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TESTING FUNCTIONAL INEQUALITIES

SOKBAE LEE, KYUNGCHUL SONG, AND YOON-JAE WHANG

Abstract. This paper develops tests for inequality constraints of nonparametric re-
gression functions. The test statistics involve a one-sided version of Lp-type functionals
of kernel estimators (1 ≤ p < ∞). Drawing on the approach of Poissonization, this
paper establishes that the tests are asymptotically distribution free, admitting asymp-
totic normal approximation. In particular, the tests using the standard normal critical
values have asymptotically correct size and are consistent against general fixed alterna-
tives. Furthermore, we establish conditions under which the tests have nontrivial local
power against Pitman local alternatives. Some results from Monte Carlo simulations
are presented.
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1. Introduction

Suppose that we observe {(Y ′
i , X

′
i)

′}ni=1 that are i.i.d. copies from a random vector,

(Y ′, X ′)′ ∈ RJ ×Rd. Write Yi = (Y1i, · · ·, YJi)
′ ∈ RJ and define mj(x) ≡ E[Yji|Xi = x],

j = 1, 2, · · ·, J . The notation ≡ indicates definition.

This paper focuses on the problem of testing functional inequalities:

H0 : mj(x) ≤ 0 for all (x, j) ∈ X × J , vs.

H1 : mj(x) > 0 for some (x, j) ∈ X × J ,
(1.1)

where X ⊂ Rd is the domain of interest and J ≡ {1, . . . , J}. Our testing problem

is relevant in various applied settings. For example, in a randomized controlled trial,

a researcher observes either an outcome with treatment (W1) or an outcome without

treatment (W0) along with observable pre-determined characteristics of the subjects

(X). Let D = 1 if the subject belongs to the treatment group and 0 otherwise. Suppose
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that assignment to treatment is random and independent of X and that the assignment

probability p ≡ P{D = 1}, 0 < p < 1, is fixed by the experiment design. Then the

average treatment effect E(W1 −W0|X = x), conditional on X = x, can be written as

E(W1 −W0|X = x) = E

[

DW

p
− (1−D)W

1− p

∣

∣

∣

∣

X = x

]

,

where W ≡ DW1 + (1 − D)W0. In this setup, it may be of interest to test whether or

not m(x) ≡ E(W1 −W0|X = x) ≤ 0 for all x.

In economic theory, primitive assumptions of economic models generate certain testable

implications in the form of functional inequalities. For example, Chiappori, Jullien,

Salanié, and Salanié (2006) formulated some testable restrictions in the study of insur-

ance markets. Our tests are applicable for testing their restrictions (e.g. equation (4) of

Chiappori, Jullien, Salanié, and Salanié (2006)). Furthermore, our method can be used

to test for monotone treatment response (see, e.g. Manski (1997)). For example, testing

for a decreasing demand curve for each level of price in treatments and for each value of

covariates falls within the framework of this paper.

Our test statistic can also be used to construct confidence regions for a parameter

that is partially identified under conditional moment inequalities. See, among many

others, Andrews and Shi (2011a,b), Armstrong (2011), Chernozhukov, Lee, and Rosen

(2009), Chetverikov (2012), and references therein for inference with conditional moment

inequalities.

This paper proposes a one-sided Lp approach in testing nonparametric functional

inequalities. While measuring the quality of an estimated nonparametric function by

its Lp-distance from the true function has long received attention in the literature (see

Devroye and Györfi (1985), for an elegant treatment of the L1 norm of nonparametric

density estimation), the advance of this approach for general nonparametric testing

seems to have been rather slow relative to other approaches, perhaps due to its technical

complexity.

Csörgő and Horváth (1988) first established a central limit theorem for the Lp-distance

of a kernel density estimator from its population counterpart, and Horváth (1991) in-

troduced a Poissonization technique into the analysis of the Lp-distance. Beirlant and

Mason (1995) developed a different Poissonization technique and established a central

limit theorem for the Lp-distance of kernel density estimators and regressograms from

their expected values without assuming smoothness conditions for the nonparametric

functions. Giné, Mason and Zaitsev (2003: GMZ, hereafter) employed this technique

to prove the weak convergence of an L1-distance process indexed by kernel functions in

kernel density estimators.
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This paper builds on the contributions of Beirlant and Mason (1995) and GMZ to

develop methods for testing (1.1). In particular, the tests that we propose are studentized

versions of one-sided Lp-type functionals. We show that our proposed test statistic is

distributed as standard normal under the least favorable case of the null hypothesis.

Thus, our tests using the standard normal critical values have asymptotically correct size.

We also show that our tests are consistent against general fixed alternatives and carry out

local power analysis with Pitman alternatives. For the latter, we establish conditions

under which the tests have nontrivial local power against Pitman local alternatives,

including some n−1/2-converging Pitman sequences.

Our tests have the following desirable properties. First, our tests do not require usual

smoothness conditions for nonparametric functions for their asymptotic validity and con-

sistency. This is because we do not need pointwise or uniform consistency of an unknown

function to implement our tests. For example, a studentized version of our statistic can

be estimated without need for controlling the bias. Second, our tests for (1.1) are dis-

tribution free under the least favorable case of the null hypothesis where mj(x) = 0,

for all x ∈ X and for all j ∈ J and at the same time have nontrivial power against

some, though not all, n−1/2-converging Pitman local alternatives. This is somewhat

unexpected, given that nonparametric goodness-of-fit tests that involve random vec-

tors of a multi-dimension and have nontrivial power against n−1/2-converging Pitman

sequences are not often distribution free. Exceptions are tests that use an innovation

martingale approach (see, e.g., Khmaladze (1993), Stute, Thies and Zhu (1998), Bai

(2003), and Khmaladze and Koul (2004)) or some tests of independence (or conditional

independence) among random variables (see, e.g., Blum, Kiefer, and Rosenblatt (1961),

Delgado and Mora (2000) and Song (2009)). Third, the local power calculation of our

tests for (1.1) reveals an interesting contrast with other nonparametric tests based on

kernel smoothers, e.g. Härdle and Mammen (1993) and Horowitz and Spokoiny (2001),

where the latter tests are known to have trivial power against n−1/2-converging Pitman

local alternatives. Our inequality tests can have nontrivial local powers against n−1/2-

converging Pitman local alternatives, provided that a certain integral associated with

local alternatives is strictly positive. On the other hand, it is shown in Section 4 that

our equality tests have trivial power against n−1/2-converging Pitman local alternatives.

Therefore, the one-sided nature of inequality testing is the source of our different local

power results. This finding appears new in the literature to the best of our knowledge.

The remainder of the paper is as follows. Section 2 discusses the related literature.

Section 3 provides an informal description of our test statistic for a simple case, and

establishes conditions under which our tests have asymptotically valid size when the

null hypothesis is true and also are consistent against fixed alternatives. We also obtain
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local power results for the leading cases when p = 1 and p = 2. In Section 4, we make

comparison with functional equality tests and highlight the main differences between

testing inequalities and equalities in terms of local power. In Section 5, we report results

of some Monte Carlo simulations that show that our tests perform well in finite samples.

The proofs of main theorems are contained in Section 6, along with a roadmap for the

proof of the main theorem.

2. Related Literature

In this section, we provide details on the related literature. The literature on hypoth-

esis testing involving nonparametric functions has a long history. Many studies have

focused on testing parametric or semiparametric specifications of regression functions

against nonparametric alternatives. See, e.g., Bickel and Rosenblatt (1973), Härdle and

Mammen (1993), Stute (1997), Delgado and González Manteiga (2000), Horowitz and

Spokoiny (2001), and Khmaladze and Koul (2004) among many others. The testing

problem in this paper is different from the aforementioned papers, as the focus is on

whether certain inequality (or equality) restrictions hold, rather than on whether cer-

tain parametric specifications are plausible.

When J = 1, our testing problem is also different from testing

H0 : m(x) = 0 for all x ∈ X , against

H1 : m(x) ≥ 0 for all x ∈ X with strict inequality for some x ∈ X .

Related to this type of testing problems, see Hall, Huber, and Speckman (1997) and Koul

and Schick (1997, 2003) among others. In their setup, the possibility that m(x) < 0 for

some x is excluded, so that a consistent test can be constructed using a linear functional

of m(x). On the other hand, in our setup, negative values of m(x) for some x are allowed

under both H0 and H1. As a result, a linear functional of m(x) would not be suitable

for our purpose.

There also exist some papers that consider the testing problem in (1.1). For example,

Hall and Yatchew (2005) and Andrews and Shi (2011a,b) considered functions of the form

u 7→ max{u, 0}p to develop tests for (1.1). However, their tests are not distribution free,

although they achieve local power against some n−1/2-converging sequences. See also

Hall and van Keilegom (2005) for the use of the one-sided Lp-type functionals for testing

for monotone increasing hazard rate. None of the aforementioned papers developed test

statistics of one-sided Lp-type functionals with kernel estimators like ours. See some

remarks of Ghosal, Sen, and van der Vaart (2000, p.1070) on difficulty in dealing with

one-sided Lp-type functionals with kernel estimators.
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In view of Bickel and Rosenblatt (1973) who considered both L2 and sup tests, a

one-sided sup test appears to be a natural alternative to the Lp-type tests studied in

this paper. For example, Chernozhukov, Lee, and Rosen (2009) considered a sup norm

approach in testing inequality constraints of nonparametric functions. Also, it may be

of interest to develop sup tests based on a one-sided version of a bootstrap uniform

confidence interval of ĝn, similar to Claeskens and van Keilegom (2003). The sup tests

typically do not have nontrivial power against any n−1/2-converging alternatives, but

they may have better power against some “sharp peak” type alternatives (Liero, Läuter

and Konakov, 1998).

Testing for inequality is related to testing for monotonicity since a null hypothesis

associated inequality (respectively, monotonicity) can also be framed as that of mono-

tonicity (respectively, convexity) of integrated moments. For example, Durot (2003)

and Delgado and Escanciano (2011, 2012) used the least concave majorant operator to

characterize their null hypotheses and developed tests based on the isotonic regression

methods.

Finally, we mention that there exist other applications of the Poissonization method.

For example, Anderson, Linton, and Whang (2012) developed methodology for kernel

estimation of a polarization measure; Lee and Whang (2009) established asymptotic null

distributions for the L1-type test statistics for conditional treatment effects; and Mason

(2009) established both finite sample and asymptotic moment bounds for the Lp risk for

kernel density estimators. See also Mason and Polonik (2009) and Biau, Cadre, Mason,

and Pelletier (2009) for asymptotic distribution theory in support estimation.

Among all the aforementioned papers, our work is most closely related to Lee and

Whang (2009), but differs substantially in several important ways. First, we consider

the case of multiple functional inequalities, in contrast to the single inequality case of

Lee and Whang (2009). This extension requires different arguments (see, e.g. Lemma

A7 in Section 6.2) and is necessary in order to encompass important applications such as

testing monotonic treatment response and inference with conditional moment inequali-

ties. Second, we extend the L1 statistic to the general Lp statistic. Such an extension

is not only theoretically challenging because many of the results of GMZ apply only to

the L1 statistic (See, e.g., Lemmas A3 and Lemmas A8 in Section 6.2), but also useful

to applied econometricians because the Lp-type test statistics with different values of

p generally have different power properties. Third, regularity conditions are weaker in

this paper than those in Lee and Whang (2009). In particular, we allow the underlying

functions to be non-smooth, which should be useful in some contexts. We believe that

none of these extensions are trivial. Therefore, we view these two papers as complements

rather than substitutes.
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The testing framework in this paper could be easily extended to testing stochastic

dominance conditional on covariates in the one-sample case or in the program evaluation

setup described in the introduction. For the latter setup, testing conditional stochastic

dominance amounts to testing m(x, y) ≡ E[1(W1 ≤ y)− 1(W0 ≤ y)|X = x) ≤ 0 for all

(x, y) ∈ XY , where XY is the domain of the interest and W1 and W0, as before, are

outcomes for treatment and control groups, respectively. Then a conditional stochastic

dominance test can be developed by combining a density weighted kernel estimator

of m(x, y) with a one-sided Lp-type functional. However, it is not straightforward to

extend our framework to general two-sample cases. This is because the propensity score

P (D = 1|X = x) is unknown in general and has to be estimated to implement the test.

See, for example, Lee and Whang (2009), Delgado and Escanciano (2011), and Hsu

(2011) for testing conditional treatment effects, including testing conditional stochastic

dominance, in general two-sample cases.

3. Test Statistics and Asymptotic Properties

3.1. An Informal Description of Our Test Statistics. Our tests are based on one-

sided Lp-type functionals. For 1 ≤ p < ∞, let Λp : R 7→ R be such that Λp(v) ≡
max{v, 0}p, v ∈ R. Consider the following one-sided Lp-type functionals:

ϕ 7→ Γj(ϕ) ≡
∫

X
Λp(ϕ(x))wj(x)dx, for j ∈ J ,

where wj : Rd → [0,∞) is a nonnegative weight function. Let f denote the density

function of X and define gj(x) ≡ mj(x)f(x). To construct a test statistic, define

ĝjn(x) ≡
1

nhd

n
∑

i=1

YjiK

(

x−Xi

h

)

,

where K : Rd 7→ R is a kernel function and h a bandwidth parameter satisfying h → 0

as n → ∞. Our test statistic is a suitably studentized of version of Γj(ĝjn(x))’s.

Note that we focus on values of x for which ĝjn(x) > 0 through the use of Λp(v).

Thus, we expect that when H0 is true, a suitably studentized version of Γj(ĝjn) is “not

too large” for each j ∈ J but that when H0 is false, it will diverge for some j ∈ J . This

motivates the use of a weighted sum of Γj(ĝjn) as a test statistic. We require that at least

one component of X be continuously distributed. If some elements of X are discrete, we

can modify the integral in the functional above by using some product measure between

the Lebesgue and counting measures.
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We show in Section 3.2 that under weak assumptions, there exist nonstochastic se-

quences ajn ∈ R, j ∈ J , and σn ∈ (0,∞) such that as n → ∞,

(3.1) Tn ≡ 1

σn

J
∑

j=1

{

np/2h(p−1)d/2Γj(ĝjn)− ajn
} d→ N(0, 1),

under the least favorable case of the null hypothesis, where mj(x) = 0, for all x ∈ X
and for all j ∈ J . This is done first by deriving asymptotic results for the Poissonized

version of the processes, {ĝjn(x) : x ∈ X}, j ∈ J , and then by translating them back

into those for the original processes through the de-Poissonization lemma of Beirlant

and Mason (1995). See Appendix 6.1 for details.

To construct a test statistic, we replace ajn and σn by appropriate estimators to

obtain a feasible version of Tn, say, T̂n, and show that the limiting distribution remains

the same under a stronger bandwidth condition. Hence, we obtain a distribution free

and consistent test for the nonparametric functional inequality constraints.

To provide a preview of local power analysis with Pitman alternatives in Section 3.3,

suppose that J = 1 and p = 1, and the form of the local alternatives is g1(x) = ̺nδ1(x)

for some function δ1(x), where ̺n is a sequence of real numbers that converges to 0

as n → ∞. Then (1) if
∫

X δ1(x)w1(x)dx > 0, our test has nontrivial power against

sequences of local alternatives with ̺n ∝ n−1/2; (2) if
∫

X δ1(x)w1(x)dx = 0, our test has

nontrivial power only against sequences of local alternatives for which ̺n → 0 at a rate

slower than n−1/2; and (3) if
∫

X δ1(x)w1(x)dx < 0, our test is locally biased whether or

not ̺n ∝ n−1/2, although our test is a consistent test against general fixed alternatives.

An alternative statistic is a max statistic such as maxj∈J
{

np/2h(p−1)d/2Γj(ĝjn)− ajn
}

,

which we do not pursue in this paper since the “max” version of the test is not typically

asymptotically pivotal.

3.2. Test Statistics and Asymptotic Validity. Define Sj ≡ {x ∈ X : wj(x) > 0}
for each j ∈ J , and, given ε > 0, let Sε

j be an ε-enlargement of Sj , i.e., Sε
j ≡ {x + a :

x ∈ Sj , a ∈ [−ε, ε]d}. For 1 ≤ p < ∞, let

(3.2) rj,p(x) ≡ E[|Yji|p|Xi = x]f(x).

We introduce the following assumptions.

Assumption 1: (i) For each j ∈ J and for some ε > 0, rj,2(x) is bounded away from

zero and rj,2p+2(x) is bounded, both uniformly in x ∈ Sε
j .

