . . . , qk})(9)

whenever p1 ≤ q1, . . . , pk ≤ qk, and that

δ(q ∪P )≥ δ(P )(10)

whenever q ≤min(p ∈ P ).
If these assumptions hold, it can be shown that

for any s <#R,

δ(QR
s+1 ∪ Q̄R

j ) = 1 for every j ∈ {0, . . . ,mR}(11)

implies tα(R)≤ s. Here, QR
s+1 is the set of the s+1

largest p-values of hypotheses in R; Q̄R
j is the set of

the j largest p-values of hypotheses not in R, and
mR is the number of p-values not in R that are larger
than the smallest p-value in QR

s+1.
To show this, note that by assumptions (9) and (10),

equation (11) implies that

δ(QR
s+1 ∪PI) = 1

for every I ∈ C, and that therefore, by assumption (9),

δ(PJ ∪PI) = 1

for every I ∈ C and for every J ⊆R for which #J =
s+1. Consequently, J ∈ X for every J ⊆R for which
#J = s+1, so that tα(R)≤ s by definition.

APPENDIX B: SHORTCUTS FOR

SIMES-TYPE LOCAL TESTS

Next, we prove the shortcut (7) for Simes-type
local tests. Let R= {i :pi ≤ q} be a rejected set, and
assume that condition (6) holds.
First, let r =#R, and remark that p(r) ≤ cnr−s, for

some s≥ 0, implies that

fα(R)> s.(1)

To see why this is true, choose any K ⊆ R with
#K ≥ r−s and any J ⊇K. Remark that p(r) ≤ cnr−s

implies that

pJ(r−s) ≤ pK(r−s) ≤ p(r) ≤ cnr−s ≤ c#J
r−s.

Consequently, K ∈ X for every K ⊆ R with #K ≥
r− s, so that tα(R)< r− s, and (1) follows. To ob-
tain the final statement (7), remark that fα(R) ≥
fα(S) for every R⊇ S, and apply the bound (1) on
all S ⊂R of the form specified.



14 J. J. GOEMAN AND A. SOLARI

Analogously, if (8) holds, chooseK and J as above,
and let s̃ = #(R \ J) ≤ s. Then p(r) ≤ cn−s

r−s implies
that

pJ(r−s̃) ≤ p(r) ≤ cn−s
r−s ≤ cn−s̃

r−s̃ ≤ c#J
r−s̃,

noting, in the last inequality, that #J ≤ n− s̃ and
that (8) implies (6). From this result (1) and (7)
follow as above.
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Meinshausen, N. and Bühlmann, P. (2005). Lower bounds
for the number of false null hypotheses for multiple test-
ing of associations under general dependence structures.
Biometrika 92 893–907. MR2234193

Romano, J. P. and Wolf, M. (2007). Control of generalized
error rates in multiple testing. Ann. Statist. 35 1378–1408.
MR2351090

Sarkar, S. K. (1998). Some probability inequalities for or-
dered MTP2 random variables: A proof of the Simes con-
jecture. Ann. Statist. 26 494–504. MR1626047

Schweder, T. and Spjøtvoll, E. (1982). Plots of p-values
to evaluate many tests simultaneously. Biometrika 69 493–
502.
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