
ar
X

iv
:1

20
8.

24
17

v1
 [

st
at

.M
L

]
 1

2
A

ug
 2

01
2

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL

FUNCTIONAL SAMPLING

Assaf Hallak
Shie Mannor

Abstract. We examine a fundamental problem that models various active

sampling setups, such as network tomography. We analyze sampling of a

multivariate normal distribution with an unknown expectation that needs to

be estimated: in our setup it is possible to sample the distribution from a given

set of linear functionals, and the difficulty addressed is how to optimally select

the combinations to achieve low estimation error. Although this problem is in

the heart of the field of optimal design, no efficient solutions for the case with

many functionals exist. We present some bounds and an efficient sub-optimal

solution for this problem for more structured sets such as binary functionals

that are induced by graph walks.

Keywords: Learning Theory, Other Applications.

1. Introduction

Consider a network in which each link has a delay characterized with some
parametric distribution. The network can be probed in order to find an estimator
for these parameters, yet the only measurement obtained for each probe is the sum
of delays along the path. As each probe costs time, efficiently sampling the network
is crucial for estimating the delays accurately. This example is one of many that
can be modeled by the generative model studied in this paper:

Problem 1. Define the following system: N is the number of variables, xt ∈ R
N

is the sample at stage t, yt is the measurement produced in the following manner:

yt = w⊤
t xt, wt ∼ N

(

µ, diag
{

σ2
i

}N

i=1

)

,

where σ2
i are known. At each stage one may choose xt from a certain subset

X ⊆ R
N , observe yt and then find an estimator µ̂ using the history of the samples.

The problem is how to choose xt such that the estimator will have as low error as
possible.

To better understand the problem, we revisit the network tomography problem
([?, ?]):

Example 2. Observe the following network:

Assume that moving through each link in the network results in a random delay
w (ei) ∼ N (µi, 1). The possible traces one can probe must start and end in a
computer, so only the traces C1 → H → C2,C1 → H → C3, C2 → H → C3 and
the reverse traces are available. These can yield the following samples w (e1) +
w (e2) , w (e1) + w (e3) , w (e2) + w (e3). After sampling once from each trace, it is
possible to estimate µ1, µ2 and µ3 with finite expected error. Drawing more samples
will yield an estimator with lower error, but how should one draw them? Assume

1

http://arxiv.org/abs/1208.2417v1

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 2

for instance C1 → H → C2 is sampled more frequently than the other traces. This
may result in a lousy estimator for µ3 since this probe does not include e3. If the
error in each estimator is equivalently important to us, the optimal policy in this
case is not surprisingly probing the network uniformly over the available traces.
However, generally uniform sampling can generate terrible results.

The paper consists of the following parts: in the next section we survey previ-
ous related works in several fields such as experiment design, learning theory and
network tomography. In Section 3 we formulate the problem and discuss its known
solution and mathematical properties. In the succeeding sections, special structured
functionals sets will be considered: initially the general binary case, and afterward
sets generated by graph walks. In graph walks we discuss two setups: in the first,
the random variables are associated with the nodes, and in the second setup, they
are associated with the edges in the graph (like in Example 2). In Section 7 we
point out the relation to recent works on a specific bandit setup. The final chapter
will present conclusions, as well as suggestions, for the ongoing research.

2. Previous work

Similar generative models as posed in Problem 1 have been widely studied in the
field of optimal design (see Pukelsheim [?] for an overview of the field). However,
as the size of the finite set X grows, common solutions such as SDP solvers and
gradient techniques are insufficient as their complexity depends on the set size. This
difficulty is recognized in network tomography where each functional is identified
with a trajectory on the graph so that the size of X can be exponential in the
number of variables. Our work suggests an efficient solution for this particular
case.

In machine learning the field of active learning is concerned with similar prob-
lems (for a survey see [?]). Problem 1 highly resembles the multiple linear regression
model [?], however unlike regression our work is not focused on estimating the pa-
rameters but rather on choosing samples that will result in a better estimator. For
example, Cohn et al. [?] have studied optimal active learning in various models,
including the kernelized weighted least squares setup. Despite the similarities be-
tween the problems, several key differences in the setup had led to entirely different
mathematical formulations. Our focus is on using the structure of the set X for
obtaining an efficient sampling strategy that minimizes the estimation error.