(ii) For each j ∈ J , wj(·) is nonnegative on X and 0 <
∫

X ws
j(x)dx < ∞, where

s ∈ {1, 2}.
(iii) For ε > 0 in (i), Sε

j ⊂ X for all j ∈ J .
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Assumption 2: K(u) = Πd
s=1Ks(us), u = (u1, · · ·, ud), with each Ks : R → R,

s = 1, · · ·, d, satisfying that (a) Ks(us) = 0 for all us ∈ R\[−1/2, 1/2], (b) Ks is of

bounded variation, and (c) ||Ks||∞ ≡ supus∈R |Ks(us)| < ∞ and
∫

Ks(us)dus = 1.

Assumption 1(i) imposes that inf{rj,2(x) : x ∈ Sε
j } > 0 and sup{rj,2p+2(x) : x ∈

Sε
j } < ∞ for each j ∈ J . Assumption 1(ii) is a weak condition on the weight function.

Nonnegativity is important since we develop a sum statistic over j. Assumption 1(iii) is

introduced to avoid the boundary problem of kernel estimators by requiring that wj have

support inside an ε-shrunk subset of X . Note that Assumptions 1(i) and (iii) require

that Sj be a bounded set for each j ∈ J . The conditions for the kernel function in

Assumption 2 are quite flexible, except that the kernel functions have bounded support.

Define for j, k ∈ J and x ∈ Rd,

ρjk,n(x) ≡ 1

hd
E

[

YjiYkiK
2

(

x−Xi

h

)]

,

ρ2jn(x) ≡ 1

hd
E

[

Y 2
jiK

2

(

x−Xi

h

)]

,

ρjk(x) ≡ E [YjiYki|Xi = x] f(x)

∫

K2(u)du, and

ρ2j(x) ≡ E[Y 2
ji|Xi = x]f(x)

∫

K2(u)du.

Let Z1 and Z2 denote mutually independent standard normal random variables. We

introduce the following quantities:

ajn ≡ h−d/2

∫

X
ρpjn(x)wj(x)dx · EΛp(Z1) and(3.3)

σjk,n ≡
∫

X
qjk,p(x)ρ

p
jn(x)ρ

p
kn(x)wj(x)wk(x)dx,

where qjk,p(x) ≡
∫

[−1,1]d
Cov(Λp(

√

1− t2jk(x, u)Z1 + tjk(x, u)Z2), Λp(Z2))du and

tjk(x, u) ≡
ρjk(x)

ρj(x)ρk(x)
·
∫

K (x)K (x+ u) dx
∫

K2 (x) dx
.

Let Σn be a J × J matrix whose (j, k)-th entry is given by σjk,n. Later we use Σn to

normalize the test statistic. The scale normalization matrix Σn does not depend on

x, and this is not because we are assuming conditional homoskedasticity in the null

hypothesis, but because Σn is constituted by covariances of random quantities that

already have x integrated out. We also define Σ to be a J × J matrix whose (j, k)-th
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entry is given by σjk, where

σjk ≡
∫

X
qjk,p(x)ρ

p
j (x)ρ

p
k(x)wj(x)wk(x)dx.

As for Σ, we introduce the following assumption.

Assumption 3: Σ is positive definite.

For example, Assumption 3 excludes the case where Yji and Yki (j 6= k) are perfectly

correlated conditional on Xi = x for almost all x with wj ≡ wk.

The following theorem is the first main result of this paper.

Theorem 1: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−d → 0 as

n → ∞. Furthermore, assume that mj(x) = 0 for almost all x ∈ X and for all j ∈ J .

Then

Tn ≡ 1

σn

J
∑

j=1

{

np/2h(p−1)d/2Γj(ĝjn)− ajn
} d→ N(0, 1),

where σ2
n ≡ 1′Σn1, and 1 is a vector of ones.

Note that when J = 1, σ2
n takes the simple form of qp

∫

X ρ2p1n(x)w
2
1(x)dx, where

qp ≡
∫

[−1,1]d
Cov(Λp(

√

1− t2(u)Z1 + t(u)Z2), Λp(Z2))du, and

t(u) ≡
∫

K (x)K (x+ u) dx/

∫

K2 (x) dx.

To develop a feasible testing procedure, we construct estimators of ajn’s and σ2
n as

follows. First, define

ρ̂jk,n(x) ≡ 1

nhd

n
∑

i=1

YjiYkiK
2

(

x−Xi

h

)

, and(3.4)

ρ̂2jn(x) ≡ 1

nhd

n
∑

i=1

Y 2
jiK

2

(

x−Xi

h

)

.

We estimate ajn and σjk,n by:

âjn ≡ h−d/2

∫

X
ρ̂pjn(x)wj(x)dx · EΛp(Z1) and

σ̂jk,n ≡
∫

X
q̂jk,p(x)ρ̂

p
jn(x)ρ̂

p
kn(x)wj(x)wk(x)dx,
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where q̂jk,p(x) ≡
∫

[−1,1]d
Cov(Λp(

√

1− t̂2jk(x, u)Z1 + t̂jk(x, u)Z2), Λp(Z2))du and

t̂jk(x, u) ≡
ρ̂jk,n(x)

ρ̂jn(x)ρ̂kn(x)
·
∫

K (x)K (x+ u) dx
∫

K2 (x) dx
.

Note that EΛ1(Z1) = 1/
√
2π ≈ 0.39894 and EΛ2(Z1) = 1/2. When p is an integer,

the covariance expression in qjk,p(x) can be computed using the moment generating

function of a truncated multivariate normal distribution (Tallis, 1961). More practically,

simulated draws from Z1 and Z2 can be used to compute the quantities EΛp(Z1) and

qjk,p(x) for general values of p. The integrals appearing above can be evaluated using

methods of numerical integration. We define Σ̂n to be a J × J matrix whose (j, k)-th

entry is given by σ̂jk,n.

Let σ̂2
n ≡ 1′Σ̂n1. Our test statistic is taken to be

(3.5) T̂n ≡ 1

σ̂n

J
∑

j=1

{

np/2h(p−1)d/2Γj(ĝjn)− âjn
}

.

Let z1−α ≡ Φ−1(1−α), where Φ denotes the cumulative distribution function of N(0, 1).

This paper proposes using the following test:

(3.6) Reject H0 if and only if T̂n > z1−α.

The following theorem shows that the test has an asymptotically valid size.

Theorem 2: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−3d/2 →
0, as n → ∞. Furthermore, assume that the kernel function K in Assumption 2 is

nonnegative. Then under the null hypothesis, we have

lim
n→∞

P{T̂n > z1−α} ≤ α,

with equality holding if mj(x) = 0 for almost all x ∈ X and for all j ∈ J .

Note that the probability of making an error of rejecting the true null hypothesis is

largest when mj(x) = 0 for almost all x ∈ X and for all j ∈ J , namely, when we are in

the least favorable case of the null hypothesis.

The nonparametric test does not require assumptions for mj ’s and f beyond those in

Assumption 1(i), even after replacing ajn’s and σ2
n by their estimators. In particular, the

theory does not require continuity or differentiability of f or mj ’s. This is because we

do not need to control the bias to implement the test. This result uses the assumption

that the kernel function K is nonnegative to control the size of the test. (See the proof

of Theorem 2 for details.)
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The bandwidth condition for Theorem 2 is stronger than that in Theorem 1. This is

mainly due to the treatment of the estimation errors in âjn and σ̂2
n. For the bandwidth

parameter, it suffices to take h = c1n
−s with 0 < s < 1/(3d) for a constant c1 > 0. In

general, optimal bandwidth choice for nonparametric testing is different from that for

nonparametric estimation as we need to balance the size and power of the test instead of

the bias and variance of an estimator. For example, Gao and Gijbels (2008) considered

testing a parametric null hypothesis against a nonparametric alternative and derived

a bandwidth-selection rule by utilizing an Edgeworth expansion of the asymptotic dis-

tribution of the test statistic concerned. The methods of Gao and Gijbels (2008) are

not directly applicable to our tests, and it is a challenging problem to develop a theory

of optimal bandwidths for our tests. We provide some simulation evidence regarding

sensitivity to the choice of h in Section 5.

According to Theorems 1-2, each choice of the weight functions wj leads to an asymp-

totically valid test. The actual choice of wj may reflect the relative importance of

individual inequality restrictions. When it is of little practical significance to treat indi-

vidual inequality restrictions differently, one may choose simply wj(x) = 1{x ∈ S} with

some common support S. Perhaps more naturally, to avoid undue influences of differ-

ent scales across Yji’s, one may use wj(x) = σ̃
−1/2
jj,n w̄(x), for some common nonnegative

weight function w̄(x), where

σ̃jj,n ≡ qp

∫

X
ρ̂2pjn(x)w̄

2(x)dx, j ∈ J ,

where ρ̂2jn(x) is given as in (3.4). Then σ̃jj,n is consistent for σjj,n (see the proof of

Theorem 2), and just as the estimation error of σ̂n in (3.6) leaves the limiting distribution

of Tn under the null hypothesis intact, so does the estimation error of σ̃jj,n.

The following result shows the consistency of the test in (3.6) against fixed alternatives.

Theorem 3: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−3d/2 → 0,

as n → ∞. If H1 is true and Γj(gj) > 0 for some j ∈ J , then we have

lim
n→∞

P{T̂n > z1−α} = 1.

3.3. Local Asymptotic Power. We determine the power of the test in (3.6) against

some sequences of local alternatives. Consider the following sequences of local alterna-

tives converging to the null hypothesis at the rate n−1/2, respectively:

(3.7) Hδ : gj(x) = n−1/2δj(x), for each j ∈ J ,
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where δj(·)’s are bounded real functions on Rd.

The following theorem establishes a representation of the local asymptotic power

functions, when p ∈ {1, 2}. For simplicity of notation, let us introduce the following

definition: for s ∈ {1, 2}, z ∈ {−1, 0, 1}, a given weight function vector w ≡ (w1, · · ·, wJ),

and the direction δ = (δ1, · · ·, δJ)′, let ηs,z(w, δ) ≡
∑J

j=1

∫

X δsj (x)ρ
z
j (x)wj(x)dx, and let

σ2 ≡ 1′Σ1.

Theorem 4: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−3d/2 → 0,

as n → ∞.

(i) If p = 1, then, under Hδ, we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η1,0(w, δ)/2σ).

(ii) If p = 2, then, under Hδ, we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η1,1(w, δ)/(σ
√

π/2)).

Theorem 4 gives explicit local asymptotic power functions under Hδ, when p = 1

and p = 2. The local power of the test is greater than the size α, whenever the “non-

centrality parameter” (η1,0(w, δ)/2σ in the case of p = 1 and η1,1(w, δ)/(σ
√

π/2) in the

case of p = 2) is strictly positive. For example, when J = 1 and p = 1 (or p = 2), the

test is asymptotically locally strictly unbiased as long as µδ ≡
∫

X δ1(x)w1(x)dx > 0 (or
∫

X δ1(x)ρ1(x)w1(x)dx > 0). Notice that µδ can be strictly positive even if δ1(x) takes

negative values for some x ∈ X . Therefore, our test has nontrivial local power against

some, though not all, n−1/2-local alternatives.

On the other hand, if the noncentrality parameter is zero, the test still has nontrivial

power against local alternatives converging to the null at the n−1/2h−d/4 rate, which is

slower than n−1/2. To show this, consider the following local alternatives:

H∗
δ : gj(x) = n−1/2h−d/4δj(x), for each j ∈ J ,

where δj(·)’s are bounded real functions as before. Theorem 4* gives the local asymptotic

power functions against H∗
δ .

Theorem 4*: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−3d/2 →
0, as n → ∞.
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(i) If p = 1 and η1,0(w, δ) = 0, then, under H∗
δ , we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η2,−1(w, δ)/
√
8πσ).

(ii) If p = 2 and η1,1(w, δ) = 0, then, under H∗
δ , we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η2,0(w, δ)/2σ).

If η1,0(w, δ) = 0 in the case of p = 1 or η1,1(w, δ) = 0 in the case of p = 2, then the local

power of the test is greater than the size α because the new noncentrality parameter

in Theorem 4* is strictly positive. For example, when J = 1, we have η2,−1(w, δ) =
∫

X δ21(x)ρ
−1
1 (x)w1(x)dx > 0 (and η2,0(w, δ) =

∫

X δ21(x)w1(x)dx > 0) for all δ1. Therefore,

when η1,0(w, δ) = 0 or η1,1(w, δ) = 0, Theorem 4∗ implies that our test is strictly locally

unbiased against the n−1/2h−d/4 local alternatives H∗
δ , though it has only trivial local

power (= α) against the n−1/2 local alternatives Hδ.

To explain the results of Theorems 4 and 4∗ more intuitively, consider the test statistic

Tn with J = 1, p = 2 and d = 1. For simplicity, take w(·) = 1. Let σ ≡ q2
∫

X ρ41(x)dx and

an ≡ h−1/2
∫

X ρ21(x)dx · EΛ2(Z1). Let the alternative hypothesis be given by

H∗
δ : g(x) = n−1/2h−bδ1(x),

where b = 0 or 1/4. Consider the statistic T̂n with σ̂n and ân replaced by their population

analogues σn and an, respectively, i.e.,

Tn ≡ 1

σn

{

nh1/2

∫

X
Λ2 (ĝn(x)) dx− an

}

=
nh1/2

σn

{
∫

X
Λ2 (ĝn(x)) dx−

∫

X
EΛ2 (ĝn(x)) dx

}

(3.8)

+
nh1/2

σn

{
∫

X
EΛ2 (ĝn(x)) dx− an

nh1/2

}

.

It is easy to see that Tn has the same asymptotic distribution as T̂n under the local

alternative hypothesis. The first term on the right hand side of (3.8) converges in

distribution to the standard normal distribution by the arguments similar to those used
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to prove Theorem 1. Consider the second term in (3.8). We can approximate it by

1

σn

{

nh1/2

∫

X
EΛ2 (ĝn(x)) dx− an

}

=
1

σn

{

∫

X
EΛ2

(

h−1/4ρ1(x)

√
nh [ĝn(x)− Eĝn(x)]

ρ1(x)
+ n1/2h1/4Eĝn(x)

)

dx− an

}

≃ σ−1

∫

X
EΛ2

(

h−1/4ρ1(x)Z1 + n1/2h1/4Eĝn(x)
)

dx− σ−1an(3.9)

≃ σ−1

∫

X

{

EΛ2

(

h−1/4ρ1(x)Z1 + h1/4−bδ1(x)
)

− EΛ2

(

h−1/4ρ1(x)Z1

)}

dx

(3.10)

≃ h−b

(

2φ(0)

σ

∫

X
δ1(x)ρ1(x)dx

)

+ h1/2−2b

(

1

2σ

∫

X
δ21(x)dx

)

,

(3.11)

where (3.9) follows from the Poissonization argument, (3.10) holds by n1/2h1/4Eĝn(x) =

h1/4−b
∫

δ1(x−uh)K(u)du ≃ h1/4−bδ1(x), and (3.11) uses a Taylor expansion EΛ2(γZ1+

µ) − EΛ2(γZ1) ≃ 2φ(0)µγ + Φ(0)µ2 with γ = h−1/4ρ1(x) and µ = h1/4−bδ1(x), where

φ(·) and Φ(·), respectively, denote the pdf and cdf of the standard normal distribution.

This approximation tells us that if
∫

X δ1(x)ρ1(x)dx > 0, we can take b = 0 so that it can

achieve nontrivial power against n−1/2 alternatives, while if
∫

X δ1(x)ρ1(x)dx = 0, then

we should take b = 1/4 so that it has nontrivial local power against n−1/2h−1/4 local

alternatives. Notice that, in the latter case,
∫

X δ21(x)dx is always positive.

It would also be interesting to compare local power properties of our test with that of

Andrews and Shi (2011a). Unlike our test, the test of Andrews and Shi (2011a, Theorem

4(b)) does not require
∫

X δ1(x)ρ1(x)dx > 0, but excludes some n−1/2-local alternatives.

An analytical and unambiguous comparison between the two approaches is not straight-

forward, because the test of Andrews and Shi (2011a) is not asymptotically distribution

free, meaning that the local power function may depend on the underlying data gener-

ating process in a complicated way. However, we do compare the two approaches in our

simulation studies.

When J = 1, thanks to Theorem 4, we can compute an optimal weight function that

maximizes the local power against a given direction δ. See Stute (1997) for related

results of optimal directional tests, and Tripathi and Kitamura (1997) for results of

optimal directional and average tests based on smoothed empirical likelihoods.

Define σ2
p(w1) ≡ qp

∫

X ρ2p1n(x)w
2
1(x)dx for J = 1. The optimal weight function (denoted

by w∗
p) is taken to be a maximizer of the drift term η1,0(w1, δ1)/σ1(w1) (in the case of

p = 1) or η1,1(w1, δ1)/σ2(w1) (in the case of p = 2) with respect to w1 under the constraint
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that w1 ≥ 0 and
∫

X w1(x)ρ
2p(x)dx = 1. The latter condition is for a scale normalization.