We observe an interesting connection to exploration in bandit problems through
the work of Dani et al. [?] and its follow-up by Cesa-Bianchi and Lugosi [?].
They have come across a key problem similar to ours while proving bounds on the
exploration component of the adversarial online bandit problem with a restricted
linear sampling set. Although these works took great interest in assessing a similar
value function to the one we later present, their work did not address the optimal
sampling issue addressed by us, nor the computational effort in finding it. As an
application of our work, we solve a specific example mentioned in [?].

The main application presented here concerns “Network Tomography” (coined by
Vardi [?]), which deals with inference on the parameters or topology of a network
through probing (for an overview see Coates et al. [?]). In this field there are
many interesting setups, for example finding a network’s structure or some of its
unique properties [?, ?, ?]. For instance, in a recent work, Thouin et al. suggested
using active learning in order to infer the bandwidth of a network ([?]). Another

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 3

related work on parameter estimation was done by Tsang [?] who addressed the
same problem with different parameters and stresses. However, most of the works
in the field have dealt with more complicated distributions in different schemes and
most of the efforts were put into finding efficient computation of fine estimators
[?, ?, ?] rather than on how to best probe the network.

3. The unconstrained problem

In the introduction we presented Problem 1: how to choose xt in order to mini-
mize the error of the estimators. After observing another example we shall examine
the model more closely:

Example 3. Define the following problem:

X = {(1, 1, 3) , (1, 1, 0) , (−2,−2, 5)} , w ∼ N ((µ1, µ2, µ3) , diag (1, 1, 2))

In this example, it is possible to sample at each time step one of the following
linear combinations: w (1)+w (2)+3w (3) , w (1)+w (2) , −2w (2)−2w (2)+5w (3).

Apparently, not all entries of µ can always be estimated with a finite error:
since all possible linear combinations include some multiplication of the expression
w (1) + w (2), adding a constant to µ1 and subtracting it from µ2 will not change
the probability of the measurements and therefore is undetectable, which implies a
possibly infinite estimation error for each. While the most logical way of handling
this situation here might be defining a new variable w̃1,2 = w (1) + w (2), in more
complex cases it is not entirely clear how new variables should be defined. Therefore,
throughout the rest of the paper, unless specified otherwise, we shall assume this
situation does not occur, however it still must be taken into account.

Since all the variables in this model form a normal multivariate vector, finding the
MVUE (Minimum Variance Unbiased Estimator) which is also the MLE (Maximum
Likelihood Estimator) [?] µ̂ is straightforward. Let Γ be the T ×N matrix whose

tth row is xt, σ
2
F,t = x⊤

t diag
(

σ2
i

)N

i=1
xt is the variance of the tth functional and ΣΓ

is the diagonal matrix ΣΓ = diag
(

σ2
F,t

)T

t=1
. The following proposition is taken from

Pukelsheim [?]:

Proposition 4. The inverse Fisher information matrix which is also the MSE
matrix for the MVUE estimator is given by:

MSE (µ) , E (µ− µ̂) (µ− µ̂)
⊤
= M−1 ,

(

T
∑

t=1

1

σ2
F,t

xtx
⊤
t

)−1

=
(

Γ⊤Σ−1
Γ Γ

)−1
.

As the MSE is a matrix, we would like to choose some scalar scoring function to
minimize. There are several suitable options (see Pukelsheim [?]), but we believe
the simplest analytically and most appropriate option is finding A-optimality, i.e.
minimizing the trace of the estimator’s covariance matrix M−1.

Instead of solving the discrete time setup, we shall identify the optimal decision
policy as some stationary distribution on X . To ease the notation we will assume
from now on that the random variables have unit variance (i.e. wt (i) ∼ N (µi, 1)).
In addition, we shall restrict X to be a finite set for tractability reasons. Denote
by ∆N the simplex set in N variables, i.e. ∆N =

{

v ∈ R
N
+ |1⊤v = 1

}

. The problem
can be formulated as follows:

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 4

Problem 5. Find the optimal distribution P on linear combinations from X that
achieves:

P = arg min
P∈∆N

tr

[

∑

x∈X

p (x)

x⊤x
xx⊤

]−1

 .

Remark 6. Pukelsheim [?] and Cesa-Bianchi and Lugosi [?] have formulated a dif-
ferent problem for which the factor 1

x⊤x
does not appear in each summand. This is

due to the slightly different setup: Pukelsheim had defined that samples have the
same variance for each functional, while in our setup it is constant per coordinate,
but functional dependent.

To simplify notation from now on, we abuse our previous notation by redefining
Γ as the |X | ×N matrix whose rows are the distinct x ∈ X . Moreover, we define
the matrices L = diag

(

x⊤x
)

x∈X
and P = diag (p (x))x∈X so M = Γ⊤L−1PΓ, and

we want to minimize tr
(

M−1
)

. Evidently Problem 5 can be fitted in a standard
form as seen in [?].

Corollary 7. Tr
(

M−1
)

is a convex function of p (x) and Problem 5 can be solved
using SDP (Semi-Definite Programming).

Remark 8. There is a minor variation on Problem 5 that can be handled similarly:
consider the same objective function, only that now each functional x is associated
with a cost c (x) and there is some restricted budget C. Adding the linear constraint
∑

x∈X c (x) p (x) ≤ C to the formulation does not affect its solvability using SDP.

According to Corollary 7, solving Problem 5 can be done in polynomial time as
a function of |X |. However, when X is very large it is unfeasible. Nevertheless, in
practice large sampling spaces tend to contain some inner structure and this is our
motivation. We view graph walks as structured sets for which a sub-optimal yet
efficient solution is employed.

4. Binary functionals

Binary functionals, i.e., linear combinations with coefficients only in {0, 1}, are
an important and interesting subset of possible functionals, since they are sufficient
to describe sampling in special models such as graphs. The meaning of using binary
functionals is that you choose which of the N elements are part of your sample. We
start with the case where a subset of size K of the variables is chosen.

4.1. K-choose-N. The most natural set of binary functionals is the set of all func-

tionals with exactly K ones. For example, for K = 1 we get X = {ei}
N

i=1 and for
K = N we get X = {1} (1 denotes the vector of N ones). It turns out the optimal
solution for these sets can be found analytically, as well as the solution for unions
of K-choose-N sets for different values of K.

Definition 9. Denote the K-choose-N set BK by BK ,

{

x ∈ {0, 1}
N
| x⊤

1 = K
}

.

The following theorem determines the optimal solution for Problem 5 when X =
BK :

Theorem 10. Let X = BK . The optimal solution for Problem 5 is choosing
uniformly functionals over X, and the optimal MSE is given by: tr

(

M−1
)

= N
K

+
(N−1)2N
N−K

.

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 5

Proof. First we find the trace of the uniform decision for which M = 1

K

N

K

∑

x∈BK
xx⊤.

By applying a counting argument we obtain Mi,i = 1
N

, Mi,j = K−1
N(N−1) and

tr
(

M−1
)

= N
K

+ (N−1)2N
N−K

.

Now assume M is A-optimal. Due to the symmetry of BK for each variable, for
any permutation matrix Φ we have ΦTMΦ ∈ conv (BK). From the convexity of
Problem 5 we can conclude that:

tr

(

∑

Φ∈SN
ΦTMΦ

N !

)−1

 ≤

∑

Φ∈SN
tr
(

(

ΦTMΦ
)−1
)

N !
= tr

(

M−1
)

.

Due to symmetry the matrix M ′ = 1
N !

∑

Φ∈SN
ΦTMΦ has constant diagonal

entries and constant off-diagonal entries denoted cdiag, coff respectively. Since
tr (M ′) = 1 we know that cdiag = 1

N
. As M ′ ∈ conv (BK) we have 1

TM ′
1 =

Ncdiag + N (N − 1) coff = K, so coff = K−1
N(N−1) and M ′ is the same matrix

obtained by uniform choice. �

Example 11. for K = N − 1 we get tr
(

M−1
)

= N
(N−1) + (N − 1)

2
N , an N3

asymptotic behavior.

Since the best value of K is 1, and for K = N − 1 we got an error that scales
like N3. We generalize this notion that smaller K yields better results:

Corollary 12. If K1 < K2, then the optimal solution of Problem 5 for X1 = BK1
is

smaller and therefore better than the optimal solution of Problem 5 for X2 = BK2
.

Proof. Obtained from analysing tr
(

M−1
)

= N
K

+ (N−1)2N
N−K

as a function of K. �

So far we have shown the optimal solution for N-choose-K sets, and in Corollary
12 we also show that sets with smaller K can be used better. This result can be
strengthened by the subsequent theorem that suggests that if X contains several
N-choose-K subsets, only the smallest subset is used for the optimal solution. In
addition, it gives rise to a general lower bound on binary functionals:

Theorem 13. Assume X =
⋃N

i=K Bi, i.e., X is the set of all linear combinations
with at least K ones. The optimal solution of Problem 5 is given by a uniform
choice over the functionals in BK .