Let δ+1 = max{δ1, 0}. Since ρ1 and w1 are nonnegative, the Cauchy-Schwarz inequality

suggests that the optimal weight function is given by

(3.12) w∗
p(x) =







δ+1 (x)ρ−2
1 (x)√∫

X (δ+1 )2(x)ρ−2
1 (x)dx

, if p = 1, and

δ+1 (x)ρ−3
1 (x)√∫

X (δ+1 )2(x)ρ−2
1 (x)dx

, if p = 2.

To satisfy Assumption 1(iii), we assume that the support of δ1 is contained in an ε-

shrunk subset of X . With this choice of an optimal weight function, the local power

function becomes:

1− Φ

(

z1−α −
√∫

X
(δ+1 )2(x)ρ−2

1 (x)dx

2
√
q1

)

, if p = 1, and

1− Φ

(

z1−α −
√∫

X
(δ+1 )2(x)ρ−2

1 (x)dx√
q2π/2

)

, if p = 2.

4. Comparison with Testing Functional Equalities

It is straightforward to follow the proofs of Theorems 1-3 to develop a test for equality

restrictions:

H0 : mj(x) = 0 for all (x, j) ∈ X × J , vs.(4.1)

H1 : mj(x) 6= 0 for some (x, j) ∈ X × J .

For this test, we redefine Λp(v) = |v|p and, using this, redefine T̂n in (3.5) and σ2. Then

under the null hypothesis,

T̂n
d→ N(0, 1).

Therefore, we can take a critical value in the same way as before. The asymptotic

validity of this test under the null hypothesis in (4.1) follows under precisely the same

conditions as in Theorem 2. However, the convergence rates of the inequality tests and

the equality tests under local alternatives are different, as we shall see now.

Consider the local alternatives converging to the null hypothesis at the rate n−1/2h−d/4:

(4.2) H∗
δ : gj(x) = n−1/2h−d/4δj(x), for each j ∈ J ,

where δj(·)’s are again bounded real functions on Rd. The following theorem establishes

the local asymptotic power functions of the test based on T̂n.

Theorem 5: Suppose that Assumptions 1-3 hold and that h → 0 and n−1/2h−3d/2 → 0,

as n → ∞.
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(i) If p = 1, then under H∗
δ , we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η2,−1(w, δ)/(
√
2πσ)).

(ii) If p = 2, then under H∗
δ , we have

lim
n→∞

P{T̂n > z1−α} = 1− Φ(z1−α − η2,0(w, δ)/σ).

Theorem 5 shows that the equality tests (on (4.1)), in contrast to the inequality tests

(on (1.1)), have nontrivial local power against alternatives converging to the null at rate

n−1/2h−d/4, which is slower than n−1/2. This phenomenon of different convergence rates

arises because Λp is symmetric around zero in the case of equality tests, and it is not

in the case of inequality tests. To see this closely, observe that in the case of p = 1,

the power comparison between the equality test and the inequality test is reduced to

comparison between E|Z1+µ|−E|Z1| and Emax{Z1+µ, 0}−Emax{Z1, 0} for µ close

to zero, where Z1 follows a standard normal distribution with φ denoting its density.

Note that we can approximate E|Z1 + µ| − E|Z1| by {φ′′(0) + 2φ(0)}µ2 for µ close to

zero, and approximate Emax{Z1 + µ, 0} − Emax{Z1, 0} by Φ(0)µ for µ close to zero.

The smaller scale µ2 in the former case arises because the leading term in the expansion

of E|Z1+µ|−E|Z1| around µ = 0 disappears due to the symmetry of the absolute value

function | · |. Therefore, the different rate of convergence arises due to our symmetric

treatment of the alternative hypotheses (positive or negative) in the equality test, in

contrast to the asymmetric treatment in the inequality test.

Since η2,−1(w, δ) and η2,0(w, δ) are always nonnegative, the equality tests are locally

asymptotically unbiased against any local alternatives. In contrast, the terms η1,0(w, δ)

and η1,1(w, δ) in the local asymptotic power functions of the inequality tests in Theorem

4 can take negative values for some local alternatives, implying that the inequality tests

might be asymptotically biased against such local alternatives. This feature is not due

to the form of our proposed inequality test, but is rather a common feature in testing

moment inequalities. It is because the null hypothesis is given by a composite hypothesis

and most of the powerful tests are not similar on the boundary and hence biased against

some local alternatives. In principle, one can construct a test that is asymptotically

similar on the boundary, but such a test has typically poor power. See Andrews (2011)

for details.

The test in Theorem 5 shares some features common in nonparametric tests that are

known to detect some smooth local alternatives that have narrow peaks as the sample

size increases. See e.g. Fan and Li (2000) and references therein. To see this closely,
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consider a sequence of non-Pitman local alternatives of type:

H∗
δn : gj(x) = γnδj,n(x), for each j ∈ J ,

where γn is a deterministic sequence and δj,n(x) is now allowed to change over n. For

example, one may consider δj,n(x) to be a function with a single peak that becomes

sharper as n becomes large, e.g. δj,n(x) = Lj ((x− x0)/ζn) , where Lj (·) is a bounded

function, x0 ∈ Rd is a fixed point, and ζn → 0 as n → ∞. By using the same arguments

as in the proof of Theorem 5, we can show that the two-sided version of our test has

nontrivial power against such local alternatives provided limn→∞ nhd/2γ2
nη2,−1(w, δj,n) 6=

0 (for p = 1) or limn→∞ nhd/2γ2
nη2,0(w, δj,n) 6= 0 (for p = 2). However, since our main

interest lies in testing functional inequalities, we will not pursue further local power

properties of the equality test. On the other hand, it would also be interesting to see

whether it would give an adaptive, rate-optimal test to take the supremum of our two-

sided version of our test over a set of bandwidths, as in Horowitz and Spokoiny (2001).

However, the latter study is beyond of the scope of this paper.

As in Section 3.3, when J = 1, an optimal directional test under (4.2) can also be

obtained by following the arguments leading up to (3.12) so that

w∗
p(x) =







δ21(x)ρ
−3
1 (x)√∫

X δ41(x)ρ
−4
1 (x)dx

, if p = 1, and

δ21(x)ρ
−4
1 (x)√∫

X δ41(x)ρ
−4
1 (x)dx

, if p = 2.

Similarly as before, let the support of δ1 be contained in an ε-shrunk subset of X . The

optimal weight function yields the following local power functions:

1− Φ

(

z1−α −
√∫

δ41(x)ρ
−4
1 (x)dx√

2πq̄1

)

, if p = 1, and

1− Φ

(

z1−α −
√∫

δ41(x)ρ
−4
1 (x)dx√

q̄2

)

, if p = 2,

where q̄p ≡
∫

[−1,1]d
Cov(|

√

1− t2(u)Z1 + t(u)Z2|p, |Z2|p)du, for p ∈ {1, 2}.

5. Monte Carlo Experiments

This section reports the finite-sample performance of the one-sided L1- and L2-type

tests from a Monte Carlo study. In the experiments, n observations of a pair of random

variables (Y,X) were generated from Y = m(X)+σ(X)U , where X ∼ Unif[0, 1] and U ∼
N(0, 1) and X and U are independent. In all the experiments, we set X = [0.05, 0.95].

To evaluate the finite-sample size of the tests, we first set m(x) ≡ 0. We call this case

DGP0. In addition, we consider the following alternative model

(5.1) m(x) = x(1− x)− cm
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where cm ∈ {0.25, 0.20, 0.15, 0.10, 0.05}. We call these 5 cases DGPs 1-5. When cm =

0.25 (DGP1), we have m(x) < 0 for all x 6= 0.5 and m(x) = 0 with x = 0.5. Hence,

this case corresponds to the “interior” of the null hypothesis. In view of asymptotic

theory, we expect the empirical probability of rejecting H0 to converge to zero as n gets

large. When cm < 0.25 (DGPs 2-5), we have m(x) > 0 for some x. Therefore, these four

cases are considered to see the finite-sample power of our tests. Two different functions

of σ(x) are considered: σ(x) ≡ 1 (homoskedastic error) and σ(x) = x (heteroskedastic

error).

The experiments use sample sizes of n = 50, 200, 1000 and the nominal level of α =

0.05. We performed 1000 Monte Carlo replications in each experiment. In implementing

both L1 and L2-type tests, we used K(u) = (3/2)(1 − (2u)2)I(|u| ≤ 1/2) and h =

ch × ŝX × n−1/5, where I(A) is the usual indicator function that has value one if A

is true and zero otherwise, ch is a constant and ŝX is the sample standard deviation

of X . To check the sensitivity to the choice of the bandwidth, eight different values

of ch are considered: {0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.50}. Finally, we considered the

uniform weight function: w(x) = 1 and the inverse standard error weight function:

w(x) = 1/ρn(x).

To evaluate the relative performance of our test, we have also implemented one of test

statistics proposed by Andrews and Shi (2011a), specifically their Cramér-von Mises-

type (CvM) statistic with both plug-in asymptotic (PA/Asy) and asymptotic generalized

moment selection (GMS/Asy) critical values. Specifically, countable hypercubes are used

as instrument functions, and tuning parameters were chosen, following suggestions as in

Section 9 of Andrews and Shi (2011a).

Empirical rejection probabilities are plotted in Figures 1-4. 8 different solid lines

in each panel correspond to our test with 8 different bandwidth values. 2 dotted lines

correspond to the test of Andrews and Shi (2011a) with PA and GMS critical values. For

each case, the test with the GMS critical value gives slightly higher rejection probabilities

than that with the PA critical value. When H0 is true and m(x) ≡ 0 (DGP0), the

differences between the nominal and empirical rejection probabilities are small. When

H0 is true and m(x) is (5.1) with cm = 0.25 (the interior case DGP1), the empirical

rejection probabilities are smaller than the nominal level and become almost zero for

n = 1000.

When H0 is false and the correct model is (5.1) with cm < 0.25 (DGPs 2-5), the

power of both the L1 and L2 tests is increasing as cm gets smaller. This finding is

consistent with asymptotic theory since it is likely that our test will be more powerful

when
∫

X m(x)w(x)dx is larger. Note that in DGPs 3-5, (cm = 0.15, 0.10, 0.05), the

rejection probabilities increase as n gets large. This is in line with the asymptotic theory
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in the preceding sections, for our test is consistent for these values of cm. However, the

rejection probabilities are quite small even with n = 1000 for cm = 0.20 (DGP 2). This

is not surprising given that our test can be biased, as shown in Section 3.3. To further

investigate the issue of bias associated with
∫

X m(x)w(x)dx, we carried out an additional

simulation with m(x) = sin(2πx). It turns out that rejection probabilities were almost

one across different values of the bandwidth for both weight functions and for both

homoskedastic and heteroskedastic errors. This seems to be consistent with Theorem 4*

in Section 3.3. We do not report full details of additional simulation results for brevity.

Simulation results for the CvM statistics are similar to our test statistics. More

precisely, in Figure 1 (the homoskedasticity case), the L1 test with both weight functions

seems to be more powerful than Andrews and Shi’s test, whereas in Figure 4, their test

appears to be more powerful than the L2 test with the uniform weight. However, for

most cases, power performances are comparable between each other. Note further that

there is little difference between PA and GMS critical values for the CvM statistic of

Andrews and Shi (2011a). This is due to the fact that m(x) is either flat or has a

maximum at a single point. We note that the results are not very sensitive to the

bandwidth choice for our tests. Finally, regarding the choice of the weight function, we

would like to recommend the inverse standard error weight since it seems to perform

better than the uniform weight in simulations.

6. Proofs

This section begins with a roadmap for the proof, where the roles of technical lemmas

and main difficulties are explained. Then we state the lemmas and present the proofs

of the theorems.

6.1. The Roadmap for the Proof of Theorem 1. The proof of Theorem 1 follows

the structure of the proof of the finite-dimensional convergence in Theorem 1.1 of GMZ.

Under the condition of Theorem 1 that mj(x) = 0 for almost all x ∈ X and for

all j ∈ J , we can show that Eĝjn(x) = 0 for almost all x in the support of wj from

some large n on. This means that by letting vjn(x) ≡ ĝjn(x) − Eĝjn(x) and ζn(A) ≡
∑J

j=1

∫

A
Λp(vjn(x))wj(x)dx with some A ⊂ X , we can write Tn as

np/2h(p−1)d/2

σn
{ζn(X\A)−Eζn(X\A)}(6.1)

+
np/2h(p−1)d/2

σn
{ζn(A)− Eζn(A)} .

The main part of the proof of Theorem 1 establishes asymptotic normality for the second

term and asymptotic negligibility for the first term when A is chosen to nearly cover X .
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The proof of asymptotic normality employs the Poissonization method of GMZ which

prevents us from choosing A to cover X entirely. This makes the proof intricate. The

asymptotic arguments for both terms of (6.1) require that σn is an asymptotically stable

quantity. Hence we begin by dealing with σn.

Step 1: In Lemma A7, we show that given appropriate A ⊂ X , σn(A) → σ(A) > 0

as n → ∞, for some σ(A) > 0, where σn(A) is σn except that the integral domains

of σjk,n are restricted to A. To prove the convergence, we choose the domain A to be

such that nonparametric functions ρjk,n that constitute σn are continuous and uniformly

convergent on this domain. That we can choose such A to be large enough is ensured by

Lemma A1. The proof is lengthy, the main step being the approximation of covariances

of Poissonized sums. For this approximation, we use a type of a Berry-Esseen bound for

sums of independent random variables due to Sweeting (1977). This bound is restated in

Lemma A2. Since the bound involves various moments of random quantities, we prepare

these moment bounds in Lemmas A4 and A5.

Step 2: We establish that the second term in (6.1) is asymptotically standard normal

when A nearly covers X . First, we use Lemma A6 to show that the second component

in (6.1) is asymptotically equivalent to

(6.2)
np/2h(p−1)d/2

σn

{ζn(A)− EζN(A)} ,

where ζN(A) ≡
∑J

j=1

∫

A
Λp(vjN(x))wj(x)dx, vjN(x) ≡ ĝjN(x)− Eĝjn(x),

(6.3) ĝjN(x) ≡
1

nhd

N
∑

i=1

YjiK

(

x−Xi

h

)

,

and N is a Poisson random variable with mean n and independent of all the other

random variables. Then consider

(6.4) Sn(A) ≡
np/2h(p−1)d/2{ζN(A)− EζN(A)}

σn(A)
,

where σ2
n(A) ≡

∑J
j=1

∑J
k=1 σjk,n(A) and σjk,n(A) is σjk,n with the integral domain re-

stricted to A. Note that the numerator of Sn(A) is based on the Poissonized version

vjN(x) so that when we cut the integral in ζN(A) into integrals on small disjoint domains

and sum them, this latter sum behaves like a sum of independent random variables. In

Lemma A9, we construct this sum and apply the CLT to obtain asymptotic normality for

Sn(A). Then in Lemma A10, using the de-Poissonization lemma of Beirlant and Mason

(1995), we deduce that the conditional distribution of Sn(A) given N = n converges to
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a standard normal distribution. (This lemma requires the set X\A to stay nonempty.)

Since this conditional distribution is nothing but the distribution of (6.2), we conclude

that the second term in (6.1) is asymptotically standard normal. However, this sequence

of arguments so far presumes that σn is an asymptotically right scale, which means that

σn should be based on the Poissonized version vjN(x) not on the original one vjn(x).

Step 3: It remains to deal with the first term in (6.1). Since σn(A) is close to σ(A) > 0

by Step 1 for large samples, it suffices to show that the quantity

np/2h(p−1)d/2 {ζn(X\A)− Eζn(X\A)}

is asymptotically negligible for large n and large set A. This is accomplished by Lemma

A8, which again uses moment bounds of Lemmas A4 and A5. Since wj is square inte-

grable, if we can take A ⊂ X such that
∫

X/A
w2

j (x)dx is small, the asymptotic negligibility

of the first component in (6.1) follows by Lemma A8. Lemma 8 extends to Lemma 6.2

of GMZ from p = 1 to p ≥ 1. This generalization is necessary since the majorization

inequality of Pinelis (1994) used in GMZ is not directly applicable in the general case

with p ≥ 1.

Step 4: Finally, we approximate Eζn(A) in the second component in (6.1) by an estimable

quantity,
∑

j∈J ajn in Theorem 1. This step is done through Lemma A6. The lemma is

adapted from Lemma 6.3 of GMZ, but unlike their case of L1-norm, our case involves

the one-sided Lp-norm with p ≥ 1. For this modification, we use the algebraic inequality

of Lemma A3. This closes the proof of Theorem 1.