Proof. Like we showed in the proof of Theorem 10, there is an optimal matrix
M with constant off diagonal entries and due to its unit trace and symmetry its
diagonal entries are 1

N
. The smallest off diagonal constant yields the minimal

tr
(

M−1
)

so choosing the smallest K is optimal. �

Conclusion: For Problem 5, if X ⊆
⋃N

i=K Bi, meaning all functionals in X

have at least K ones, then tr
(

M−1
)

≥ N
K

+ (N−1)2N
N−K

.

5. Graph paths with randomness in the nodes

Given a source-drain DAG (Directed Acyclic Graph) with N inner nodes, and

assume V = {vs, vd}
⋃

{vi}
N

i=1 where the order over the nodes is defined by a
topological order. Each inner node is associated with a normally distributed random

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 6

variable w (i) ∼ N (µi, 1), with an unknown µi. We would like to estimate the
µi’s with minimal MSE. This scheme can model for example networks with delays
generated from the networking equipment in each node, but with constant or very
low variance link delays, e.g., optical networks. Denote by x both the actual path
in the graph, and the corresponding characteristic vector, i.e., x (i) = 1 iff vi ∈ x.

Example 14. Consider the following source-drain DAG:

The possible paths on the graph allow us to sample the following linear combi-
nations: w1+w2+w3, w1+w2, w1+w3, w2, w2+w3, so the corresponding Γ matrix

is: ΓT =

1 1 1 0 0
1 1 0 1 1
1 0 1 0 1

.

The following example exhibits many problems in the model we must take into
account:

Example 15. Consider a grid graph of the following form:

This kind of graph is a good example for what can happen when ignoring the
complexity of Problem 5 and instead uniformly choosing functionals from the given
set: if all paths on the grid are chosen the same number of times, then the nodes
in the middle will be sampled much more often than these far on the sides, since
many more paths go through them. In their paper, Cesa-Bianci and Lugosi [?] have
also addressed this counter example to the good results of uniform distribution over
the trajectories of many other graphs and models. They suggested in their paper
to find a better solution using semi-definite programming which is impractical for
non-trivial grids.

The number of paths in the example is large, which makes finding the solution
unfeasible for many nodes. Another concern we have neglected so far that emerges
in this example is its identifiability: in this grid graph, adding a constant to the
mean of all nodes at a certain layer (meaning all nodes at the same distance from
the source) and subtracting the same constant from the mean of all nodes at another
layer will not change the distribution of the samples, so the set of possible paths is
unidentifiable. Apparently this is a key problem in any layers graph, and although
there are some reasonable suggestions for dealing with this issue we shall neglect it
in this paper as it draws us further from the main scope.

Since the number of paths can be exponential in the number of nodes, there
might be too many functionals to optimally find the MSE using SDP solvers. To
cope with this setback, we offer a relaxed solution that can be computed efficiently
using dynamic programming. Simulations show that our approach works quite well.

5.1. The product distribution. We propose a relaxed solution using dynamic
programming by introducing the product problem: observe only the distribution
on paths generated as the product of the leaving distribution from each node. More
specifically, denote αi,j as the probability to leave the vertex vi using the edge ei,j ,

so we get the following equations:
∑N

j=i+1 αi,j + αi,d = 1, p (x) =
∏

i,j:ei,j∈x αi,j .

Now we can define the relaxed problem which we later show is easier to solve:

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 7

Problem 16. Find the optimal exit distributions α that solves the following prob-
lem:

minα tr

(

[

∑

x∈X
p(x)
x⊤x

xx⊤
]−1
)

subject to p (x) =
∏

i,j:ei,j∈x αi,j , αi,j ≥ 0,
∑N

j=i+1 αi,j + αi,d = 1
.

Example 17. Recall the graph from Example
The value on each edge represents the exit distribution from its source node so

the distribution over paths is given by:

p (vs → v1 → v2 → vd) = 0.7·0.2·0.5 = 0.07, p (vs → v2 → v3 → vd) = 0.3·0.5·1 = 0.15, ...

Notice that the set of product distributions is a subset of all possible distributions
over the paths, so the optimal product distribution may produce a much worse MSE
than the optimal unconstrained distribution. However, since for optimization on
the exit distributions α we got no more than N2 variables, if M can be expressed
efficiently using α then the computation effort will be drastically reduced. In order
for Problem 16 to have an efficient solution we need to be able to calculate the
matrix M without directly calculating p (x) for each x. In Theorem 18 we show
how it can be done:

Theorem 18. The matrix M (α) can be computed in polynomial time using dy-
namic programming.