6.2. Technical Lemmas and the Proof of Theorem 1. We begin with technical

lemmas. The lemmas are ordered so that lemmas that come later rely on their preceding

lemmas.

The first statement of the lemma below is a special case of Theorem 2(b) of Stein

(1970) on pages 62 and 63. The second statement is an extension of Lemma 6.1 of

GMZ.

Lemma A1: Let J(·) : Rd → R be a Lebesgue integrable bounded function and H :

Rd → R be a bounded function with compact support S. Then, for almost every y ∈ Rd,
∫

Rd

J(x)Hh (y − x) dx → J(y)

∫

S

H(x)dx, as h → 0,

where Hh(x) ≡ H(x/h)/hd.

Furthermore, suppose that J̄ ≡
∫

|J(z)|dz > 0. Then for all 0 < ε < J̄ ≡
∫

|J(z)|dz,
there exist M > 0, v > 0 and a Borel set B of finite Lebesgue measure m(B) such
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that B ⊂ [−M + v,M − v]d, α ≡
∫

Rd\[−M,M ]d
|J(z)|dz > 0,

∫

B
|J(z)|dz > J̄ − ε, J is

continuous on B, and

sup
y∈B

∣

∣

∣

∣

∫

Rd

J(x)Hh (y − x) dx− J(y)

∫

S

H(x)dx

∣

∣

∣

∣

→ 0, as h → 0.

Proof: The first statement is a special case of Theorem 2(b) of Stein (1970) on pages

62 and 63. The second statement can be proved following the proof of Lemma 6.1 of

GMZ. Since J is Lebesgue integrable, the integral
∫

Rd\[−M,M ]d
|J(z)|dz is continuous in

M and converges to zero as M → ∞. We can find M > 0 and v > 0 such that
∫

Rd\[−M,M ]d
|J(z)|dz = ε/8 and

∫

Rd\[−M+v,M−v]d
|J(z)|dz = ε/4.

The construction of the desired set B ⊂ [−M + v,M − v]d can be done using the

arguments in the proof of Lemma 6.1 of GMZ. �

The following result is a special case of Theorem 1 of Sweeting (1977) with g(x) =

min(x, 1) (in his notation). See also Fact 6.1 of GMZ and Fact 4 of Mason (2009) for

applications of Theorem 1 of Sweeting (1977).

Lemma A2 (Sweeting (1977)): Let Z ∈ Rk be a mean zero normal random vector

with covariance matrix I and {Wi}ni=1 is a set of i.i.d. random vectors in Rk such

that EWi = 0, EWiW
′
i = I, and E||Wi||r < ∞, r ≥ 3. Then for any Borel measurable

function ϕ : Rk → R such that

sup
x∈Rk

|ϕ(x)− ϕ(0)|
1 + ||x||r min(||x||, 1) < ∞,

we have
∣

∣

∣

∣

∣

E

[

ϕ

(

1√
n

n
∑

i=1

Wi

)]

− E [ϕ(Z)]

∣

∣

∣

∣

∣

≤ c1

(

sup
x∈Rk

|ϕ(x)− ϕ(0)|
1 + ||x||r min(||x||, 1)

){

1√
n
E||Wi||3 +

1

n(r−2)/2
E||Wi||r

}

+c2E

[

ωϕ

(

Z;
c3√
n
E||Wi||3

)]

,

where c1, c2 and c3 are positive constants that depend only on k and r and

ωϕ(x; ε) ≡ sup
{

|ϕ(x)− ϕ(y)| : y ∈ Rk, ||x− y|| ≤ ε
}

.

The following algebraic inequality is used frequently throughout the proofs.
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Lemma A3: For any a, b ∈ R, let a+ = max(a, 0) and b+ = max(b, 0). Furthermore,

for any real a ≥ 0, if a = 0, we define ⌈a⌉ = 1, and if a > 0, we define ⌈a⌉ to be the

smallest integer greater than or equal to a. Then for any p ≥ 1,

max {|ap+ − bp+|, ||a|p − |b|p|} ≤ 2p|a− b|





⌈p−1⌉
∑

k=0

⌈p− 1⌉!
k!

|a− b|⌈p−1⌉−k|b|k




(p−1)/⌈p−1⌉

≤ C

⌈p−1⌉
∑

k=0

|a− b|p−
(p−1)k
⌈p−1⌉ |b|k,

for some C > 0 that depends only on p.

Proof : First, we show the inequality for the case where p is a positive integer. We

prove first that ||a|p − |b|p| has the desired bound. Note that in this case of p being a

positive integer, the bound takes the following form:

2

p−1
∑

k=0

p!

k!
|a− b|p−k|b|k.

When p = 1, the bound is trivially obtained. Suppose now that the inequality holds

for a positive integer q. First, note that using the mean-value theorem, convexity of the

function f(x) = |x|q for q ≥ 1, and the triangular inequality,

||a|q+1 − |b|q+1| ≤ (q + 1)|a− b|supα∈[0,1] (α|a|+ (1− α)|b|)q

≤ (q + 1)|a− b|supα∈[0,1] (α|a|q + (1− α)|b|q)
≤ (q + 1)|a− b| (||a|q − |b|q|+ 2|b|q) .

As for ||a|q − |b|q|, we apply the inequality to bound the last term by

(q + 1)|a− b|
(

2

q−1
∑

k=0

q!

k!
|a− b|q−k|b|k + |b|q

)

= 2

q
∑

k=0

(q + 1)!

k!
|a− b|q−k+1|b|k.

Therefore, by the principle of mathematical induction, the desired bound in the case of

p being a positive integer follows.

Certainly, we obtain the same bound for |ap+ − bp+| when p = 1. When p > 1, we

observe that by the mean-value theorem,

|ap+ − bp+| ≤ p|a− b|
(

|a|p−1 + |b|p−1
)

≤ p|a− b|
(

||a|p−1 − |b|p−1|+ 2|b|p−1
)

.
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By applying the previous inequality to ||a|p−1 − |b|p−1|, we obtain the desired bound for

|ap+ − bp+| when p is a positive integer.

Since the bound holds for any positive integer p, let us consider the case where p

is a real number strictly larger than 1. Again, we first show that ||a|p − |b|p| has the

desired bound. Using the mean-value theorem as before and the fact that |a + b| ≤
21−1/s (|a|s + |b|s)1/s for all s ∈ [1,∞) and all a, b ∈ R, we find that for u ≡ ⌈p− 1⌉,

||a|p − |b|p| ≤ p |a− b| (|a|p−1 + |b|p−1)

≤ p |a− b| 21−(p−1)/u (|a|u + |b|u)(p−1)/u

≤ p |a− b| 21−(p−1)/u (||a|u − |b|u|+ 2|b|u)(p−1)/u .

Since u is a positive integer, using the previous bound, we bound the right-hand side by

p |a− b| 21−(p−1)/u

(

2
u−1
∑

k=0

u!

k!
|a− b|u−k|b|k + 2|b|u

)(p−1)/u

.

Consolidating the sum in the parentheses, we obtain the wanted bound.

As for the second inequality, observe that

2p|a− b|





⌈p−1⌉
∑

k=0

⌈p− 1⌉!
k!

|a− b|⌈p−1⌉−k|b|k




(p−1)/⌈p−1⌉

≤ C max
k∈{0,1,···,⌈p−1⌉}

|a− b|p−k{(p−1)/⌈p−1⌉}|b|k ≤ C

⌈p−1⌉
∑

k=0

|a− b|p−k{(p−1)/⌈p−1⌉}|b|k,

for some C > 0 that depends only on p. We can obtain the same bound for |ap+ − bp+|
by noting that |ap+ − bp+| ≤ p |a− b| (|a|p−1 + |b|p−1) and following the same arguments

afterwards as before. �

Define for j ∈ J ,

(6.5) kjn,r(x) ≡ h−dE

[∣

∣

∣

∣

YjiK

(

x−Xi

h

)∣

∣

∣

∣

r]

, r ≥ 1.

Lemma A4: Suppose that Assumptions 1(i)(iii) and 2 hold and h → 0 as n → ∞. Then

for ε > 0 in Assumption 1(i), there exist positive integer n0 and constants c1, c2 > 0

such that for all n ≥ n0, all r ∈ [1, 2p+ 2], and all j ∈ J ,

0 < c1 ≤ inf
x∈Sε/2

j
ρ2jn(x) and

sup
x∈Sε/2

j
kjn,r(x) ≤ c2 < ∞.
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Proof: Since h → 0 as n → ∞, we apply change of variables to find that from large

n on,

inf
x∈Sε/2

j

ρ2jn(x) = inf
x∈Sε/2

j

1

hd
E

[

Y 2
jiK

2

(

x−Xi

h

)]

≥ inf
x∈Sε

j

E
[

Y 2
ji|X = x

]

f(x)

∫

[−1/2,1/2]d
K2 (u) du > c1,

for some c1 > 0 by Assumptions 1(i) and 2. Similarly, from some large n on,

sup
x∈Sε/2

j

kjn,r(x) ≤ sup
x∈Sε

j

E [|Yji|r|X = x] f(x)

∫

|K (u) |rdu < ∞,

by Assumptions 1(i) and 2. �

Define for each j ∈ J ,

ĝjN(x) ≡
1

nhd

N
∑

i=1

YjiK

(

x−Xi

h

)

, x ∈ X ,

where N is a Poisson random variable that is common across j ∈ J , has mean n, and

is independent of {(Yji, Xi) : j ∈ J }∞i=1. Let for each j ∈ J ,

vjn(x) ≡ ĝjn(x)− Eĝjn(x), and vjN(x) ≡ ĝjN(x)− Eĝjn(x).

We define, for each j ∈ J ,

ξjn(x) ≡
√
nhdvjN(x)

ρjn(x)
and(6.6)

Vjn(x) ≡
∑

i≤N1
{YjiK ((x−Xi)/h)− E (YjiK ((x−Xi)/h))}

√

E[Y 2
jiK

2 ((x−Xi)/h)]
,

whereN1 denotes a Poisson random variable with mean 1 that is independent of {(Yji, Xi) :

j ∈ J }∞i=1. Then, V ar(Vjn(x)) = 1. Let V
(i)
jn (x), i = 1, · · ·, n, be i.i.d. copies of Vjn(x)

so that

(6.7) ξjn(x)
d
=

1√
n

n
∑

i=1

V
(i)
jn (x).

Lemma A5: Suppose that Assumptions 1(i)(iii) and 2 hold and h → 0 as n → ∞ and

limsupn→∞n−r/2+1h(1−r/2)d < C,
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for some constant C > 0 and for r ∈ [2, 2p+ 2]. Then, for ε > 0 in Assumption 1(iii),

sup
x∈Sε/2

j

E [|Vjn(x)|r] ≤ C1h
(1−r/2)d and sup

x∈Sε/2
j

E [|ξjn(x)|r] ≤ C2,

where C1 and C2 are constants that depend only on r.

Proof : For all x ∈ Sε/2
j , E[V 2

jn(x)] = 1. Recall the definition of kjn,r(x) in (6.5). Then

for some C0, C1 > 0,

(6.8) sup
x∈Sε/2

j

E |Vjn(x)|r ≤ C0 sup
x∈Sε/2

j

hdkjn,r(x)

hrd/2ρrjn(x)
≤ C1h

(1−r/2)d,

by Lemma A4, completing the proof of the first statement.

As for the second statement, using (6.7) and applying Rosenthal’s inequality (e.g.

(2.3) of GMZ), we deduce that for positive constants C3, C4 and C5 that depend only

on r,

sup
x∈Sε/2

j

E [|ξjn(x)|r] ≤ C3 sup
x∈Sε/2

j

max{(EV 2
jn(x))

r/2, n−r/2+1E|Vjn(x)|r}

≤ C4max
{

1, C5n
−r/2+1h(1−r/2)d

}

by (6.8). By the condition that limsupn→∞n−r/2+1h(1−r/2)d < C, the desired result

follows. �

The following lemma is adapted from Lemma 6.3 of GMZ. The result is obtained by

combining Lemmas A2-A5.

Lemma A6: Suppose that Assumptions 1 and 2 hold and h → 0 and n−1/2h−d → 0 as

n → ∞. Then for any Borel set A ⊂ Rd and for any j ∈ J ,
∫

A

{

np/2h(p−1)d/2EΛp(vjN(x))− h−d/2ρpjn(x)EΛp(Z1)
}

wj(x)dx → 0,

∫

A

{

np/2h(p−1)d/2EΛp(vjn(x))− h−d/2ρpjn(x)EΛp(Z1)
}

wj(x)dx → 0.

Proof : Recall the definition of ξjn(x) in (6.6) and write

np/2h(p−1)d/2EΛp(vjN(x))− h−d/2ρpjn(x)EΛp(Z1)

= h−d/2ρpjn(x) {EΛp(ξjn(x))− EΛp(Z1)} .
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In view of Lemma A4 and Assumption 1(ii), we find that it suffices for the first statement

of the lemma to show that

(6.9) sup
x∈Sj

|EΛp(ξjn(x))− EΛp(Z1)| = o(hd/2).

By Lemma A5, supx∈Sj
E |Vjn(x)|3 ≤ Ch−d/2 for some C > 0. Using Lemma A2 and

taking r = max{p, 3} and V
(i)
jn (x) = Wi, and Λp(·) = ϕ(·), we deduce that

sup
x∈Sj

|EΛp(ξjn(x))−EΛp(Z1)|(6.10)

≤ C1n
−1/2 sup

x∈Sj

E |Vjn(x)|3 + C2n
−(r−2)/2 sup

x∈Sj

E |Vjn(x)|r

+C3 sup
x∈Sj

E

[

ωΛp

(

Z1;
C4√
n
E |Vjn(x)|3

)]

,

for some constants Cs > 0, s = 1, 2, 3. The first two terms are o(hd/2). As for the last

expectation, observe that by Lemma A3,

E

[

ωΛp

(

Z1;
C4√
n
E |Vjn(x)|3

)]

≤ C

⌈p−1⌉
∑

k=0

(

C4√
n
E |Vjn(x)|3

)p− (p−1)k
⌈p−1⌉

E|Z1|k.

The last sum is O(n−1/2h−d/2) = o(hd/2) uniformly over x ∈ Sj, completing the proof of

(6.9).

We consider the second statement. Let V̄
(k)
jn (x), k = 1, · · ·, n, be i.i.d. copies of

YjiK
(

x−Xi

h

)

−E
(

YjiK
(

x−Xi

h

))

√

E
[

Y 2
jiK

2
(

x−Xi

h

)]

−
(

E
[

YjiK
(

x−Xi

h

)])2

so that V ar(V̄
(k)
jn (x)) = 1. Observe that for some constants C1, C2 > 0,

(6.11) sup
x∈Sj

E

∣

∣

∣
V̄

(k)
jn (x)

∣

∣

∣

3

≤ Ch−d/2 sup
x∈Sj

kjn,3(x)
(

ρ2jn(x)− hdb2jn(x)
)3/2

≤ C2h
−d/2,

where bjn(x) ≡ h−dE [YjiK ((x−Xi)/h)]. The last inequality follows by Lemma A4.

Define

ξ̄jn(x) ≡
√
nhdvjn(x)

ρ̃jn(x)
,

where ρ̃2jn(x) ≡ nhdV ar(vjn(x)). Then ξ̄jn(x)
d
= 1√

n

∑n
k=1 V̄

(k)
jn (x). Using Lemma A2 and

following the arguments in (6.10) analogously, we deduce that

sup
x∈Sj

∣

∣EΛp

(

ξ̄jn(x)
)

− EΛp(Z1)
∣

∣ = o(hd/2).
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This leads us to conclude that
∫

A

{

np/2h(p−1)d/2EΛp(vjn(x))− h−d/2ρ̃pjn(x)EΛp(Z1)
}

wj(x)dx = o(1).

Now, there exists n0 such that for all n > n0, supx∈Sj
hdb2jn(x) < c1/2, where c1 > 0 is

the constant in Lemma A3. Observe that for all n > n0,

sup
x∈Sj

h−d/2
∣

∣ρ̃pjn(x)− ρpjn(x)
∣

∣

= sup
x∈Sj

h−d/2
∣

∣(ρ2jn(x)− hdb2jn(x))
p/2 − (ρ2jn(x))

p/2
∣

∣

≤ sup
x∈Sj

p

2
hd/2b2jn(x) ·max

{

(

ρ2jn(x) + c1/2
)p/2−1

,
(

ρ2jn(x)− c1/2
)p/2−1

}

.

By Lemma A4, the last term is O(hd/2) = o(1). This completes the proof. �

Recall the definition: ρ2j (x) ≡ E[Y 2
ji|Xi = x]f(x)

∫

K2(u)du. Let

σjk,n(A) ≡ nph(p−1)d

∫

A

∫

A

Cov (Λp(vjN(x)),Λp(vkN(z)))wj(x)wk(z)dxdz, and

σjk(A) ≡
∫

A

qjk,p(x)ρ
p
j (x)ρ

p
k(x)wj(x)wk(x)dx,

(6.12)

where we recall the definition:

qjk,p(x) ≡
∫

[−1,1]d
Cov

(

Λp(
√

1− t2jk(x, u)Z1 + tjk(x, u)Z2),Λp(Z2)
)

du.

Now, let (Z1n(x), Z2n(z)) ∈ R2 be a jointly normal centered random vector whose co-

variance matrix is the same as that of (ξjn(x), ξkn(z)) for all x, z ∈ Rd. We define

τjk,n(A) ≡
∫

A

∫

[−1,1]d
gjk,n(x, u)λjk,n(x, x+ uh)dudx,

where

λjk,n(x, z) ≡ ρpjn(x)ρ
p
kn(z)wj(x)wk(z)1A(x)1A(z), and

gjk,n(x, u) ≡ Cov (Λp(Z1n(x)),Λp(Z2n(x+ uh))) .

The following result generalizes Lemma 6.5 of GMZ from a univariate X to a multi-

variate X . The truncation arguments in their proof on pages 752 and 753 do not apply

in the case of multivariate X . The proof of the following lemma employs a different

approach for this part.

Lemma A7: Suppose that Assumptions 1 and 2 hold and let h → 0 as n → ∞ satisfying

limsupn→∞n−r/2+1h(1−r/2)d < C for any r ∈ [2, 2p+ 2] for some C > 0.
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(i) Suppose that A ⊂ Sj ∩ Sk is any Borel set. Then

σjk,n(A) = τjk,n(A) + o(1).

(ii) Suppose further that A has a finite Lebesgue measure, ρj(·)ρk(·) and wj(·)wk(·) are
continuous and bounded on A, and

(6.13) sup
x∈A

|ρl,n(x)− ρl(x)| → 0, as n → ∞, for l ∈ {j, k}.

Then, as n → ∞, τjk,n(A) = σjk(A) + o(1), and hence from (i),

σjk,n(A) → σjk(A).

Proof: (i) By change of variables, we write σjk,n(A) = τ̃jk,n(A), where

τ̃jk,n(A) ≡
∫

A

∫

[−1,1]d
Cov (Λp(ξjn(x)),Λp(ξkn(x+ uh)))λjk,n(x, x+ uh)dudx.

Fix ε1 ∈ (0, 1] and let c(ε1) = (1 + ε1)
2 − 1. Let η1 and η2 be two independent random

variables that are independent of ({Yji, Xi : j ∈ J }∞i=1, N), each having a two-point

distribution that gives two points, {
√

c(ε1)} and {−
√

c(ε1)}, the equal mass of 1/2, so

that Eη1 = Eη2 = 0 and V ar(η1) = V ar(η2) = c(ε1). Furthermore, observe that for any

r ≥ 1,

(6.14) E|η1|r =
1

2
|c(ε1)|r/2 +

1

2
|c(ε1)|r/2 ≤ Cε

r/2
1 ,

for some constant C > 0 that depends only on r. Define

ξηjn,1(x) ≡
ξjn(x) + η1

1 + ε1
and ξηkn,2(x+ uh) ≡ ξkn(x+ uh) + η2

1 + ε1
.

Note that V ar(ξηjn,1(x)) = V ar(ξηkn,2(x + uh)) = 1. Let (Zη
1n(x), Z

η
2n(x + uh)) be a

jointly normal centered random vector whose covariance matrix is the same as that of

(ξηjn,1(x), ξ
η
kn,2(x+ uh)) for all (x, u) ∈ Rd × [−1, 1]d. Define

τ̃ ηjk,n(A) ≡
∫

A

∫

[−1,1]d
Cov

(

Λp(ξ
η
jn,1(x)),Λp(ξ

η
kn,2(x+ uh))

)

λjk,n(x, x+ uh)dudx,

τ ηjk,n(A) ≡
∫

A

∫

[−1,1]d
Cov (Λp(Z

η
1n(x)),Λp(Z

η
2n(x+ uh)))λjk,n(x, x+ uh)dudx.

Then first observe that
∣

∣τ̃jk,n(A)− τ̃ ηjk,n(A)
∣

∣ ≤
∫

A

∫

[−1,1]d
|∆η

jk,n,1(x, u)|λjk,n(x, x+ uh)dudx

+

∫

A

∫

[−1,1]d
|∆η

jk,n,2(x, u)|λjk,n(x, x+ uh)dudx,
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where

∆η
jk,n,1(x, u) ≡ EΛp(ξjn(x))EΛp(ξkn(x+ uh))

−EΛp(ξ
η
jn,1(x))EΛp(ξ

η
kn,2(x+ uh)) and

∆η
jk,n,2(x, u) ≡ EΛp(ξjn(x))Λp(ξkn(x+ uh))

−EΛp(ξ
η
jn,1(x))Λp(ξ

η
kn,2(x+ uh)).

Since for any a, b ∈ R, |ap+ − bp+| ≤ p|a− b| (|a|p−1 + |b|p−1), we bound |∆η
jk,n,2(x, u)| by

pE
[

|ξjn(x)− ξηjn,1(x)|
(

|ξjn(x)|p−1 + |ξηjn,1(x)|p−1
)

|ξkn(x+ uh)|p
]

+pE
[

|ξkn(x+ uh)− ξηkn,2(x+ uh)|
(

|ξkn(x+ uh)|p−1 + |ξηkn,2(x+ uh)|p−1
)

|ξηjn,1(x)|p
]

≡ A1n(x, u) + A2n(x, u), say.

As for A1n(x, u),

A1n(x, u) ≤ p
(

E
[

|ξjn(x)− ξηjn,1(x)|2(|ξjn(x)|p−1 + |ξηjn,1(x)|p−1)2
])1/2

×
(

E
[

|ξkn(x+ uh)|2p
])1/2

.

Define

s ≡
{

(p+ 1)/(p− 1) if p > 1

2 if p = 1,

and q ≡ (1− 1/s)−1. Note that by Hölder inequality,

E
[

|ξjn(x)− ξηjn,1(x)|2(|ξjn(x)|p−1 + |ξηjn,1(x)|p−1)2
]

≤
(

E
[

|ξjn(x)− ξηjn,1(x)|2q
])1/q (

E
[

(|ξjn(x)|p−1 + |ξηjn,1(x)|p−1)2s
])1/s

.

Now,

E
[

|ξjn(x)− ξηjn,1(x)|2q
]

= (1 + ε1)
−2qE

[

|ε1ξjn(x)− η1|2q
]

≤ 22q−1(1 + ε1)
−2q
{

ε2q1 E
[

|ξjn(x)|2q
]

+ E
[

|η1|2q
]}

.

Applying Lemma A5 and (6.14) to the last bound, we conclude that

sup
x∈Sj

E
[

|ξjn(x)− ξηjn,1(x)|2q
]

≤ C1(ε
2q
1 + εq1)

(1 + ε1)2q
≤ C2ε

q
1,

for some constants C1, C2 > 0. Using Lemma A5, we can also see that for some constants

C3, C4 > 0,

sup
x∈Sj

E
[

(|ξjn(x)|p−1 + |ξηjn,1(x)|p−1)2s
]

≤ C3
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and from some large n on,

sup
u∈[−1,1]d

sup
x∈Sk

E
[

|ξkn(x+ uh)|2p
]

≤ sup
x∈Sε/2

k

E
[

|ξkn(x)|2p
]

≤ C4,

for ε > 0 in Assumption 1(iii). Therefore, for some constant C > 0,

sup
u∈[−1,1]d

sup
x∈Sj∩Sk

A1n(x, u) ≤ C
√
ε1.

Using similar arguments for A2n(x, u), we deduce that for some constant C > 0,

(6.15) sup
u∈[−1,1]d

sup
x∈Sj∩Sk

|∆η
jk,n,2(x, u)| ≤ C

√
ε1.

Let us turn to ∆η
jk,n,1(x, u). We bound |∆η

jk,n,1(x, u)| by

pE
[

|ξjn(x)− ξηjn,1(x)|
(

|ξjn(x)|p−1 + |ξηjn,1(x)|p−1
)]

E [|ξkn(x+ uh)|p]
+pE

[

|ξkn(x+ uh)− ξηkn,2(x+ uh)|
(

|ξkn(x+ uh)|p−1 + |ξηkn,1(x+ uh)|p−1
)]

E[|ξηjn,1(x)|p].

Using similar arguments for ∆η
jk,n,2(x, u), we find that for some constant C > 0,

(6.16) sup
u∈[−1,1]d

sup
x∈Sj∩Sk

|∆η
jk,n,1(x, u)| ≤ C

√
ε1.

By Lemma A4 and Assumption 1(ii), there exist n0 > 0 and C1, C2 > 0 such that for all

n ≥ n0,
∫

A

∫

[−1,1]d
λjk,n(x, x+ uh)dudx(6.17)

≤ C1

∫

A

∫

[−1,1]d
wj(x)wk(x+ uh)dudx

≤ C2

√

∫

A

w2
j (x)dx

√

∫

A

∫

[−1,1]d
w2

k(x+ uh)dudx < ∞.

Hence
∣

∣τ̃jk,n(A)− τ̃ ηjk,n(A)
∣

∣ ≤ C5

√
ε1

∫

A

∫

[−1,1]d
λjk,n(x, x+ uh)dudx ≤ C6

√
ε1,

for some constants C5 > 0 and C6 > 0.

Since the choice of ε1 > 0 was arbitrary, it remains for the proof of Lemma A7(i) to

prove that

(6.18)
∣

∣τ̃ ηjk,n(A)− τjk,n(A)
∣

∣ = o(1),
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as n → ∞ and then ε1 → 0. For any x ∈ Sj ∩ Sk,

(

ξηjn,1(x), ξ
η
kn,2(x+ uh)

)′ d
=

1√
n

n
∑

i=1

W (i)
n (x, u),

where W
(i)
n (x, u)’s are i.i.d. copies of Wn(x, u) ≡ (qjn(x), qkn(x+ uh))′ with

qjn(x) ≡
{

∑

i≤N1
YjiK ((x−Xi)/h)− E [YjiK ((x−Xi)/h)]

hd/2ρjn(x)
+ η1

}

/(1 + ε1).

Using the same arguments as in the proof of Lemma A5, we find that for j ∈ J ,

(6.19) sup
x∈Sε

j

E
[

|qjn(x)|3
]

≤ Ch−d/2, for some C > 0.

Let Σ1n be the 2× 2 covariance matrix of (ξηjn,1(x), ξ
η
kn,2(x+ uh))′. Define

Λ̃n,p(v) ≡ Λp([Σ
1/2
1n v]1)Λp([Σ

1/2
1n v]2), v ∈ R2,

where [a]j of a vector a ∈ R2 indicates its j-th entry. There exists some C > 0 such

that for all n,

sup
v∈R2

∣

∣

∣
Λ̃n,p(v)− Λ̃n,p(0)

∣

∣

∣

1 + ||v||2p+2min{||v||, 1} ≤ C and(6.20)

∫

sup
u∈R2:||z−u||≤δ

∣

∣

∣
Λ̃n,p(z)− Λ̃n,p(u)

∣

∣

∣
dΦ(z) ≤ Cδ for all δ ∈ (0, 1].

The correlation between ξηjn,1(x) and ξηkn,2(x+ uh) is equal to

E
[

ξηjn,1(x)ξ
η
kn,2(x+ uh)

]

=
E[ξjn(x)ξkn(x+ uh)]

(1 + ε1)2
∈
[

−(1 + ε1)
−2, (1 + ε1)

−2
]

.

Hence, as for W̃
(i)
n (x, u) ≡ Σ

−1/2
1n W

(i)
n (x, u), by (6.19),

sup
x∈Sj∩Sk

E||W̃ (i)
n (x, u)||3(6.21)

≤ C1(1− (E[ξηjn,1(x)ξ
η
kn,2(x+ uh)])2)−3/2

{

supx∈Sε
j
E[|qjn(x)|3] + supx∈Sε

k
E[|qkn(x)|3]

}

≤ C1(1− (1 + ε1)
−4)−3/2

{

supx∈Sε
j
E[|qjn(x)|3] + supx∈Sε

k
E[|qkn(x)|3]

}

≤ C2(1− (1 + ε1)
−4)−3/2h−d/2, for some C1, C2 > 0,
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so that n−1/2 supx∈Sj∩Sk
E||W̃ (i)

n (x, u)||3 = O(n−1/2h−d/2). By Lemma A2 and following

the arguments in (6.10) analogously,

sup
x∈Sj∩Sk

∣

∣

∣

∣

∣

EΛ̃n,p

(

1√
n

n
∑

i=1

W̃ (i)
n (x, u)

)

− EΛ̃n,p

(

Z̃η
n(x, u)

)

∣

∣

∣

∣

∣

= O
(

n−1/2h−d/2
)

= o(1),

where Z̃η
n(x, u) ≡ Σ

−1/2
1n (Zη

1n(x), Z
η
2n(x+ uh))′. Certainly by (6.14) and Lemma A5,

Cov(Λp(Z
η
1n(x)),Λp(Z

η
2n(x+ uh)))

≤
√

E|Zη
1n(x)|2p

√

E|Zη
2n(x+ uh)|2p < C,

for some C > 0 that does not depend on ε1. Using (6.17), we apply the dominated

convergence theorem to obtain that

(6.22)
∣

∣τ ηjk,n(A)− τ̃ ηjk,n(A)
∣

∣ = o(1)

as n → ∞ for each ε1 > 0.

Finally, note from (6.15) and (6.16) that, for all x ∈ A and all u ∈ [−1, 1]d,

Cov(Λp(Z
η
1n(x)),Λp(Z

η
2n(x+ uh)))

= Cov(Λp(Z1n(x)),Λp(Z2n(x+ uh))) + o(1),

where the o(1) term is one that converges to zero as n → ∞ and then ε1 → 0. Therefore,

by the dominated convergence theorem,
∣

∣τ ηjk,n(A)− τjk,n(A)
∣

∣ = o(1),

as n → ∞ and then ε1 → 0. In view of (6.22), this completes the proof of (6.18) and,

as a consequence, that of (i).

(ii) Define tjk,n(x, u) ≡ E(ξjn(x)ξkn(x+ uh)),

ejk,n(x, u) ≡ 1

hd
E

[

YjiYkiK

(

x−Xi

h

)

K

(

x−Xi

h
+ u

)]

and

ejk(x, u) ≡ ρjk(x)

∫

K(z)K(z + u)dz
∫

K2(u)du
.

By Assumption 1(i), and Lemma A4, for almost every x ∈ A and for each u ∈ [−1, 1]d,

tjk,n(x, u) =
1

ρjn(x)ρkn(x+ uh)

1

hd
E

[

YjiYkiK

(

x−Xi

h

)

K

(

x−Xi

h
+ u

)]

=
ejk,n(x, u)

ρjn(x)ρkn(x+ uh)
=

ejk(x, u)

ρj(x)ρk(x+ uh)
+ o(1) = tjk(x, u) + o(1),

(6.23)
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where we recall that tjk(x, u) = ejk(x, u)/(ρj(x)ρk(x)) by the definition of tjk(·, ·).
By (6.13),

τjk,n(A) =

∫

A

∫

[−1,1]d
gjk,n(x, u)λjk(x, x+ uh)dudx+ o(1),

where λjk(x, z) ≡ ρpj (x)ρ
p
k(z)wj(x)wk(z)1A(x)1A(z). By (6.23), for almost every x ∈ A

and for each u ∈ [−1, 1]d,

gjk,n(x, u) → gjk(x, u), as n → ∞,

where gjk(x, u) ≡ Cov(Λp(
√

1− t2jk(x, u)Z1 + tjk(x, u)Z2),Λp(Z2)). Furthermore, since

ρj(·)ρk(·) and wj(·)wk(·) are continuous on A and A has a finite Lebesgue measure, we

follow the proof of Lemma 6.4 of GMZ to find that gjk,n(x, u)λjk(x, x+uh) converges in

measure to gjk(x, u)λjk(x, x) on A× [−1, 1]d, as n → ∞. Using the bounded convergence

theorem, we deduce the desired result. �

The following lemma is a generalization of Lemma 6.2 of GMZ from p = 1 to p ≥ 1.

The proof of GMZ does not carry over to this general case because the majorization

inequality of Pinelis (1994) used in GMZ does not apply here. (Note that (4) in Pinelis

(1994) does not apply when p > 1.)