Proof. First we show how one can compute how many times length l paths con-
tain each node. We calculate for each node sequentially (according to a topolog-
ical sort) how many times paths of length l from the source finish in this node

using the following equation: Φi (l) =
∑i−1

j=1 αj,iΦj (l − 1) + αs,i1 {l = 1}. Like-
wise, we can calculate for each node sequentially how many length l paths started
in it and finished at the drain by employing the following equation: Θi (l) =
∑N

j=i+1 αi,jΘj (l− 1) + αi,d1 {l = 1}. Now the number of length l paths that

passed through node i is given by: Ji,i (l) =
∑l−1

j=1 Φi (j)Θi (l − j). In a similar
fashion we can compute the number of length l trajectories that passed through
both node i and node j: Ji,j (l). Finally, realizing that the matrix J (l) satisfies
J (l) =

∑

x:xT1=l p (x)xx
⊤, we can compute M as the weighted sum of the matrices

{J (l)}
N

l=1: M =
∑N

l=1
1
l
J(l). �

Obviously, the matrix M linearly depends on each distinct set of leaving proba-

bilities {αi,j}
d

j=i+1 or entering probabilities {αi,j}
j−1
i=s

, while not changing the other

values of α. Therefore for each such set of variables the problem of minimizing
tr
(

M−1
)

is an SDP in that specific set of variables. However, over the entire set
of variables {αi,j} the function is not an SDP as it is not convex. Therefore, even
if we compute for each node iteratively the optimal exit distribution assuming all
the other distributions are constant, we cannot be assured the solution found is
globally optimal. Algorithm 1 describes this general scheme. Notice that the ob-
jective function decreases at each iteration so convergence is guaranteed. The order
in which the nodes are chosen can play a role in the convergence rate; we leave that
aspect for future research. Empirically the optimal solution is unique and closely
approximates the solution of Problem 5, as seen in Figure 5.2 (A).

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 8

Algorithm 1 Optimize_Products

1. Start with random exit distributions for each node {αi,j}.
2. Choose node v.
3. Find the optimal exit distribution {αv,j}

d

j=v+1 from node v to all other nodes

assuming all other exit distribution {αi,j}i6=v
are constant.

4. Go to step 2 with a different node.

Figure 5.1. The
optimal product dis-
tribution for 5×5 grid.
Notice the weights
give higher proba-
bility to go through
the corners than the
uniform distribution.

In Figure 5.2 (B) we compare our relaxed solution
against the uniform distribution for the grid graph. Note
that for square grids with a nodes on each side there are
(

2a− 2
a− 1

)

paths in the graph, so the optimal solution

is impossible to compute for large a. To deal with the
identifiability problem, instead of tr

(

M−1
)

we used the

objective function
∑

λi 6=0

1
λi

to minimize. The results for the

product distribution are much better than these obtained
by the uniform distribution.

6. Graph paths with randomness on the edges

Although we initially acknowledged DAG graphs in
which the randomness is associated with the vertices, it is
common in application to associate them with the edges,
for example as delays in a network. To fit our model to
such applications we shall now assume a graph with mul-
tiple access points from which the user can probe the net-
work to another access point. Even though such graphs
will not necessarily be DAGs, we will not allow cycles as
they are not usually allowed in regular networks and ad-
versely affect the estimation since they just add more noise.

Let G = (V,E) be a simple graph where each edge is associated with a normal
random variable with an unknown mean and unit variance. In addition let S ⊆ V

be a set of access points in the graph. Each time step, it is possible to choose a
path in the graph starting with one access point and ending in another. Finally,
the sum of the random variables over the edges in the path is presented, from
which one can estimate the expectation of the random variable associated with
each edge. Although a directed graph is more appropriate to describe reality, in
the next example we shall assume that the graph is undirected for simplicity, which
is equivalent to the claim that the delay in each direction has the same distribution.

Example 19. Consider a star graph with v0 as its center vertex and assume that
all edges from and to the center exist. If S = V \ {v0}, we get an identical case as
N-choose-K, where K = 2. As we saw, the optimal solution here is uniform over all
2 access points. Notice that by giving uniform distribution from the center vertex
to any of the edges except the one of the root access point, the optimal solution in
this setting is obtained.

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 9

Figure 5.2. Matlab Simulations. For the implementation we used
the CVX package [?, ?].