Lemma A8: Suppose that Assumptions 1 and 2 hold. Furthermore, assume that as

n → ∞, h → 0, n−1/2h−d → 0. Then there exists a constant C > 0 such that for any

Borel set A ⊂ Rd and for all j ∈ J ,

limsupn→∞E

[∣

∣

∣

∣

np/2h(p−1)d/2

∫

A

{Λp(vjn(x))−E [Λp(vjn(x))]}wj(x)dx

∣

∣

∣

∣

]

≤ C

∫

A

wj(x)dx+ C

√

∫

A

w2
j (x)dx.

Proof : It suffices to show that there exists C > 0 such that for any Borel set A ⊂ Rd,

Step 1: E
[∣

∣np/2h(p−1)d/2
∫

A
(Λp(vjn(x))− Λp(vjN(x)))wj(x)dx

∣

∣

]

≤ C
∫

A
wj(x)dx,

Step 2: E
[∣

∣np/2h(p−1)d/2
∫

A
(Λp(vjN(x))− E [Λp(vjN(x))])wj(x)dx

∣

∣

]

≤ C
√

∫

A
w2

j (x)dx,

and

Step 3: np/2h(p−1)d/2
∣

∣

∫

A
(EΛp(vjN(x))− E [Λp(vjn(x))])wj(x)dx

∣

∣→ 0 as n → ∞.

Indeed, by chaining Steps 1, 2 and 3, we obtain the desired result.
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Proof of Step 1: For simplicity, let

u2
jn(x) ≡ E

[

Y 2
jiK

2

(

x−Xi

h

)]

−
(

E

[

YjiK

(

x−Xi

h

)])2

and

V̄n,ji(x) ≡ 1

ujn(x)

{

YjiK

(

x−Xi

h

)

− E

[

YjiK

(

x−Xi

h

)]}

.

We write, if N = n,
∑n

i=N+1 = 0, and if N > n,
∑n

i=N+1 = −∑N
i=n+1. Using this

notation, write

vjn(x) =
1

nhd

N
∑

i=1

V̄n,ji(x)ujn(x) +
1

nhd

n
∑

i=N+1

V̄n,ji(x)ujn(x).

Now, observe that

1√
nhd

N
∑

i=1

V̄n,ji(x)ujn(x) =
1√
nhd

N
∑

i=1

{

YjiK

(

x−Xi

h

)

−E

[

YjiK

(

x−Xi

h

)]}

=
√
nhd

{

ĝjN(x)−
1

hd
E

[

YjiK

(

x−Xi

h

)]}

+
√
nhd

(

n−N

n

)

· 1

hd
· E
[

YjiK

(

x−Xi

h

)]

=
√
nhdvjN(x) +

√
nhd

(

n−N

n

)

· 1

hd
· E
[

YjiK

(

x−Xi

h

)]

.

Letting

ηjn(x) ≡
√
n

(

n−N

n

)

· 1

hd
· E
[

YjiK

(

x−Xi

h

)]

and

sjn(x) ≡ 1√
nhd

n
∑

i=N+1

V̄n,ji(x)ujn(x),

we can write

(6.24)
√
nhdvjn(x) =

√
nhdvjN(x) + (

√
hdηjn(x) + sjn(x)).

First, note that for some constant C > 0,

(6.25) sup
x∈Sj

u2
jn(x) ≤ Chd,

from some large n on, by Lemma A4. Recall the definition of ρ̃jn(x) : ρ̃jn(x) ≡
√

nhdV ar(vjn(x)) and note that

ρ̃2jn(x) = ρ2jn(x)− hdb2jn(x) = h−du2
jn(x).
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As in the proof of Lemma A5, there exist n0, C1 > 0 and C2 > 0 such that for all n ≥ n0,

C1 > sup
x∈Sj

√

ρ2jn(x)− hdb2jn(x) = sup
x∈Sj

ρ̃jn(x)(6.26)

≥ inf
x∈Sj

ρ̃jn(x) ≥ inf
x∈Sj

√

ρ2jn(x)− hdb2jn(x) > C2.

Using (6.25), (6.24), and (6.26), we deduce that for some C1, C2, C3, and C4 > 0,
∣

∣

∣

∣

np/2h(p−1)d/2

∫

A

(Λp(vjn(x))− Λp(vjN(x)))wj(x)dx

∣

∣

∣

∣

≤ C1h
−d/2

∣

∣

∣

∣

∫

A

(

Λp

(√
nhd

vjn(x)

ρ̃jn(x)

)

− Λp

(√
nhd

vjN(x)

ρ̃jn(x)

))

wj(x)dx

∣

∣

∣

∣

≤ C2

∫

A

∣

∣

∣

∣

ηjn(x)

ρ̃jn(x)

∣

∣

∣

∣

(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)

wj(x)dx

+C3h
−d/2

∫

A

∣

∣

∣

∣

sjn(x)

ρ̃jn(x)

∣

∣

∣

∣

(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)

wj(x)dx

≤ C4

∫

A

|ηjn(x)|
(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)

wj(x)dx

+C3

∫

A

∣

∣

∣

∣

sjn(x)

ujn(x)

∣

∣

∣

∣

(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)

wj(x)dx

= A1n + A2n, say.

To deal with A1n and A2n, we first show the following:

Claim 1: supx∈Sj
E[η2jn(x)] = O(1).

Claim 2: supx∈Sj
E[|sjn(x)/ujn(x)|2] = o(1).

Claim 3: supx∈Sj
E[|

√
nhdvjN(x)/ρ̃jn(x)|2p−2] = O(1).

Proof of Claim 1: By Lemma A4 and the fact that E|n−1/2(n−N)|2 = O(1),

sup
x∈Sj

E
[

η2jn(x)
]

≤ E

∣

∣

∣

∣

√
n

(

n−N

n

)∣

∣

∣

∣

2

· sup
x∈Sj

∣

∣

∣

∣

1

hd
· E
[

YjiK

(

x−Xi

h

)]∣

∣

∣

∣

2

= O(1).

Proof of Claim 2: Note that

(6.27)

∣

∣

∣

∣

√
nhd

sjn(x)

ujn(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=n+1

V̄n,ji(x)

∣

∣

∣

∣

∣

.
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Certainly V ar(V̄n,ji(x)) = 1. As seen in (6.11), supx∈Sj
E
∣

∣V̄n,ji(x)
∣

∣

3 ≤ Ch−d/2 for some

C > 0. Similarly,

sup
x∈Sj

E
∣

∣V̄n,ji(x)
∣

∣

4 ≤ hdkjn,4(x)

h2d
(

ρ2jn(x)− hdb2jn(x)
)2 ≤ Ch−d,

for some C > 0. Hence by Lemma 1(i) of Horváth (1991), for some C > 0,

E

(√
nhd

sjn(x)

ujn(x)

)2

≤ E|N − n|E|Z1|2

+C
{

E |N − n|1/2 E
∣

∣V̄n,ji(x)
∣

∣

3
+ E

∣

∣V̄n,ji(x)
∣

∣

4
}

.

Note that E|N − n| = O(n1/2) and E |N − n|1/2 = O(n1/4) (e.g. (2.21) and (2.22) of

Horváth (1991)). Therefore, there exists C > 0 such that

sup
x∈Sj

E

(√
nhd

sjn(x)

ujn(x)

)2

≤ C
{

n1/2 + n1/4h−d/2 + h−d
}

.

Since n−1/2h−d → 0, supx∈Sj
E[(sjn(x)/ujn(x))

2] = o(1).

Proof of Claim 3: By (6.8), Lemmas A3-A4, and (6.26), we have

sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
]

= sup
x∈Sj

∣

∣

∣

∣

ρjn(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2

E





∣

∣

∣

∣

∣

√
nhdvjN(x)

ρjn(x)

∣

∣

∣

∣

∣

2p−2


 ≤ C,

for some C > 0. This completes the proof of Claim 3.

Now, using Claims 1-3, we prove Step 1. Let µj(A) ≡
∫

A
wj(x)dx. Since h(p−1)d/2 =

O(1) when p = 1, and
√
a + b ≤ √

a+
√
b for any a ≥ 0 and b ≥ 0,

E [A1n] ≤ C

∫

A

E

[

|ηjn(x)|
(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)]

wj(x)dx

≤ Cµj(A) sup
x∈Sj

E

[

|ηjn(x)|
(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)]

≤ 2Cµj(A)×
(

sup
x∈Sj

E
[

η2jn(x)
]

)1/2

×





(

sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
])1/2

+

(

sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
])1/2



 .
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Certainly, as in the proof of Lemma A5,

(6.28) sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
]

≤ C,

for some constant C > 0. Hence using Claims 1 and 3, we conclude that E [A1n] ≤
Cµj(A) for some C > 0. As for A2n, similarly, we obtain that for some C > 0,

E [A2n] ≤ C

∫

A

E

[

∣

∣

∣

∣

sjn(x)

ujn(x)

∣

∣

∣

∣

(

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1

+

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

p−1
)]

wj(x)dx

≤ 2Cµj(A)×
(

sup
x∈Sj

E

[

∣

∣

∣

∣

sjn(x)

ujn(x)

∣

∣

∣

∣

2
])1/2

×





(

sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjn(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
])1/2

+

(

sup
x∈Sj

E

[

∣

∣

∣

∣

√
nhd

vjN(x)

ρ̃jn(x)

∣

∣

∣

∣

2p−2
])1/2



 .

By Claims 2 and 3 and (6.28), E [A2n] = o(1). Hence the proof of Step 1 is completed.

Proof of Step 2: We can follow the proof of Lemma A7(i) to show that

E

[

np/2h(p−1)d/2

∫

A

(|vjN(x)|p − E [|vjN(x)|p])wj(x)dx

]2

= κjn(A) + o(1),

where κjn(A) ≡
∫

A

∫

[−1,1]d
rjn(x, u)λjn(x, x+ uh)dudx,

λjn(x, z) ≡ ρpjn(x)ρ
p
jn(z)wj(x)wj(z)1A∩Sj

(x)1A∩Sj
(z) and

rjn(x, u) ≡ Cov (|Zjn,A(x)|p, |Zjn,B(x+ uh)|p) ,

with (Zjn,A(x), Zjn,B(x + uh))′ ∈ R2 denoting a centered normal random vector whose

covariance matrix is equal to that of (ξjn(x), ξjn(x+uh))′. By Cauchy-Schwarz inequality

and Lemma A5,

sup
x∈Sj

rjn(x, u) ≤ sup
x∈Sj

√

E |Zjn,A(x)|2pE |Zjn,B(x+ uh)|2p < ∞.

Furthermore, for each u ∈ [−1, 1]d,

∫

A

λjn(x, x+ uh)dx ≤
√

∫

A

w2
j (x)dx

√

∫

A+uh

w2
j (x)dx.

Since
∫

Sε
j
w2

j (x)dx < ∞ for some ε > 0 (Assumption 1(ii)), we find that as h → 0, the

last term converges to
∫

A
w2

j (x)dx. We obtain the desired result of Step 2.

Proof of Step 3: The convergence above follows from the proof of Lemma A6. �
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Let C ⊂ Rd be a bounded Borel set such that

α ≡ P
{

X ∈ Rd\C
}

> 0.

For any Borel set A ⊂ C, let

ζn(A) ≡
J
∑

j=1

∫

A

Λp(vjn(x))wj(x)dx and

ζN(A) ≡
J
∑

j=1

∫

A

Λp(vjN(x))wj(x)dx.

We also let σ2
n(A) ≡

∑J
j=1

∑J
k=1 σjk,n(A), and σ2(A) ≡

∑J
j=1

∑J
k=1 σjk(A). We define

Sn(A) ≡
np/2h(p−1)d/2{ζN(A)− EζN(A)}

σn(A)
,

where

Un ≡ 1√
n

{

N
∑

i=1

1 {Xi ∈ C} − nP {X ∈ C}
}

, and

Vn ≡ 1√
n

{

N
∑

i=1

1{Xi ∈ Rd\C} − nP{X ∈ Rd\C}
}

.

Lemma A9: Suppose that Assumptions 1 and 2 hold. Furthermore, assume that as

n → ∞, h → 0, and n−1/2h−d → 0. Let A ⊂ C be such that σ2(A) > 0, α ≡ P{X ∈
Rd\C} > 0, ρj(·)’s and wj(·)’s are continuous and bounded on A, and condition in (6.13)

is satisfied for all l = 1, · · ·, J . Then,

(Sn(A), Un)
d→ (Z1,

√
1− αZ2).

Proof : First, we show that

(6.29) Cov (Sn(A), Un) → 0.

Write

Cov (Sn(A), Un) =
np/2h(p−1)d/2

σn(A)

J
∑

j=1

∫

A

Cov (Λp(vjN(x)), Un)wj(x)dx.

It suffices for (6.29) to show that

(6.30) Cov
(

np/2hpd/2{ζN(A)− EζN(A)}, Un

)

= o(hd/2),
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since σ2
n(A) → σ2(A) ≡∑J

j=1

∑J
k=1 σjk(A) > 0 by Lemma A7. For any x ∈ Sj ,

(√
nhdvjN(x)

ρjn(x)
,

Un
√

P {X ∈ C}

)

d
=

(

1√
n

n
∑

k=1

Q(k)
n (x),

1√
n

n
∑

k=1

U (k)

)

,

where (Q
(k)
n (x), U (k))’s are i.i.d. copies of (Qn(x), U) with

Qn(x) ≡ 1

hd/2ρjn(x)

{

∑

i≤N1

YjiK

(

x−Xi

h

)

− E

[

YjiK

(

x−Xi

h

)]

}

and

U ≡
∑

i≤N1
1 {Xi ∈ C} − P {X ∈ C}
√

P {X ∈ C}
.

Uniformly over x ∈ Sj ,

(6.31) rn(x) ≡ E [Qn(x)U ] = O(hd/2) = o(1),

by Lemma A4. Let (Z1n, Z2n)
′ be a centered normal random vector with the same

covariance matrix as that of (Qn(x), U)′. Let the 2 by 2 covariance matrix be Σn,2.

Since 1√
n

∑n
k=1U

(k) and Z2n have mean zero, we write

Cov

(

Λp

(

1√
n

n
∑

k=1

Q(k)
n (x)

)

,
1√
n

n
∑

k=1

U (k)

)

− Cov (Λp (Z1n) , Z2n)

= E

[

Λp

(

1√
n

n
∑

k=1

Q(k)
n (x)

)(

1√
n

n
∑

k=1

U (k)

)]

− E [Λp (Z1n)Z2n] ≡ An(x), say.

Define Λ̄n,p(v) ≡ Λp([Σ
1/2
n,2v]1)[Σ

1/2
n,2v]2, v ∈ R2. There exists some C > 0 such that for

all n ≥ 1,

sup
v∈R2

∣

∣Λ̄n,p(v)− Λ̄n,p(0)
∣

∣

1 + ||v||p+1min{||v||, 1} ≤ C and

∫

sup
u∈R2:||z−u||≤δ

∣

∣Λ̄n,p(z)− Λ̄n,p(u)
∣

∣ dΦ(z) ≤ Cδ, for all δ ∈ (0, 1].

Letting W
(k)
n (x) ≡ Σ

−1/2
n,2 · (Q(k)

n (x), U (k))′, observe that using (6.31) and following the

arguments in (6.21), from some large n on, for some C > 0,

E||W (k)
n (x)||3 = E||Σ−1/2

n,2 (Q(k)
n (x), U (k))′||3

= E[{tr(Σ−1/2
n,2 (Q(k)

n (x), U (k))′(Q(k)
n (x), U (k))Σ

−1/2
n,2 )}3/2]

≤ C(1− r2n(x))
−3/2E

[

|Qn(x)|3 + |U |3
]

≤ Ch−d/2.
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Hence, by Lemma A2,

sup
x∈Sj

|An(x)| = sup
x∈Sj

∣

∣

∣

∣

∣

EΛ̄n,p

(

1√
n

n
∑

i=1

W (i)
n (x)

)

− EΛ̄n,p

(

Z̃n

)

∣

∣

∣

∣

∣

= O
(

n−1/2h−d/2
)

= o(hd/2),

where Z̃n ≡ Σ
−1/2
n,2 (Z1n, Z2n)

′. This completes the proof of (6.30) and hence that of

(6.29).

Now, define

∆n(x) ≡ np/2h(p−1)d/2
J
∑

j=1

{Λp(vjN(x))−E[Λp(vjN(x))]}wj(x).

Following Mason and Polonik (2009), we slice the integral
∫

X ∆n(x)dx into a sum of a

1-dependent random field. Let C be as given in the lemma. Let Zd be the set of d-tupes

of integers, and let {Rn,i : i ∈ Z
d} be the collection of rectangles in Rd such that Rn,i =

[an,i1, bn,i1]× · · · · ×[an,id, bn,id], where ij is the j-th entry of i, and h ≤ bn,ij − an,ij ≤ 2h,

for all j = 1, · · ·, d, and two different rectangles Rn,i and Rn,j do not have intersection

with nonempty interior, and the union of the rectangles Rn,i, i ∈ Z
d
n, cover C, from some

sufficiently large n on, where Z
d
n be the set of d-tuples of integers whose absolute values

less than or equal to n.

We let Bn,i = Rn,i∩C and In ≡ {i ∈ Z
d
n : Bn,i 6= ∅}. Then Bn,i has Lebesgue measure

m(Bn,i) bounded by C1h
d and the cardinality of the set In is bounded by C2h

−d for

some positive constants C1 and C2. Define

αi,n ≡ 1

σn(A)

∫

Bn,i∩A
∆n(x)dx and

ui,n ≡ 1√
n

{

N
∑

j=1

1 {Xj ∈ Bn,i} − nP {Xj ∈ Bn,i}
}

.

Then, we can write

Sn(A) =
∑

i∈In

αi,n and Un =
∑

i∈In

ui,n.

Certainly V ar(Sn(A)) = 1 and it is easy to check that V ar(Un) = 1−α. Take µ1, µ2 ∈ R

and let

yi,n ≡ µ1αi,n + µ2ui,n.

From (6.29),

V ar

(

∑

i∈In

yi,n

)

→ µ2
1 + µ2

2(1− α) as n → ∞.
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Since σr
n(A) = σr(A) + o(1), r > 0, by Lemma A7 and m(Bn,i) ≤ Chd for a constant

C > 0, we take r ∈ (2, (2p+ 2)/p] and bound

σr
n(A)

∑

i∈In

E|αi,n|r

≤ C sup
x∈A

E |∆n(x)|r
∑

i∈In

(
∫

A

∫

A

∫

A

1Bn,i
(u, v, s)dudvds

)r/3

,

where 1B(u, v, s) ≡ 1{u ∈ B}1{v ∈ B}1{s ∈ B}. Using Jensen’s inequality, we have

sup
x∈A

E |∆n(x)|r ≤ C1n
rp/2hr(p−1)d/2 sup

x∈A

J
∑

j=1

E |vjN(x)|rpwr
j (x)

≤ C2n
rp/2hr(p−1)d/2 max

1≤j≤J
sup

x∈A∩Sj

E |vjN(x)|rp

for some C1, C2 > 0. As for the last term, we apply Rosenthal’s inequality (see. e.g.

Lemma 2.3. of GMZ): for some constant C > 0,

nrp/2hr(p−1)d/2 sup
x∈A∩Sj

E |vjN(x)|rp

≤ Chr(p−1)d/2 sup
x∈A∩Sj

(

1

h2d
E

[

Y 2
jiK

2

(

x−Xi

h

)])rp/2

+Chr(p−1)d/2 sup
x∈A∩Sj

(

n

nrp/2hrpd
E

[∣

∣

∣

∣

YjiK

(

x−Xi

h

)∣

∣

∣

∣

rp])

.

By Lemma A4, the first term is O(h−rd/2) and the last term is O(n1−rp/2h−rdp/2−rd/2+d).

Hence we find that
∑

i∈In

E|αi,n|r = Cardinality of In ×O
(

m(Bn,i)
rh−rd/2{1 + n1−rp/2h−rdp/2+d}

)

= O
(

hrd/2−d{1 + n1−rp/2h−rdp/2+d}
)

= o(1)

for any r ∈ (2, (2p+ 2)/p], because n−1/2h−d → 0. Therefore, as n → ∞,
∑

i∈In

E|αi,n|r → 0 for any r ∈ (2, (2p+ 2)/p].

Also, arguing similarly as in (6.56) of GMZ, we can show that
∑

i∈In E|ui,n|r → 0

as n → ∞ for any r ∈ (2, (2p + 2)/p]. Since Xi’s are common across different j’s, the

sequence {yi,n}i∈In is a 1-dependent random field (see Mason and Polonik (2009)). The

desired result of Lemma A9 follows by Theorem 1 of Shergin (1993) and the Cramér-

Wold device. �
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Lemma A10: Suppose that the conditions of Lemma A9 are satisfied, and let A ⊂ Rd

be a Borel set in Lemma A9. Then,

np/2h(p−1)d/2 {ζn(A)− Eζn(A)}
σn(A)

d→ N(0, 1), as n → ∞.

Proof: The conditional distribution of Sn(A) given N = n is equal to that of

np/2h(p−1)d/2

σn(A)

J
∑

j=1

∫

A

{Λp(vjn(x))−EΛp(vjN(x))}wj(x)dx.

Using Lemma A9 and the de-Poissonization argument of Beirlant and Mason (1995)

(see also Lemma 2.4 of GMZ), this conditional distribution converges to N(0, 1). Now

by Lemma A6, it follows that

np/2h(p−1)d/2

J
∑

j=1

∫

A

{EΛp(vjN(x))− EΛp(vjn(x))}wj(x)dx → 0,

as n → ∞. This completes the proof. �

Proof of Theorem 1 : Fix ε > 0 as in Assumption 1(iii), and take n0 > 0 such that

for all n ≥ n0,

{x− uh : x ∈ Sj , u ∈ [−1/2, 1/2]d} ⊂ Sε
j ⊂ X for all j ∈ J .

Since we are considering the least favorable case of the null hypothesis,

E[YjiK((x−Xi)/h)]/h
d =

∫

[−1/2,1/2]d
mj(x− uh)K(u)du = 0, for almost all x ∈ Sj ,

for all n ≥ n0 and for all j ∈ J . Therefore, ĝjn(x) = vjn(x) for almost all x ∈ Sj , j ∈ J ,

and for all n ≥ n0. From here on, we consider only n ≥ n0.

We fix 0 < εl → 0 as l → ∞ and take a compact set Wl ⊂ Sj such that for each

j ∈ J , wj is bounded and continuous on Wl and for s ∈ {1, 2},

(6.32)

∫

X\Wl

ws
j(x)dx → 0 as l → ∞.

We can choose such Wl following the arguments in the proof of Lemma 6.1 of GMZ

because ws
j is integrable by Assumption 1(ii). Take Ml,j, vl,j > 0, j = 1, 2, · · ·, J, such

that for Cl,j ≡ [−Ml,j + vl,j,Ml,j − vl,j]
d,

P
{

Xi ∈ Rd\Cl,j
}

> 0,
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and for some Borel Al,j ⊂ Cl,j ∩Wl, ρj(·) is bounded and continuous on Al,j,

sup
x∈Al,j

|ρjn(x)− ρj(x)| → 0, as n → ∞, and(6.33)

∫

Wl\Al,j

ρj(x)w
s
j(x)dx → 0, as l → ∞, for s ∈ {1, 2}.

The existence ofMl,j, vl,j and εl and the sets Al,j are ensured by Lemma A1. By Assump-

tion 1(i), we find that the second convergence in (6.33) implies that
∫

Wl\Al,j
ws

j(x)dx → 0

as l → ∞, for s ∈ {1, 2}. Now, take Al ≡ ∩J
j=1Al,j and Cl ≡ ∩J

j=1Cl,j , and observe that

for s ∈ {1, 2},

(6.34)

∫

Wl\Al

ws
j(x)dx ≤

J
∑

j=1

∫

Wl\Al,j

ws
j(x)dx → 0,

as l → ∞ for all j ∈ J .

First, we write
∑J

j=1

{

np/2h(p−1)d/2Γj(ĝjn)− ajn
}

σn

(6.35)

=
np/2h(p−1)d/2

σn

{ζn(X\Wl)− Eζn(X\Wl)}

+
np/2h(p−1)d/2

σn

{ζn(Wl\Al)− Eζn(Wl\Al)}

+
np/2h(p−1)d/2

σn

{ζn(Al)− Eζn(Al)} .

Since X\Al = (X\Wl) ∪ (Wl\Al), by Lemma A8, (6.32), and (6.34),

(6.36) np/2h(p−1)d/2 {ζn(X\Al)−Eζn(X\Al)}
p→ 0, as n → ∞, and l → ∞.

Furthermore, we write |σ2
n − σ2

n(Al)| as
J
∑

j=1

J
∑

k=1

∫

X
qjk,p(x) (1− 1Al

(x)) ρpjn(x)ρ
p
kn(x)wj(x)wk(x)dx

≤
J
∑

j=1

J
∑

k=1

sup
x∈Sj∩Sk

∣

∣qjk,p(x)ρ
p
jn(x)ρ

p
kn(x)

∣

∣

∫

X
(1− 1Al

(x))wj(x)wk(x)dx

=

J
∑

j=1

J
∑

k=1

sup
x∈Sj∩Sk

∣

∣qjk,p(x)ρ
p
jn(x)ρ

p
kn(x)

∣

∣

∫

X\Al

wj(x)wk(x)dx.
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Observe that as l → ∞,
∣

∣

∣

∣

∫

X\Al

wj(x)wk(x)dx

∣

∣

∣

∣

2

≤
(
∫

X\Al

w2
j (x)dx

)(
∫

X\Al

w2
k(x)dx

)

→ 0.

From Lemma A4, it follows that

(6.37) liml→∞limsupn→∞
∣

∣σ2
n − σ2

n(Al)
∣

∣ = 0.

Furthermore, since σ2
n(Al) → σ2(Al) as n → ∞ for each l by Lemma A7, and σ2(Al) →

σ2 > 0 as l → ∞, by Assumption 1, it follows that for any ε1 ∈ (0, σ2),

0 < σ2 − ε1 ≤ liminfn→∞σ2
n(6.38)

≤ limsupn→∞σ2
n ≤ σ2 + ε1 < ∞.

Combining this with (6.36), we find that as n → ∞ and l → ∞,

np/2h(p−1)d/2

σn
{ζn(X\Al)−Eζn(X\Al)} = oP (1).

As for the last term in (6.35), by (6.38) and Lemma A10, as n → ∞ and l → ∞,

np/2h(p−1)d/2 |ζn(Al)−Eζn(Al)| = OP (1).

Therefore, by (6.37),

np/2h(p−1)d/2

σn
{ζn(Al)− Eζn(Al)}

=
np/2h(p−1)d/2

σn(Al)
{ζn(Al)− Eζn(Al)}+ oP (1),

where oP (1) is a term that vanishes in probability as n → ∞ and l → ∞. For each l ≥ 1,

the last term converges in distribution to N(0, 1) by Lemma A10. Since σ2
n(Al) → σ2 as

n → ∞ and l → ∞, we conclude that

J
∑

j=1

{

np/2h(p−1)d/2Γj(ĝjn)− ajn
} d→ N

(

0, σ2
)

.

�

6.3. Proofs of Other Theorems. We now give proofs of other theorems in the paper.

Proof of Theorem 2 : We first show that for each j ∈ J ,

âjn = ajn +OP (n
−1/2h−3d/2) and(6.39)

σ̂2
n = σ2

n +OP (n
−1/2h−3d/2).
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For this, we show that for all j, k = 1, · · ·, J,

(6.40) sup
x∈Sj∩Sk

|ρ̂jk,n(x)− ρjk,n(x)| = OP

(

n−1/2h−d
)

.

Write supx∈Sj∩Sk
|ρ̂jk,n(x)− ρjk,n(x)| as

sup
x∈Sj∩Sk

∣

∣

∣

∣

∣

1

nhd

n
∑

i=1

{

YjiYkiK
2

(

x−Xi

h

)

− E

[

YjiYkiK
2

(

x−Xi

h

)]}

∣

∣

∣

∣

∣

.

Let ϕn,x(y1, y2, z) ≡ y1y2K
2((x− z)/h) and Kn ≡ {ϕn,x(·, ·, ·) : x ∈ Sj ∩ Sk}. We define

N(ε,Kn, L2(Q)) to be a covering number of Kn with respect to L2(Q), i.e., the smallest

number of maps ϕj, j = 1, · · ·, N1, such that for all ϕ ∈ Kn, there exists ϕj such that
∫

(ϕj − ϕ)2dQ ≤ ε2. By Assumption 2(b), Lemma 2.6.16 of van der Vaart and Wellner

(1996), and Lemma A.1 of Ghosal, Sen and van der Vaart (2000), we find that for some

C > 0,

sup
Q

logN(ε,Kn, L2(Q)) ≤ C log ε,

where the supremum is over all discrete probability measures. We take ϕ̄n(y1, y2, z) ≡
y1y2||K||2∞ to be the envelope of Kn. By Theorem 2.14.1 of van der Vaart and Wellner

(1996), we deduce that

n1/2hdE

[

sup
x∈Sj∩Sk

|ρ̂jk,n(x)− ρjk,n(x)|
]

≤ C,

for some positive constant C. This yields (6.40). In view of the definitions of âjn and

σ̂2
n, and Lemma A4, this completes the proof of (6.39).

Since gj(x) ≤ 0 for all x ∈ X under the null hypothesis and K is nonnegative,

sup
x∈Sj

Eĝjn(x) = sup
x∈Sj

∫

gj(x− uh)K (u) du ≤
∫

sup
x∈Sj

gj(x− uh)K (u) du

≤
∫

sup
x∈X

gj(x)K (u) du = sup
x∈X

gj(x) ≤ 0,

from some large n on. The second inequality follows from Assumption 1(iii). Therefore,
∫

X
Λp(ĝjn(x))wj(x)dx ≤

∫

X
Λp(ĝjn(x)− Eĝjn(x))wj(x)dx.

Hence by using this and (6.39), we bound P{T̂n > z1−α} by

P

{

1

σn

J
∑

j=1

{

np/2h(p−1)d/2

∫

X
Λp(ĝjn(x)− Eĝjn(x))wj(x)dx− ajn

}

> z1−α

}

+ o(1).

By Theorem 1, the leading probability converges to α as n → ∞, delivering the desired

result. �
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Proof of Theorem 3: Fix j such that Γj(gj) > 0. We focus on the case with p > 1.

The proof in the case with p = 1 is simpler and hence omitted. Using the triangular

inequality, we bound |Γj(ĝjn)− Γj(gj)| by
∣

∣

∣

∣

∫

X
{Λp(ĝjn(x))− Λp(Eĝjn(x))}wj(x)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X
{Λp(Eĝjn(x))− Λp(gj(x))}wj(x)dx

∣

∣

∣

∣

.

There exists n0 such that for all n ≥ n0, supx∈Sj
|Eĝjn(x)| < ∞ by Lemma A4. Also,

note that supx∈Sj
|gj(x)| < ∞ by Assumption 1(i). Hence, applying Lemma A3, from

some large n on, for some C1, C2 > 0,

|Γj(ĝjn)− Γj(gj)| ≤ C1

⌈p−1⌉
∑

k=0

∫

X
|ĝjn(x)− Eĝjn(x)|p−kzwj(x)dx

+C2

⌈p−1⌉
∑

k=0

∫

X
|Eĝjn(x))− gj(x)|p−kzwj(x)dx,

where z = (p− 1)/⌈p− 1⌉. Observe that 0 ≤ z ≤ 1.

As for the second integral, take ε > 0 and a compact set D ⊂ Rd such that
∫

X\D wj(x)dx < ε and gj is continuous on D. Such a set D exists by Lemma A1.

Since D is compact, gj is in fact uniformly continuous on D. By change of variables,

Eĝjn(x)− gj(x) =

∫

[−1/2,1/2]d
{gj(x− uh)K(u)− gj(x)} du

=

∫

[−1/2,1/2]d
{gj(x− uh)− gj(x)}K(u)du

and obtain that for k = 0, 1, · · ·, p− 1,
∫

X
|Eĝjn(x)− gj(x)|p−kz wj(x)dx

=

∫

D

|Eĝjn(x)− gj(x)|p−kz wj(x)dx+

∫

X\D
|Eĝjn(x)− gj(x)|p−kz wj(x)dx

≤ C3 sup
u∈[−1/2,1/2]d

sup
x∈D∩Sj

|gj(x− uh)− gj(x)|p−kz

+C4

∫

X\D

∫

[−1/2,1/2]d
|gj(x− uh)− gj(x)|p−kz wj(x)dudx,

for some positive constants C3 and C4. Note that the constant C4 involves ||K||∞. The

first term is o(1) as h → 0, because gj is uniformly continuous on D. By Assumption
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1(i), the last term is bounded by

C5

∫

X\D
wj(x)dx < C6ε, for some C5, C6 > 0,

for some large n on. Since the choice of ε was arbitrary, we conclude that as n → ∞,

|Γj(ĝjn)− Γj(gj)| ≤ C1

∫

X
|ĝjn(x)− Eĝjn(x)|p−kz wj(x)dx+ o(1).