(a)
Uni-

form

dis-

tri-

bu-

tion

and

op-

ti-

mal

prod-

uct

so-

lu-

tion

di-

vided

by

the

op-

ti-

mal

so-

lu-

tion.

We

sim-

u-

lated

graphs

in

the

fol-

low-

ing

man-

ner:

first

cre-

ate

a

path

graph

from

the

source

to

the

drain

through

each

node,

now

add

each

for-

ward

edge

with

prob-

a-

bil-

(b)
Grid

sim-

u-

la-

tion

over

square

grids:

uni-

form

sam-

pling

vs.

prod-

uct

so-

lu-

tion.

Smaller

val-

ues

are

bet-

ter

as

they

in-

di-

cate

smaller

er-

ror.

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 10

In order to cope with the exponential number of paths, we can define here as well
a product rule: for each node vi ∈ V , and its set of exit edges {ei→j}j:vj∈Neighbors(vi)

define an exit distribution αi→j as the probability to take the edge ei→j from node
vi.

Theorem 20. The matrix M (α) can be computed in polynomial time complexity
using dynamic programming.

Proof. In a similar fashion to the proof of Theorem 22 we can calculate for each
access point and for each edge ei→j in the graph by dynamic programming the
number of k-length paths that began at that access point and ended at vertex i.
Similarly we can calculate the number of k-length paths that began at vertex j and
ended in that access point. Convolving the results provides us with the number of
k-length paths that passed through the edge ei→j , and from that Mi→j is easily
obtained. �

Theorem 20 allows us to use Algorithm 1 for efficient computation of optimal
product solution for this case as well, so the product solution can be used for
efficient estimation of delays in networks.

7. Online bandits

Cesa-Bianchi and Lugosi [?] have come across a similar problem in the adver-
sarial online bandit problem with a restricted linear sampling set. They showed
a performance bound that depends on the lowest eigenvalue of the matrix F =
∑

x∈X p (x) xx⊤. Maximizing the smallest eigenvalue is called in the literature E-

criterion and it can be formulated in SDP form. It is easy to see that
(

minx∈X ‖x‖
2
)

M �

F �
(

maxx∈X ‖x‖
2
)

M (using the Lowener order for symmetric matrices), and that

if all vectors in X have norm b (like in the K-choose-N example or the grid) then
F = bM . This means that there is a close connection between the two problems,

especially for the binary case for which maxx∈X‖x‖2

minx∈X‖x‖2 ≤ N . In that case, as stated

by Theorems 18 and 21, relaxed solutions can be found efficiently for Problem 5 on
the graph setups by considering product distributions. For minimizing F there is
a similar result as we show in the next Theorem for nodes-associated randomness
(a similar result can be shown for the case of edges):

Theorem 21. The matrix F (α) can be computed in polynomial time complexity
using dynamic programming.

Proof. Denote by n (j) the appearance frequency of the j’th node and by n (i, j) the

joined appearance frequency of nodes i and j. Observe that n (j) =
∑j−1

k=s n (k)αk,j , n (i, j) =
∑j−1

k=i n (i, k)αk,j . So computing Fi,j = n (i, j) is simply applying these equations
in the order they are written for incrementing values of j. �

According to Theorem 21, Algorithm 1 can be used for minimizing F on all
product distributions efficiently as well. Therefore we can use this algorithm to
find and simulate sub-optimal exploration distribution on the sampling space in
the suggested bandit setup.

HOW TO SAMPLE IF YOU MUST: ON OPTIMAL FUNCTIONAL SAMPLING 11

8. Conclusions

In this paper we considered a fundamental problem that is common in many
setups. Although a straightforward solution for the optimal sampling problem
exists, it might be unfeasible to compute. Therefore, for graph paths we proposed
an efficient relaxed solution that exploits the graphical structure using dynamic
programming. The suggested solution was tested empirically and our simulations
showed good behavior. In addition we linked a recently suggested bandit setup
with the field of optimal experiments design, and employed our solution on the grid
example for which uniform sampling is inadequate.

Our paper opens up some interesting research directions. Among these directions
are: the case of an infinite set X , bounding the difference between the relaxed
product solution and the optimal one, finding graph properties based bounds, and
analyzing the behavior of random graphs or sets in this context.

	1. Introduction
	2. Previous work
	3. The unconstrained problem
	4. Binary functionals
	4.1. K-choose-N

	5. Graph paths with randomness in the nodes
	5.1. The product distribution

	6. Graph paths with randomness on the edges
	7. Online bandits
	8. Conclusions