As for the leading integral, from the result of Theorem 1 (replacing Λp(·) there by |·|p−kz),

we find that
∫

X
|ĝjn(x)− Eĝjn(x)|p−kz wj(x)dx = OP (n

−(p−kz)/2h−(p−kz−1)d/2−d/2).

Since n−1/2h−d/2 → 0 by the condition of the theorem, we conclude that Γj(ĝjn)
p→

Γj(gj). Using the similar argument, we can also show that

σ̂2
n

p→ σ2 and âjn = OP (h
−d/2) for all j ∈ J ,

where σ2 = 1′Σ1 > 0. Hence

σ̂−1
n {Γj(ĝjn)− n−p/2h−pd/2hd/2âjn}

p→ σ−1Γj(gj) > 0.

Therefore,

P{T̂n > z1−α} ≥ P
{

σ−1Γj(gj) > 0
}

+ o(1) → 1,

where the inequality holds by the fact that n−1/2h−d/2 → 0 and âjn = OP (h
−d/2). �

Lemma A11: Suppose that Assumptions 1-3 hold, n−1/2h−d → 0, and that
√
ngj(·) =

δj(·), j ∈ J , for real bounded functions δj , j ∈ J , for each n. Then,

1

σn

J
∑

j=1

{

np/2h(p−1)d/2Γj,δ(ĝjn)− ãjn
} d→ N(0, 1),

where ãjn ≡
∫

EΛp(h
−d/(2p)ρjn(x)Z1 + hd(p−1)/(2p)δjn(x))wj(x)dx and δjn(x) ≡

∫

δj(x −
uh)K(u)du.

Proof: By change of variables,

√
nEĝjn(x) =

√
n

∫

gj(x− uh)K(u)du =

∫

δj(x− uh)K(u)du.

Since δj is bounded, supx∈Sj

√
n |Eĝjn(x)| = O(1). Hence

(6.41)

√
nhdĝjN(x)

ρjn(x)
= ξjn(x) +

√
nhdEĝjn(x)

ρjn(x)
= ξjn(x) +O(hd/2),
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under the local alternatives. Using this and following the proof of Lemma A7, we find

that under the local alternatives, σjk,n → σjk. Also, as in the proof of Theorem 1, we

use (6.41) and deduce that

(6.42)
1

σn

J
∑

j=1

np/2h(p−1)d/2 {Γj(ĝjn)−EΓj(ĝjn)} d→ N(0, 1).

Now, as for np/2h(p−1)d/2σ−1
n EΓj(ĝjn), We first note that

np/2h(p−1)d/2Γj(ĝjn) = h−d/2Γj(n
1/2hd/2{ĝjn − Eĝjn}+ n1/2hd/2Eĝjn)

= Γj(h
−d/(2p)ρjn(x)ξjn(x) + h(p−1)d/(2p)δjn(x)).

We follow the proof of Lemma A4 and Lemma A6 (applying Lemma A2 with Λp(v) in

Lemma A6 replaced by Λp(v + hd(p−1)/(2p)δjn(x)/ρjn(x))) to deduce that
∫

{

np/2h(p−1)d/2EΛp(ĝjn(x))− EΛp(Z̄jn(x))
}

wj(x)dx → 0,

where Z̄jn(x) ≡ h−d/(2p)ρjn(x)Z1 + hd(p−1)/(2p)δjn(x). �

Proof of Theorem 4: Under the local alternatives, by (6.39) and (6.42),

P{T̂n > z1−α}(6.43)

= P{σ̂−1
n ΣJ

j=1{np/2h(p−1)d/2Γj(ĝjn)− âjn} > z1−α}
= P{σ−1ΣJ

j=1{np/2h(p−1)d/2Γj(ĝjn)− ãjn + ãjn − âjn} > z1−α}+ o(1)

= P{Z1 + σ−1ΣJ
j=1{ãjn − ajn}) > z1−α}+ o(1).

Fix ε > 0 and take a compact set Aε ⊂ Sj such that
∫

Sj\Aε
wj(x)dx < ε. Furthermore,

without loss of generality, let Aε be a set on which δj(·) and ρj(·) are uniformly continu-

ous. Then for any ε1 > 0, there exists λ > 0 such that supz∈Rd:||x−z||<λ |δj(z)−δj(x)| ≤ ε1

uniformly over x ∈ Aε. Hence from some large n on,

sup
x∈Aε

|δjn(x)− δj(x)| ≤
∫

[−1/2,1/2]d
sup
x∈Aε

|δj(x− uh)− δj(x)|K(u)du ≤ ε1.

Since the choice of ε1 was arbitrary, we conclude that |δjn(x)−δj(x)| → 0 uniformly over

x ∈ Aε. Similarly, we also conclude that |ρjn(x) − ρj(x)| → 0 uniformly over x ∈ Aε.

Using these facts, we analyze σ−1ΣJ
j=1{ãjn − ajn} for each case of p ∈ {1, 2}.
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(i) Suppose p = 1. For γ > 0 and µ ∈ R,

Emax{γZ1 + µ, 0} = E[γZ1 + µ|γZ1 + µ > 0]P {γZ1 + µ > 0}
= {µ+ γφ(−µ/γ)/(1− Φ(−µ/γ))} (1− Φ(−µ/γ))

= µ (1− Φ(−µ/γ)) + γφ(−µ/γ)

= µΦ(µ/γ) + γφ(µ/γ).

Taking γjn ≡ h−d/2ρjn(x), we have

Emax{γjnZ1 + δjn(x), 0} − Emax{γjnZ1, 0}
= δjn(x)Φ(δjn(x)/γjn) + γjnφ(δjn(x)/γjn)− γjnφ(0)

= δjn(x)Φ(0) +O(hd/2),

uniformly in x ∈ Sj . Therefore, we can write limn→∞{ãjn − ajn} as

lim
n→∞

∫

X
E[Λ1(h

−d/2ρjn(x)Z1 + δjn(x))− Λ1(h
−d/2ρjn(x)Z1)]wj(x)dx

=
1

2

∫

Aε

δj(x)wj(x)dx+
1

2
lim
n→∞

∫

X\Aε

δjn(x)wj(x)dx.

Since δjn is uniformly bounded, there exists C > 0 such that the last integral is bounded

by Cε. Since the choice of ε > 0 was arbitrary, in view of (6.43), this gives the desired

result.

(ii) Suppose p = 2. For γ > 0 and µ ∈ R,

Emax{γZ1 + µ, 0}2 = E[(γZ1 + µ)2 |γZ1 + µ > 0]P {γZ1 + µ > 0}
= (µ2 + γ2)Φ(µ/γ) + µγφ(µ/γ).

Taking γjn ≡ h−d/4ρjn(x) and µjn = hd/4δjn(x), we have

Emax{γjnZ1 + µjn, 0}2 −Emax{γjnZ1, 0}2

= γ2
jn{Φ(µjn/γjn)− Φ(0)}+ µ2

jnΦ(µjn/γjn) + µjnγjnφ(µjn/γjn)

= {µjnγjnφ(0) +O(hd/2)}+O(hd/2) + {µjnγjnφ(0) +O(hd)}
= 2φ(0)δjn(x)ρjn(x) +O(hd/2), uniformly in x ∈ Sj .
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Hence we write limn→∞{ãjn − ajn} as

lim
n→∞

∫

Sj

E[Λ2(h
−d/4ρjn(x)Z1 + hd/4δjn(x))− Λ2(h

−d/4ρjn(x)Z1)]wj(x)dx

= 2φ(0) lim
n→∞

∫

Sj

δjn(x)ρjn(x)wj(x)dx+O(hd/2)

=

√

2

π
lim
n→∞

∫

Aε

δjn(x)ρjn(x)wj(x)dx+

√

2

π
lim
n→∞

∫

Sj\Aε

δjn(x)ρjn(x)wj(x)dx+O(hd/2).

The second term is bounded by Cε for some C > 0, because δjnρjn is bounded. Since

the choice of ε > 0 was arbitrary and
∫

Aε

δjn(x)ρjn(x)wj(x)dx →
∫

Aε

δj(x)ρj(x)wj(x)dx, as n → ∞,

in view of (6.43), this gives the desired result. �

Proof of Theorem 4∗: Let Aε ⊂ Sj be defined as in the proof of Theorem 4.

(i) Suppose p = 1. Under H∗
δ , take γ ≡ h−d/2ρjn(x) and µ = h−d/4δjn(x) to get

Emax{γZ1 + µ, 0} − Emax{γZ1, 0}
= h−d/4δjn(x)Φ(h

d/4δjn(x)/ρjn(x)) + h−d/2ρjn(x)
[

φ(hd/4δjn(x)/ρjn(x))− φ(0)
]

= h−d/4δjn(x)Φ(0) +
1

2
φ(0)

[

δ2jn(x)/ρjn(x)
]

+O(hd/4),

uniformly in x ∈ Sj . Therefore, if η1,0(w, δ) = 0 under H∗
δ , we can write limn→∞{ãjn −

ajn} as

lim
n→∞

∫

X
E[Λ1(h

−d/2ρjn(x)Z1 + h−d/4δjn(x))− Λ1(h
−d/2ρjn(x)Z1)]wj(x)dx

=
1

2
φ(0) lim

n→∞

∫

Sj

[

δ2jn(x)/ρjn(x)
]

wj(x)dx

=
1

2
φ(0)

∫

Aε

[

δ2j (x)/ρj(x)
]

wj(x)dx+
1

2
φ(0) lim

n→∞

∫

Sj\Aε

[

δ2jn(x)/ρjn(x)
]

wj(x)dx.

Since δ2jn/ρjn is uniformly bounded and the choice of ε > 0 is arbitrary, we get the

desired result.
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(ii) Suppose p = 2. Under H∗
δ , we take γ ≡ h−d/4ρjn(x) and µ = δjn(x), so that, by a

Taylor expansion,

Emax{γZ1 + µ, 0}2 −Emax{γZ1, 0}2

= γ2{Φ(µ/γ)− Φ(0)}+ µ2Φ(µ/γ) + µγφ(µ/γ)

=

{

φ(0)µγ +
1

6
φ′′(a∗)

µ3

γ

}

+

{

Φ(0)µ2 + φ(a∗)
µ3

γ

}

+ µγ

{

φ(0) +
1

2
φ′′(a∗)

µ3

γ

}

= h−d/4 · 2φ(0)δjn(x)ρjn(x) +
1

2
δ2jn(x) +O(hd/4),

uniformly in x ∈ Sj, where a∗ denotes a term that lies between 0 and µ/γ. Therefore, if

η1,1(w, δ) = 0 under H2δ, then we can write limn→∞{ãjn − ajn} as

lim
n→∞

∫

X
E[Λ2(h

−d/2ρjn(x)Z1 + h−d/4δjn(x))− Λ2(h
−d/2ρjn(x)Z1)]wj(x)dx

=
1

2
lim
n→∞

∫

Sj

δ2jn(x)wj(x)dx

=
1

2

∫

Aε

δ2j (x)wj(x)dx+
1

2
lim
n→∞

∫

Sj\Aε

δ2jn(x)wj(x)dx.

Since δ2jn is uniformly bounded and the choice of ε > 0 is arbitrary, we get the desired

result. �

Proof of Theorem 5: Similarly as before, we fix ε > 0 and take a compact set

Aε ⊂ Sj such that
∫

Sj\Aε
wj(x)dx < ε and δj(·) and δj(·)ρ−1

j (·) are uniformly continuous

on Aε. By change of variables and uniform continuity,

sup
x∈Aε

|δjn(x)ρ−1
jn (x)− δj(x)ρ

−1
j (x)| → 0 and

sup
x∈Aε

|δjn(x)− δj(x)| → 0.

(i) Suppose p = 1. For γ > 0 and µ ∈ R,

E |γZ1 + µ| = 2γφ(µ/γ) + 2µ [Φ(µ/γ)− 1/2] .

With γjn ≡ h−d/2ρjn(x) and µjn = h−d/4δjn(x), we find that uniformly over x ∈ Sj ,

E|γjnZ1 + µjn| − E|γjnZ1|
= 2γjn[φ(µjn/γjn)− φ(0)] + 2µjn[Φ(µjn/γjn)− 1/2]

= [φ′′(0) + 2φ(0)] δ2jn(x)ρ
−1
jn (x) +O(hd/4).
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Therefore, we write limn→∞{ãjn − ajn} as

lim
n→∞

∫

Sj

E[Λ1(h
−d/2ρjn(x)Z1 + n−d/4δjn(x))− Λ1(h

−d/2ρjn(x)Z1)]wj(x)dx

=
1√
2π

lim
n→∞

∫

Sj

δ2jn(x)ρ
−1
jn (x)wj(x)dx+O(hd/4)

=
1√
2π

∫

Aε

δ2j (x)ρ
−1
j (x)wj(x)dx+

1√
2π

lim
n→∞

∫

Sj\Aε

δ2jn(x)ρ
−1
jn (x)wj(x)dx+ o(1).

By Assumption 4 and Lemma A4, δ2jn(x)ρ
−1
jn (x) is bounded uniformly over x ∈ Sj ,

enabling us to bound the second integral by Cε for some C > 0. Since ε is arbitrarily

chosen, in view of (6.43), this gives the desired result.

(ii) Suppose p = 2. We have, for each x ∈ Sj ,

E{h−d/4ρjn(x)Z1 + δjn(x)}2 − E{h−d/4ρjn(x)Z1}2 = δ2jn(x).

Therefore, we write limn→∞{ãjn − ajn} as

lim
n→∞

∫

X
E[Λ2(h

−d/4ρjn(x)Z1 + δjn(x))− Λ2(h
−d/4ρjn(x)Z1)]wj(x)dx

=

∫

Aε

δ2j (x)wj(x)dx+ lim
n→∞

∫

Sj\Aε

δjn(x)wj(x)dx+ o(1)

The second integral is bounded by Cε for some C > 0, and in view of (6.43), this gives

the desired result. �
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Figure 1. Results of Monte Carlo Experiments: L1 test and σ(x) ≡ 1

Notes: 8 different solid lines in each panel correspond to our test with
8 different bandwidth values. 2 dotted lines correspond to the test
of Andrews and Shi (2011a) with PA and GMS critical values. The
nominal level for each test is α = 0.05. There are 1000 Monte Carlo
replications in each experiment.
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Figure 2. Results of Monte Carlo Experiments: L1 test and σ(x) = x

Notes: See notes in Figure 1.



56 LEE, SONG, AND WHANG

Figure 3. Results of Monte Carlo Experiments: L2 test and σ(x) ≡ 1

Notes: See notes in Figure 1.
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Figure 4. Results of Monte Carlo Experiments: L2 test and σ(x) = x

Notes: See notes in Figure 1.
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[27] Giné, E., D. M. Mason, and A. Y. Zaitsev (2003): “The L1-norm density estimator process,”

Annals of Probability 31, 719-768.

[28] Hall, P., Huber,C., and Speckman,P.L. (1997): “Covariate-matched one-sided tests for the

difference between functional means, ” J. Amer. Statist. Assoc. 92, 1074-1083.

[29] Hall, P. and I. Van Keilegom (2005): “Testing for monotone increasing hazard rate, ”Annals

of Statistics 33, 1109-1137.

[30] Hall, P. and Yatchew, A. (2005): “Unified approach to testing functional hypotheses in semi-

parametric contexts,”Journal of Econometrics 127(2), 225-252.
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[33] Horváth, L. (1991): “On Lp-norms of multivariate density estimators,” Annals of Statistics 19,

1933-1949.

[34] Hsu, Y.-C. (2011): “Consistent tests of conditional treatment effects” Working Paper, University

of Missouri.

[35] Khmaladze, E. V. (1993): “Goodness of fit problem and scanning innovation martingales,”

Annals of Statistics 21, 798-829.

[36] Khmaladze, E. V. and H. Koul (2004): “Martingale transforms goodness-of-fit tests in regres-

sion models,” Annals of Statistics 32, 995-1034.

[37] Koul, H.L. and Schick,A. (1997): “Testing for the equality of two nonparametric regression

curves, ” J. Statist. Plann. Inference 65, 293-314.

[38] Koul, H.L. and Schick,A. (2003): “Testing for superiority among two regression curves, ” J.

Statist. Plann. Inference 117, 15-33.

[39] Lee, S. and Y.-J. Whang (2009): “Nonparametric tests of condi-

tional treatment effects,” Cemmap Working Papers, CWP 36/09, available at

http://www.cemmap.ac.uk/wps/cwp3609.pdf.

http://www.cemmap.ac.uk/wps/cwp3609.pdf


60 LEE, SONG, AND WHANG
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